

PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 11/09

Towards a Model Driven Approach for
Engineering Self-Organizing Multi-Agent Systems

Maíra Athanázio de Cerqueira Gatti

Ugo Braga Sangiorgi
Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 11/09 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena March, 2009

Towards a Model Driven Approach for Engineering Self-
Organizing Multi-Agent Systems

Maíra Athanázio de Cerqueira Gatti, Ugo Braga Sangiorgi and Carlos José
Pereira de Lucena

Laboratório de Engenharia de Software – LES

Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brasil

{mgatti, usangiorgi, lucena}@inf.puc-rio.br

Abstract. This paper introduces a tool for modeling self-¬organizing multi¬-agent sys-
tems based on a design approach that contains models that allow the design of more
than message passing but the emergence of highly decentralized and dynamic distrib-
uted systems. It is crucial for self-organizing systems to model an environment where
agents can interact indirectly through intentional events, for example by leaving ob-
jects in an environment for other agents to see. It is more scalable and convenient for
the application developer. Our tool allows the visual construction and validation of the
proposed models, representing the first step for code generation.

Keywords: Model Driven Development, Multi-Agent Systems, Self-organization, Co-
ordination.

Resumo. Este artigo apresenta uma ferramenta de modelagem de sistemas multi-
agentes auto-organizáveis baseada em uma abordagem de design que possui modelos
que permitem o projeto de propriedades emergentes de sistemas altamente dinâmicos
e descentralizados. A modelagem do ambiente onde os agentes interagem de forma
indireta através de eventos intencionais, como por exemplo deixando objetos no ambi-
ente para que outros agentes percebam, é crucial para sistemas auto-organizáveis. A-
lém de ser mais escalável e conveniente para o desenvolvedor da aplicação. A ferra-
menta aqui proposta permite a construção visual e validação dos modelos propostos,
representando um primeiro passo para geração de código.

Palavras-chave: Desenvolvimento Orientado a Modelos, Sistemas Multiagentes, Auto-
Organização, Coordenação.

 ii

Responsável por publicações:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br

 iii

Sumário

1 Introduction 1

2 The Model Driven Approach 1

2.1 The Static Meta-Model Editor 2

2.2 The Dynamic Meta-Model Editor 3

3 The Self-Organizing Framework Instantiation and Source Code Generation 6

4 Related Work 7

5 Discussion and Future work 8

References 9

 1

1 Introduction

Self-organizing systems tend to be decentralized and bottom-up driven [9] because
self-organization is a dynamic and adaptive process where components of a system
acquire and maintain information about their environment and neighbors without ex-
ternal control. This makes it more difficult to compare such a system’s design and
maintenance to non-self-organizing systems.

On the other hand, Agent-Oriented Software Engineering (AOSE) can provide
methods and technologies that help in the building of self-organizing systems. In [14-
15], a design approach is proposed to allow the modeling of more than message pass-
ing but the emergence of highly decentralized and dynamic distributed systems.

A static and a dynamic model was proposed; the former reuses the UML class
model, and the latter the UML state diagrams. The problem this work focuses on prac-
tical aspects of modeling the agent systems. There is a need for a specific editor for the
language, since drawing the models by hand can be a really time-consuming task,
even for simple models. Furthermore, the artifact produced in this manner only con-
tains drawings; there is no semantic on the models, hence it is not possible to auto-
matically validate them.

Therefore, to have a specific editor to design the models would contribute not
only to faster modeling of static and dynamic models, but also would lead us to a bet-
ter understanding of emergent properties of the self-organizing systems onto the pro-
posed language. In addition, to have well defined models leads the way for code gen-
eration in the future.

This paper is organized as follows: the next Section presents the chosen technolo-
gies that underpin the description of our models and their editors. Section 3 describes
the framework instantiation and how code generation can be done for a self-
organizing framework [16]. Section 4 presents the related works, and finally we pre-
sent the conclusions and future development.

2 The Model Driven Approach

The model driven approach consists of a meta-model to structure entities, a represen-
tation model based on coordination statecharts [15] which adapts UML 2 diagrams
[19],[11],[5], an editor to support the modeling, and a Java-based source code genera-
tion with the automatic instantiation of a self-organizing simulation framework.

We had developed a group of Eclipse plug-ins for the editor, mainly using GMF
(Graphical Modeling Framework)1 , which allows a rapid development of graphical
editors based on GEF (Graphical Editor Framework)2 for domain models specified
with EMF (Eclipse Modeling Framework)3. All these frameworks combined allow a
user to visually develop a domain model represented in a compliant XMI.

Both the dynamic and static models were written using EMF, extending the Eclipse
UML2 framework model, just like the meta-models extend UML’s model. According to

1 http://www.eclipse.org/modeling/gmf

2 http://www.eclipse.org/gef

3 http://www.eclipse.org/modeling/emf

 2

[4], extensions to UML Tools meta-models may be done using a lightweight, a mid-
dleweight or a heavyweight approach. We had chosen to use the middleweight, since
the lightweight uses profiles and stereotypes, and therefore it was impossible to re-
define structure or behavior, and using the heavyweight one involves reuse by “copy
and merge” instead of reuse by specializing types from the meta-model, which could
aggregate more complexity to the work and lose interoperability with other UML
tools.

Thus, we used a middleweight solution since we reused and adapted the UML
meta-model, creating our own state editor to support the coordinated statecharts. We
had built the editor trees for the static and dynamic models in order to allow a first
validation of the tool, hence the visual editor can be developed. The models are briefly
described while the static and dynamic meta-model editors are presented.

2.1 The Static Meta-Model Editor

The meta-class Adaptive must be stereotyped either as agent or environment. The
Adaptive class can be either a proactive or reactive agent with sensors and effectors.
An agent can execute several actions regarding its goals or perceptions. As well, the
environment has the same features.

There are two structural features, the input and output event, that define the events
that the agent or environment perceives (input event) and that is a condition for acti-
vating an action, and the events that they generate (output event) after executing the
action. They vary according to the stereotypes and can be stereotyped according to the
event type.

Figure 1. The static meta-model

The action behavior feature is executed during agent or environment execution without
explicitly being called by other objects or agents. Agents interact with one another and
the environment, sending and receiving messages or sending and receiving events
through propagations in the environment.

Every action is described specifying preconditions and effects. Like the Operation
meta-class, the Action meta-class is associated with the Constraints meta-class in order

 3

to define the pre and post conditions and the in and output events. Constraints are
conditions expressed in natural language text or in a machine legible language in order
to declare an entity’s semantics [19].

The static meta-model developed is illustrated in Figure 1. Notice the extensions to
the EMF meta-model like the StructuralFeatures, BehavioralFeatures and Stereotypes.
From this meta-model, an editor tree was generated (Figure 2). It is possible to add
specific elements to this editor (beyond the UML meta-model elements) in order to
compose an appropriate model to the proposed specification.

Figure 2. The static meta-model editor.

2.2 The Dynamic Meta-Model Editor

Coordination is defined as the management of the communication between agents –
coordination defines how agents interact. In self-organizing systems this interaction
occurs through the environment (e.g. gradient fields, pheromones) [Error! Reference
source not found.],[Error! Reference source not found.]. Furthermore a coordination
design approach allows the design of more than message passing but the emergence of
highly decentralized and dynamic distributed systems. It is crucial for self-organizing
systems to model an environment where agents can interact indirectly through inten-
tional events, for example, by leaving objects in an environment for other agents to see,
and it is more scalable and convenient for the application developer.
Coordinated statecharts is based on the UML State Machine diagram. It combines
statecharts [18]) with action and communication of behaviors. A State Machine Dia-
gram describes discrete behavior modeled through finite state-transition systems.
More specifically, coordinated statecharts reuses the UML 2 behavioral state machine.
Each agent and environment behavior is designed using behavioral state machine dia-
grams. Each behavioral state machine diagram can communicate with all the other
diagrams through a communication channel and the desired emergent property may
appear as a result of that communications/coordination. Moreover, behaviors are
composed of actions. Actions are executed through input events and pre-conditions
and raise output events.

 4

Coordinated statecharts compose behaviors in parallel. With coordinated statecharts, a
behavior is a particular instance of the agent or environment in a scenario that repre-
sents a typical path through the state space within a single state machine, i.e., an or-
dered sequence of state transitions triggered by events and accompanied by actions. A
notable problem with a traditional state machine is that it allows only a single behav-
ior within itself at a time, thus executing concurrent behaviors (for each
agent/environment) only in a sequential manner on a behavior-by-behavior basis,
rather than on an event-by-event basis. The result can be poor real-time performance
and underutilization of system resources such as the CPU and network bandwidth.
The rationale behind coordinated statecharts is that it can interleave the execution of
concurrent behaviors by switching among behaviors on an event-by-event basis. As
well, the self-organizing mechanism may reuse all or part of local behaviors. Thus, the
new dynamic model representation must be able to encapsulate behaviors in such a
way that they can be reused. Therefore, the semantics of coordinated statecharts is de-
fined by the semantics of state diagrams and descriptions in natural languages.

Coordinated statecharts allows the design of information-oriented indirect commu-
nication. It allows the modularity and reuse of local behaviors. And it allows the de-
sign and reuse of self-organizing architectural patterns. Moreover coordinated state-
charts allows the design of feedback loops [Error! Reference source not found.],[Error!
Reference source not found.].

Figure 3. The dynamic meta-model editor

The dynamic model editor tree is identical to a state machine editor, with the addition
of the facility of transitions edition. As the transition syntax might change in the future
and is very long, we showed the visible attributes in a different way (right inferior part
of the Figure 3). Therefore, the visualization is flexible enough, in the future, to allow
the removal or shortening of very extensive attributes.

In the same way, the straight edition of the transition is allowed, and the attributes
are filled in the right inferior part automatically — of course, respecting the syntax.
Therefore, the editor handles an XML file that contains an instance of the meta-model:

 5

<?xml version="1.0" encoding="UTF8"?>
<dynamicmodel:Model xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
xmlns:dynamicmodel="dynamicmodel">

<elements xsi:type="dynamicmodel:Behaviour" name="Behaviour 1"

agent_instance="A2">

<elements xsi:type="dynamicmodel:State" name="State 1"/>
<elements xsi:type="dynamicmodel:State" name="State 2"/>
<elements xsi:type="dynamicmodel:StartPoint"/>
<transition source="//@elements.0/@elements.0"
target="//@elements.0/@elements.1" precondition="precond"
input_event="input_evt" attribute_name="att" output_event="output_evt"
action_output="output" action_input="input"/>
<transition source="//@elements.0/@elements.2"
target="//@elements.0/@elements.0"/>

</elements>

Figure 4. The dynamic meta-model

Also, an editor tree was generated for the dynamic meta-model in a way that what is
seen in the editor tree is the same model in the coordinated statecharts (dynamic) edi-
tor. In Figure 4 the model illustrates how the structure is displayed. For instance, it
shows a model that contains a Behavior with three States and two events that connect to
other Behavior.

 6

3 The Self-Organizing Framework Instantiation and Source Code
Generation

In this section we show how the models can be realized into code through the instan-
tiation of a multi-environment self-organizing simulation framework [Error! Refer-
ence source not found.]. It supports modeling and development of self-organizing and
self-adaptive systems; it allows multi-environment simulation; it allows both 2D and
3D discrete and continuous visualization.

The framework provides higher abstractions and components to support the devel-
opment of self-organizing systems with multiple environments. There is one interface
for agents and one for environments. The framework provides two classes for each en-
vironment type to be developed (situated/ non-situated, discrete/ continuous, 2D/
3D, and their combination) that implement those interfaces and they provide a set of
reusable behaviors that can be used for any application to be instantiated.

In a discrete event simulation system, an entity is allowed to behave from time to
time. These slices of time are called steps. So, a basic entity will usually implement the
step method where it will perform its activities. The agent or environment has a set of
events, i.e., the information provided for the underline self-organization and implicit
coordination, to handle on each time step of simulation. An agent can behave and exe-
cute actions over the environment where it resides or over itself.

For instance, considering a 2D environment, the framework provides the Agent2D
and Environment2D classes for situated environment using a discrete 2D double point
grid that is represented by the class Grid2D. This class handles the addition, removal
and search of agents and events in a double point location. The environment uses the
grid to realize the several strategies for self-organizing patterns, such as the atomic
ones Replication, Death, Diffusion, and Aggregation [Error! Reference source not
found.], or combined ones, such as Gradient Fields and Pheromone Path [Error! Ref-
erence source not found.], for instance.

Generally, for a non-situated environment, the models and coordinated statecharts
can be realized into code following the abstract instantiation below:

� Agents must extend the abstract class Agent;
� Environment must extend the abstract class Environment;
� Simulator controller must instantiate the Environment;
� Transitions are fired per step according to preconditions and input events;
� States are defined as enumeration constants;
� Events must be typed using the Event.Type enum constant;
� Event-trigged actions are executed as a match of Event and State.

And the Figure 5 illustrates the Java code for an abstract instantiation. Imagine that an
instantiated agent of the class MyAgent is in the state A. For each simulation time step
it checks for new events in the environment or sent directly to it. This event might
cause a state change or not. Suppose that the agent state did not change. When it exe-
cutes the doAActionBehavior() action means that it is on the A state and is executing the
action specified for this state. Then, it fires an event and changes its state to B. Then, in
the next simulator time step, it will execute the doBActionBehavior(), unless other agent
or even the environment propagates an event that changes its state to a different one
before executing it, if it was specified.

 7

Figure 5. The Source Code generation and Framework instantiation.

4 Related Work

In this section we present an overview of existing methodologies for multi-agent sys-
tems supported by tools with code generation for platforms such as Jade [Error! Refer-
ence source not found.].

Tropos is a requirement-oriented methodology for MAS [3]. It consists in three
phases: requirement analysis, project and code generation. The tool TAOM4e (Tool for
Agent Oriented Modeling)4 is shipped as an Eclipse plug-in and is model-oriented [2].
During the project step, the goal models are transformed by Tropos2UML to UML ac-
tivity diagrams and then transformed to Jade code by the UML2Jade tool. The PASSI
(Process for Agent Societies Specification and Implementation) describes the creation
of five steps and models: requirements, agent modeling, agent implementation, code

4 http://sra.itc.it/tools/taom4e

 8

model and deployment [8]. The PASSI ToolKit4(PTK)5 is a plug-in for Rational Rose
with models and diagrams based on UML and provides code generation for Jade.

The Gaia methodology was proposed by [Error! Reference source not found.] and
allows a high level specification of MAS. Huang et al. proposed many diagrams for
that methodology, but nowadays there is no tool to support them. The WADE (Work-
flows and Agents Development Environment) extends Jade agents for workflow exe-
cution [Error! Reference source not found.]. The Wolf Eclipse plug-in supports the
development of WADE applications, providing a graphical editor of diagrams and a
code editor.

5 Discussion and Future work

It is expected from the editors to have an epistemic function in a way that the model-
ing of multi-agent systems itself leads to a better understanding and observation of
coordination mechanisms in self-organizing systems. Also, the tool could be used to
model architectural patterns of self-organization [Error! Reference source not found.]
optimizing the project time and effort for solutions that make use of those patterns
(Figure 6).

Furthermore, it is desired to have automatic communication between both static
and dynamic models, although we do not yet have it. Thus, the next step is to build an
interface between the models that updates them in both directions, each time the mod-
els change since the programmatic interpreter of both models is already built-in. It
populates objects for each element on the model, as well as updating the diagram
view, whenever the XML underneath changes. Thus, an interface can provide ways of
delegating such functions for the already built layer.

The next step, after the construction of update mechanisms, is the generation of
code based on the built models, which is eased by the Eclipse platform, since the mod-
els are compatible with EMF framework and there are available mechanisms of reflec-
tion and model transformation.

5 http://sourceforge.net/projects/ptk

 9

Figure 6. From the architectural design patterns and models to source code generation and
framework instantiation.

ACKNOWLEDGMENT. This work was supported by MCT/CNPq through the
“Grandes Desafios da Computação no Brasil: 2006-2016” (Main Computation Challenges
in Brazil: 2006-2016) Project (Proc. CNPq 550865/2007-1).

References

[1] Bellifemine, F., Poggi, A., Rimassa, G.: Jade, A FIPA-compliant Agent Framework.
Proceedings of PAAM’99, London, UK (1999)

[2] Bertolini, D., Novikau, A.., Susi, A.., and Perini, A.: TAOM4E: an Eclipse ready tool
for agent-oriented modeling. Issue on the development process. Technical report,
ITC-irst, 2006.

[3] Bresciani P., Giorgini P., Giunchiglia F., Mylopoulos J. and Perini A. Tropos: An
agent-oriented software development methodology. Journal of Autonomous
Agents and Multi-Agent Systems, 8(3):203–236, 2004.

[4] Bruck, J. Hussey, K http://www.eclipse.org/modeling/mdt/uml2/docs/arti-
cles/Customizing_UML2_Which_Technique_is_Right_For_You/article.html. Junho
2008.

[5] Booch, G., Rumbaugh, J., Jacobson, I.; Unified Modeling Language User Guide, The
(2nd Edition) (The Addison-Wesley Obj. Tech. Series). 2005.

[6] Camazine,S., Deneubourg,, J.-L. Franks, N. R., Sneyd, J., Theraula, G., Bonabeau,
E.. Self-Organization in Biological Systems. Princeton University Press, 2003.

[7] Caire, G., Gotta, D. and Banzi, M.: Wade: a software platform to develop mission
critical applications exploiting agents and workflows. In Proceedings of the 7th inter-

 10

national joint conference on Autonomous agents and multiagent systems (AAMAS
2008), pages 29–36, 2008.

[8] Cossentino M. e Potts C. A CASE tool supported methodology for the design of
multi-agent systems. In Proceedings of The 2002 International Conference on
Software Engineering Research and Practice (SERP’02), 2002.

[9] Di Marzo Serugendo, G., Fitzgerald, J. S., Romanovsky, A., Guelfi, N. Generic
Framework for the Engineering of Self-Adaptive and Self-Organising Systems. CS-TR-
1018, 2007.

[10] De Wolf, T.; Analysing and engineering self-organising emergent applications,
Ph.D. Thesis, Department of Computer Science, K.U.Leuven, Leuven, Belgium, May,
2007, 183.

[11] Fowler, M.; UML Distilled: A Brief Guide to the Standard Object Modeling
Language (3rd Edition) (The Addison-Wesley Object Technology Series), 2004.

[12] FIPA: Foundation for intelligent physical agents (http://www.fipa.org/)

[13] Gardelli, L., Viroli, M., Omicini; A.; Design Patterns for Self-Organizing Multi-
agent Systems. 2nd Int. Workshop on Eng. Emergence in Decentralised Autonomic
Systems (EEDAS 2007). To be held at the 4th IEEE Int. Conf. on Autonomic Computing
(ICAC 2007). June 11th, 2007, Jacksonville, Florida, USA.

[14] Gatti, M.A. de C., Lucena, C.J.P.; “A Bio-inspired Representation Model for
Engineering Self-Organizing Emergent Systems,” XXII Simpósio Brasileiro de
Engenharia de Software (SBES), Campinas, SP, Brasil, 2008.

[15] Gatti, M.A. de C., Lucena, C.J.P.: Engineering Self-Organizing Multiagent Sys-
tems based on a Bio-inspired Representation Model and Coordinated Statecharts.
Submitted to a Special Issue Track in the Information Sciences Journal, 25 pgs., 2009.

[16] Gatti, M.A. de C., Lucena, C.J.P.; A Multi-Environment Multi-Agent Simulation
Framework for Self-Organizing Systems. In The 10th Workshop MABS at AAMAS'09,
May 2009.

[17] Giunchiglia, F., et al.: The tropos software methodology: Processes, models and
diagrams. Technical Report No. 0111-20, ICT - IRST (2001)

[18] Harel, D.; On visual formalisms. Communications of the ACM, V31 I5 pp514-
530, 1988.

[19] UML 2.x OMG Specification. http://www.omg.org/

[20] Wiener, N., Cybernetics or Control and Communication in the Animal and the
Machine, Paris, Hermann et Cie - MIT Press, Cambridge, MA, 1948.

[21] Zambonelli, F., Jennings N. R. e Wooldridge M. Developing multiagent sys-
tems: The Gaia methodology. ACM Trans. Softw. Eng. Methodol., 12(3):317–370, 2003.

