

ISSN 0103-9741

Monografias em Ciência da Computação

n° 12/09

Nested Context Language 3.0

Part 11 – Declarative Hypermedia Objects in NCL:
Nesting Objects with NCL Code in NCL Documents

Luiz Fernando Gomes Soares

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

 2

Monografias em Ciência da Computação, No. 12/09 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Março/2009

Nested Context Language 3.0

Part 11 – Declarative Hypermedia Objects in NCL: Nesting
Objects with NCL code in NCL Documents

Luiz Fernando Gomes Soares

Laboratório TeleMídia DI – PUC-Rio
Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ - 22451-900.

lfgs@inf.puc-rio.br

Abstract. This technical report describes how declarative hypermedia objects,
including objects with NCL code, may be related with other objects in an NCL
application, and how declarative hypermedia object players shall behave. NCL
(Nested Context Language) is an XML application language based on the NCM
(Nested Context Model) conceptual model for hypermedia document specification,
with temporal and spatial synchronization among its media objects.

Keywords: declarative hypermedia objects, digital TV; middleware; declarative
environment; NCL, Lua.

Resumo. Este relatório técnico descreve como objetos com código declarativo,
incluindo objetos com código NCL, podem se relacionar com outros objetos em
uma aplicação NCL e como exibidores (players) para esses objetos devem se
comportar. NCL é uma aplicação XML baseada no modelo conceitual NCM
(Nested Context Model) para a especificação de documentos hipermídia com
sincronismo espacial e temporal entre seus objetos.

Palavras chave: objetos declarativos; TV digital; middleware; linguagem
declarativa; NCL, Lua.

 3

Nested Context Language 3.0
Part 11 – Declarative Hypermedia Objects in NCL: Nesting

Objects with NCL code in NCL Documents

© Laboratório TeleMídia da PUC-Rio – Todos os direitos reservados
Impresso no Brasil

As informações contidas neste documento são de propriedade do Laboratório TeleMídia (PUC-
Rio), sendo proibida a sua divulgação, reprodução ou armazenamento em base de dados ou
sistema de recuperação sem permissão prévia e por escrito do Laboratório TeleMídia (PUC-Rio).
As informações estão sujeitas a alterações sem notificação prévia.
Os nomes de produtos, serviços ou tecnologias eventualmente mencionadas neste documento são
marcas registradas dos respectivos detentores.
Figuras apresentadas, quando obtidas de outros documentos, são sempre referenciadas e são de
propriedade dos respectivos autores ou editoras referenciados.
Fazer cópias de qualquer parte deste documento para qualquer finalidade, além do uso pessoal,
constitui violação das leis internacionais de direitos autorais.

Laboratório TeleMídia
Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro
Rua Marquês de São Vicente, 225, Prédio ITS - Gávea
22451-900 – Rio de Janeiro – RJ – Brasil
http://www.telemidia.puc-rio.br

 4

Table of Contents

1. Introduction...5

2. NCL Historical Evolution...6

3. Overview of NCL Elements ...9

4. Declarative Hypermedia Objects in NCL Applications ...12

5. Expected Behavior of Declarative Hypermedia Players in NCL Applications........15

5.1. Instructions to Presentation Events...15

5.1.1. start instruction...15

5.1.2. stop instruction..17

5.1.3. abort instruction..17

5.1.4. pause instruction...18

5.1.5. resume instruction...19

5.1.6. Natural end of a temporal chain section presentation19

5.2. Instructions to Attribution Events...20

5.2.1. start instruction...20

5.2.2. stop, abort, pause and resume instructions ..20

6. Final Remarks...21

References...22

 5

Nested Context Language 3.0
Part 11 – Declarative Objects in NCL: Nesting Objects with

NCL code in NCL Documents
Luiz Fernando Gomes Soares

Laboratório TeleMídia DI – PUC-Rio
Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ - 22451-900.

lfgs@inf.puc-rio.br

Abstract. This technical report describes how declarative hypermedia objects,
including objects with NCL code, may be related with other objects in an NCL
application, and how declarative hypermedia object players shall behave. NCL
(Nested Context Language) is an XML application language based on the NCM
(Nested Context Model) conceptual model for hypermedia document specification,
with temporal and spatial synchronization among its media objects.

1. Introduction

Declarative hypermedia objects (with NCL code or coded with another declarative
language) may be inserted into NCL documents. The way to add a declarative hypermedia
object into an NCL document is to define a <media> element, whose content (located
through the src attribute) is the declarative code to be executed. As an example, both EDTV
and BDTV profiles of NCL 3.0 allows the <media> element of application/x-ncl-NCL type
to be nested in a NCL document.

This technical report describes how to define declarative hypermedia objects and how to
relate them with other objects of an NCL application. The report is organized as follows.
Section 2 gives an historical evolution of the NCL versions. Section 3 presents a brief
overview of the NCL 3.0 elements. Section 4 describes how declarative hypermedia objects
may be defined together with their content anchors and properties. Section 5 discusses the
expected behavior of declarative hypermedia object players, and how declarative
hypermedia objects may be related with other objects in an NCL document. Section 6
presents the final remarks.

 6

2. NCL Historical Evolution

The first version of NCL [Anto00, AMRS00] was specified through an XML DTD –
Document Type Definition [XML98].

The second version of NCL, named NCL 2.0, was specified using XML Schema
[SCHE01]. Following recent trends, from version 2.0 on, NCL has been specified in a
modular way, allowing the combination of its modules in language profiles.

Besides the modular structure, NCL 2.0 introduced new facilities to the previous version
1.0, among others:
• definition of hypermedia connectors and connector bases;
• use of hypermedia connectors for link authoring;
• definition of ports and maps for composite nodes, satisfying the document

compositionality property;
• definition of hypermedia composite-node templates, allowing the specification of

constraints on documents;
• definition of composite-node template bases;
• use of composite-node templates for authoring composite nodes;
• refinement of document specifications with content alternatives, through the <switch>

element, grouping a set of alternative nodes;
• refinement of document specifications with presentation alternatives, through the

<descriptorSwitch> element, grouping a set of alternative descriptors;
• use of a new spatial layout model.

NCL 2.1 brought some refinements to the previous version: a module for defining cost
functions associated with media object duration was introduced; a module aiming at
describing the selection rules of <switch> and <descriptorSwitch> elements was defined;
and refinements in some NCL modules were made, mainly in the XTemplate module.

NCL 2.2 made minor refinements in some NCL 2.1 modules, concerning their element
definitions, and introduced a different approach in defining NCL modules and profiles.

NCL 2.3 introduced two new modules for supporting base and entity reuse, and refined the
definition of some elements in order to support the new features.

NCL 2.4 reviewed and refined the reuse support introduced in version 2.3, and the
specification of the switch and descriptor switch elements. This version also split the
Timing module introduced by NCL 2.1, creating a new module to encapsulate issues
related with time-scaling operations (elastic time computation using temporal cost
functions) in hypermedia documents.

The NCL 3.0 edition revised some functionalities contained in NCL 2.4. NCL 3.0 is more
specific regarding some attribute values. This new version introduced two new
functionalities, as well: Key Navigation and Animation functionalities. In addition, NCL
3.0 made depth modifications on the Composite-Node Template functionality and
introduces some SMIL based modules to NCL profiles for transition effects in media
presentation and for metadata definition. NCL 3.0 also reviewed the hypermedia connector
specification in order to have a more concise notation. Relationships among imperative and

 7

declarative objects and other objects are also refined in NCL 3.0, as well as the behavior of
imperative e declarative object players. Finally, NCL 3.0 also refined the support to
multiple exhibition devices and introduced the support to NCL live editing commands.

NCM is the model underlying NCL. However, in its present version 3.0, NCL does not
reflect all NCM 3.0 facilities yet. In order to understand NCL facilities in depth, it is
necessary to understand the NCM concepts. With the aim of offering a scalable hypermedia
model, with characteristics that may be progressively incorporated in hypermedia system
implementations, the NCM and NCL family was divided in several parts.

The Nested Context Model is composed of Parts 1, 2, 3, and 4 of the collection:

• Part 1 – NCM Core
concerned with the main model entities, which should be present in all NCM
implementations1.

• Part 2 – NCM Virtual Entities
concerned mainly with the definition of virtual anchors, nodes and links.

• Part 3 – NCM Version Control
concerned with model entities and attributes to support versioning.

• Part 4 – NCM Cooperative Work
concerned with model entities and attributes to support cooperative document handling.

The NCL (Nested Context Language) specification is composed of Parts 5 to 12 of the
collection:

• Part 5 – NCL (Nested Context Language) Full Profile
concerned with the definition of an XML application language for authoring and
exchanging NCM-based documents, using all NCL modules, including those for the
definition and use of templates, and also the definition of constraint connectors,
composite-connectors, temporal cost functions, transition effects and metainformation
characterization.

• Part 6 – NCL (Nested Context Language) XConnector Profile Family
concerned with the definition of an XML application language for authoring connector
bases. One profile is defined for authoring causal connectors, another one for authoring
causal and constraint connectors, and a third one for authoring both simple and
composite connectors.

• Part 7 – Composite Node Templates
concerned with the definition of the NCL Composite-Node Template functionality, and
with the definition of an XML application language (XTemplate) for authoring template
bases.

• Part 8 – NCL (Nested Context Language) Digital TV Profiles
concerned with the definition of an XML application language for authoring documents

1 It is also possible to have NCM implementations that ignore some of the basic entities, but this is not
relevant so as to deserve a minimum-core definition.

 8

aiming at the digital TV domain. Two profiles are defined: the Enhanced Digital TV
(EDTV) profile and the Basic Digital TV (BDTV) profile.

• Part 9 – NCL Live Editing Commands
concerned with editing commands used for live authoring applications based on NCL.

• Part 10 – Imperative Objects in NCL: The NCLua Scripting Language
concerned with the definition of objects that contain imperative code and how these
objects may be related with other objects in NCL applications.

• Part 11 – Declarative Hypermedia Objects in NCL: Nesting Objects with NCL Code in
NCL Documents
concerned with the definition of hypermedia objects that contain declarative code
(including nested objects with NCL code) and how these objects may be related with
other objects in an NCL application.

• Part 12 – Support to Multiple Exhibition Devices
concerned with the use of multiple devices for simultaneously presenting an NCL
document.

 In order to understand NCL, the reading of Part 1: NCM Core is recommended.

 9

3. Overview of NCL Elements

NCL is an XML application that follows the modularization approach. The modularization
approach has been used in several W3C language recommendations. A module is a
collection of semantically-related XML elements, attributes, and attribute’s values that
represents a unit of functionality. Modules are defined in coherent sets. A language profile
is a combination of modules. Several NCL profiles have been defined, among them those
defined by Parts 5, 6, 7, and 8 of the NCL collection presented in Section 2. Of special
interest are the profiles defined for Digital TV, the EDTVProfile (Enhanced Digital TV
Profile) and the BDTVProfile (Basic Digital TV Profile). This section briefly describes the
elements that compose these profiles. The complete definition of the NCL 3.0 modules for
these profiles, using XML Schemas, is presented in [SoRo06]. Any ambiguity found in this
text can be clarified by consulting the XML Schemas.

The basic NCL structure module defines the root element, called <ncl>, and its children
elements, the <head> element and the <body> element, following the terminology adopted
by other W3C standards.

The <head> element may have <importedDocumentBase>, <ruleBase>, <transitionBase>
<regionBase>, <descriptorBase>, <connectorBase>, <meta>, and <metadata> elements as
its children.

The <body> element may have <port>, <property>, <media>, <context>, <switch>, and
<link> elements as its children. The <body> element is treated as an NCM context node. In
NCM [SoRo05], the conceptual data model of NCL, a node may be a context, a switch or a
media object. Context nodes may contain other NCM nodes and links. Switch nodes
contain other NCM nodes. NCM nodes are represented by corresponding NCL elements.

The <media> element defines a media object specifying its type and its content location.
NCL only defines how media objects are structured and related, in time and space. As a
glue language, it does not restrict or prescribe the media-object content types. However,
some types are defined by the language. For example: the “application/x-ncl-settings” type,
specifying an object whose properties are global variables defined by the document author
or are reserved environment variables that may be manipulated by the NCL document
processing; and the “application/x-ncl-time” type, specifying a special <media> element
whose content is the Greenwich Mean Time (GMT).

The <context> element is responsible for the definition of context nodes. An NCM context
node is a particular type of NCM composite node and is defined as containing a set of
nodes and a set of links [SoRo05]. Like the <body> element, a <context> element may
have <port>, <property>, <media>, <context>, <switch>, and <link> elements as its
children.

The <switch> element allows the definition of alternative document nodes (represented by
<media>, <context>, and <switch> elements) to be chosen during presentation time. Test
rules used in choosing the switch component to be presented are defined by <rule> or
<compositeRule> elements that are grouped by the <ruleBase> element, defined as a child
element of the <head> element.

 10

The NCL Interfaces functionality allows the definition of node interfaces that are used in
relationships with other node interfaces. The <area> element allows the definition of
content anchors representing spatial portions, temporal portions, or temporal and spatial
portions of a media object (<media> element) content. The <port> element specifies a
composite node (<context>, <body> or <switch> element) port with its respective mapping
to an interface of one of its child components. The <property> element is used for defining
a node property or a group of node properties as one of the node’s interfaces. The
<switchPort> element allows the creation of <switch> element interfaces that are mapped
to a set of alternative interfaces of the switch’s internal nodes.

The <descriptor> element specifies temporal and spatial information needed to present each
document component. The element may refer a <region> element to define the initial
position of the <media> element (that is associated with the <descriptor> element)
presentation in some output device. The definition of <descriptor> elements shall be
included in the document head, inside the <descriptorBase> element, which specifies the
set of descriptors of a document. Also inside the document <head> element, the
<regionBase> element defines a set of <region> elements in a class of exhibition devices,
each of which may contain another set of nested <region> elements, and so on, recursively;
regions define device areas (e.g. screen windows) and are referred by <descriptor>
elements, as previously mentioned.

A <causalConnector> element represents a relation that may be used for creating <link>
elements in documents. In a causal relation, a condition shall be satisfied in order to trigger
an action. A <link> element binds (through its <bind> elements) a node interface with
connector roles, defining a spatio-temporal relationship among objects (represented by
<media>, <context>, <body> or <switch> elements).

The <descriptorSwitch> element contains a set of alternative descriptors to be associated
with an object. Analogous to the <switch> element, the <descriptorSwitch> choice is done
during the document presentation, using test rules defined by <rule> or <compositeRule>
elements.

In order to allow an entity base to incorporate another already-defined base, the
<importBase> element may be used. Additionally, an NCL document may be imported
through the <importNCL> element. The <importedDocumentBase> element specifies a set
of imported NCL documents, and shall also be defined as a child element of the <head>
element.

Some important NCL element’s attributes are defined in other NCL modules. The
EntityReuse module allows an NCL element to be reused. This module defines the refer
attribute, which refers to an element URI that will be reused. Only <media>, <context>,
<body> and <switch> may be reused. The KeyNavigation module provides the extensions
necessary to describe focus movement operations using a control device like a remote
control. Basically, the module defines attributes that may be incorporated by <descriptor>
elements. The Animation module provides the extensions necessary to describe what
happens when a property value is changed. The change may be instantaneous, but it may
also be carried out during an explicitly declared duration, either linearly or step by step.
Basically, the Animation module defines attributes that may be incorporated by actions,
defined as child elements of <causalConnector> elements.

 11

Some SMIL functionalities are also incorporated by NCL. The <transition> element and
some transition attributes have the same semantics of homonym element and attributes
defined in the SMIL BasicTransitions module and the SMIL TransitionModifiers module.
The NCL <transitionBase> element specifies a set of transition effects, defined by
<transition> elements, and shall be defined as a child element of the <head> element.

Finally, the MetaInformation module is also incorporated, inheriting the same semantics of
SMIL MetaInformation module. Meta-information does not contain content information
that is used or display during a presentation. Instead, it contains information about content
that is used or displayed. The Metainformation module contains two elements that allow
describing NCL documents. The <meta> element specifies a single property/value pair. The
<metadata> element contains information that is also related to meta-information of the
document. It acts as the root element of an RDF tree: RDF element and its sub-elements
(for more details, refer to W3C metadata recommendations [RDF99]).

 12

4. Declarative Hypermedia Objects in NCL Applications

A <media> element of a declarative type (application/x-???) shall be used to specify a
declarative hypermedia-object in an NCL application. In this case, the object’s content
(located through the src attribute) shall be a declarative code span to be executed. As an
example, the DTV profiles of NCL 3.0 allow the application/x-ncl-NCL type, for defining
NCL applications (file extension .ncl) nested in an NCL parent application.

Figure 1 illustrates an example of a declarative hypermedia-object specification with NCL
codes. Note that, as usual for all <media> elements, the file extension used in the object
locator makes optional the type attribute definition, which assumes a default value given by
the extension.

<media id=”nestedNCLObject” src=”example.ncl”>

<property name=”bounds”/>

<property name=”globalName”/>

<area id=”anchor1” clip=”(chainId=”entry”, beginOffset=”5s”)”/>

</media>

Figure 1 – Media object with NCL code

Like any other media-object, a <media> element containing declarative code may define
content anchors (through <area> elements) and properties (through <property> elements).
As usual, its descriptor attribute may refer to a <descriptor> element that is responsible for
initializing several of the corresponding properties of the media-object which are necessary
for its presentation, as for example, its position on the screen.

The declarative hypermedia-object player is in charge of interpreting the semantics
associated with the object’s content anchors, properties and descriptors.

The declarative hypermedia-object descriptor defines, besides a player that should be used
and a set of properties necessary for the presentation, a group of properties for the media-
object initialization. For example, in the case of a media-object of the “application/x-ncl-
NCL” type, the player, an NCL formatter, should be able to initiate values of the NCL
settings object (<media type= “application/x-ncl-settings”) through values passed by the
descriptor. In particular, the region attribute specified by the descriptor is used to initiate
the system.screenSize variable of the NCL application being started.

A declarative hypermedia-object is handled by the NCL parent application as a set of
temporal chains [CoMS 08]. A temporal chain corresponds to a sequence of presentation
events (occurrences in time), initiated from the event that corresponds to the beginning of
the declarative hypermedia-object presentation. Sections in these chains may be associated
with declarative hypermedia-object’s <area> child elements using the clip attribute. The
clip value is a triple “(chainId, beginOffset, endOffset)”. The chainId parameter identifies
one of the chains defined by the declarative hypermedia-object. The begingOffset and
endOffset parameters define the begin time and the end time of the content anchor, with
regards the chain beginning time. When a declarative hypermedia-object defines just one

 13

temporal chain, the chainId parameter may be omitted. The begingOffset and endOffset
may also be omitted when they assume their default values: 0s and the chain end time,
respectively.

As an example, for a declarative hypermedia-object with NCL code, a temporal chain is
identified by one of the NCL document entry points, defined by <port> elements, children
of the document’s <body> element. In Figure 1, “anchor1” starts when the chain accessed
through the <port id=“entry”…> reaches 5 seconds. The anchor ends when the chain ends.

A declarative hypermedia-object’s content anchor can also refer to any content anchor
defined inside the declarative code itself identified by the src attribute of the declarative
hypermedia-object. In this case, the label attribute of the <area> element that defines the
content anchor has a value such that the declarative hypermedia-object player is able to
identify one of its internally defined content anchors. As an example, for a declarative
hypermedia-object with NCL code (<media type=“application/x-ncl-NCL” …>) one of its
<area> elements may refer to a <port> element, child of its <body> element, through its
label attribute (that must have the <port>’s id as its value). In its turn, the <port> element
may be mapped to a <area> element defined in any object nested in the declarative NCL
hypermedia-object. Thus, note that a declarative hypermedia-object can externalize content
anchors defined inside its content to be used in links defined by the NCL parent object in
which the declarative hypermedia-object is included.

As usual in NCL, a declarative hypermedia-object shall have a content anchor called the
whole content anchor declared by default in NCL documents. This content anchor,
however, has a special meaning. It represents the presentation of any chain defined by the
media-object. Every time a declarative hypermedia-object is started without specifying one
of its content anchors, the whole content anchor is assumed, as usual, meaning that the
presentation of every chain shall be started in parallel.

A <media type=“application/x-???” …> element representing a declarative hypermedia-
object may have <property> elements used both to define properties common to the whole
media-object, and to externalize properties defined inside the media-object. Examples of
the first group are the usual properties to parameterize the media-object player behavior,
like left, top, height, width, soundLevel, background, etc. In the second group are properties
whose name attribute has a value such that the declarative hypermedia-object player is able
to identify one of its internally defined properties. As an example, for a declarative
hypermedia-object with NCL code (<media type=“application/x-ncl-NCL” …>) one of its
<property> elements may refer to a <port> element, child of its <body> element, through
its name attribute (that must have the <port>’s id as its value). In its turn, the <port>
element may be mapped to a <property> element defined in any object nested in the
declarative NCL hypermedia-object, includind its settings node.

As an example, Figure 1 defines two properties for the declarative hypermedia-object with
NCL code. The first one refers to the bounds attribute of the object, specifying its position
in the screen. The second one refers to a <port> element of the object’s <body> element,
whose identifier is “globalName”. This <port> can be mapped to a <property> defined in a
child <media> element, which will then be exposed for external use, as for example, to
serve as a condition to trigger <link> elements defined external to the declarative NCL
hypermedia-object, or to have its value set by an action of a <link> element defined
external to the declarative NCL hypermedia-object. In this last case, the change on the

 14

internal property value may also trigger internal procedures to the declarative hypermedia-
object. For example, in the case of a declarative hypermedia-object with NCL code, the
change on the internal property value may trigger <link> elements defined child element of
the declarative NCL hypermedia-object.

As a consequence of all the previous discussion, <area> and <property> elements defined
in a declarative hypermedia-object may be used as interface points of <link> elements,
which establishes a two-way bridge between the NCL player and the declarative player that
runs the declarative hypermedia-object.

 15

5. Expected Behavior of Declarative Hypermedia Players in NCL
Applications

Declarative hypermedia-objects have their life cycle controlled by their parent NCL
application. This implies an execution model different from when the declarative code runs
under the total control of its own engine.

Document authors may define NCL links to start, stop, pause, resume or abort the
execution of a declarative code. On the other hand, a declarative code may also command
the start, stop, pause or resume of its associated content anchors and properties. These
transitions may be used as conditions of NCL links to trigger actions on other objects of the
same NCL parent document. Thus, a two-way synchronization can be established between
a declarative code and the remainder of the NCL document.

NCL links may be bound to declarative hypermedia-object interfaces (<area> and
<property> elements, and the default content anchors). A declarative player (the language
engine) shall interface its declarative execution environment with the NCL formatter.
Analogous to conventional media content players, declarative-code players shall control
event state machines associated with the declarative media-object, reporting changes to
their parent NCL player. A declarative hypermedia-object shall be able to reflect in its
content anchors and properties behavior changes of its temporal chains.

5.1. Instructions to Presentation Events

NCL formatters may control declarative hypermedia-object players issuing instructions that
may cause changes on state machines of presentation events (sections of a temporal chain).
On the other hand, any state changes on these presentation event state machines must be
notified to the NCL formatter.

5.1.1. start instruction

The start instruction issued by a formatter shall inform the following parameters to the
declarative hypermedia-object player: the declarative hypermedia-object to be controlled,
its associated descriptor, a list of events (defined by the <media> element’s <area> and
<property> child elements, and by the default content anchor) that need to be monitored by
the declarative hypermedia-object player, the content-anchor label, or by default the whole
content anchor, identifying the associated temporal chain section to be started (called here
main-event), an optional offset-time and an optional delay-time. From the src attribute, the
declarative hypermedia-object player tries to locate the temporal chain section and start its
execution. If the content cannot be located, the player shall finish the starting operation,
without performing any action.

The descriptor shall be chosen by the formatter following the directives specified in the
NCL document. If the start instruction results from a link action that has a descriptor
explicitly declared in its <bind> element (descriptor attribute of the <link> element’s
children <bind> element), the resulting descriptor informed by the formatter shall merge
the attributes of the bind descriptor with the attributes of the descriptor specified in the
corresponding <media> element, if this attribute was specified. For the common attributes,

 16

the <bind> descriptor information shall superpose the <media> descriptor data. If the
<bind> element does not contain an explicit descriptor, the descriptor informed by the
formatter shall be the <media> descriptor, if this attribute was specified. Otherwise, a
default descriptor for that imperative-object type of <media> shall be chosen by the
formatter.

The list of events to be monitored by a declarative hypermedia-object player should also be
computed by the NCL formatter, taking into account the NCL document specification. The
formatter shall check all links where the declarative hypermedia-object and the resulting
descriptor participate. When computing the events to be monitored, the formatter shall take
into account the media-object perspective, i.e., the path of <body> and <context> elements
to reach the <media> element. Only links contained in these <body> and <context>
elements should be considered to compute the monitored events.

As with any other <media> element, the delay-time is an optional parameter and its default
value is “zero”. If greater than zero, this parameter contains a time to be waited by the
declarative hypermedia-object player before starting the code execution.

The offset-time parameter is optional, it has “zero” as its default value. This parameter
defines a time offset from the beginning (beginning-time) of the main-event, from which
the presentation of the main-event shall be immediately started (i.e., it commands the player
to jump to the beginning-time + offset-time). Obviously, the offset-time value shall be
lower than the main-event duration. If the offset-time is greater than zero, the media player
shall put the main-event in the occurring state, but the event starts transition shall not be
notified. If the offset-time is zero, the media player shall put the main-event in the
occurring state and notify the starts transition occurrence. Events that would have their
end-times previous to the beginning-time of the main-event and events that would have
their beginning times after the end-time of the main-event do not need to be monitored by
the media player (the formatter should do this verification when building the monitored
event list). Monitored events that would have beginning-times before the beginning-time of
the main-event and end-times after the beginning-time of the main-event shall be put in the
occurring state, but their starts transitions shall not be notified (links that depend on this
transition shall not be fired). Monitored events that would have their end times after the
main-event beginning-time, but before the start time (beginning-time + offset-time) shall
have their occurrences attribute incremented but the starts and stops transitions shall not be
notified. Monitored events that have beginning-times before the start time (beginning-time
+ offset-time) and end time after the start time shall be put in the occurring state, but the
corresponding starts transition shall not be notified.

The delay-time is also an optional parameter and its default value is “zero” too. If greater
than zero, this parameter contains a time to be waited by the media player before starting
the presentation. This parameter shall only be considered if the offset-time parameter is
equal to “zero”.

If a declarative hypermedia-object player receives a start instruction for a temporal chain
already being presented (paused or not), it shall ignore the instruction and keep on
controlling the ongoing presentation. However, different from what is performed on other
<media> elements, if the start instruction is for a temporal chain that is not being presented,
the instruction must be executed even if another temporal chain is being presented (paused
or occurring). As a consequence, different from what happens for other <media> elements,

 17

a <simpleAction> element with an actionType attribute equal to “stop”, “pause”, “resume”
or ”abort” shall be bound through a link to a declarative hypermedia-object’s interface,
which shall not be ignored when the action is applied.

Different from other <media> elements, if any content anchor is started and the event
associated with the whole content anchor is in sleeping or paused state, it shall be put in the
occurring state and the corresponding transition shall be notified.

5.1.2. stop instruction

The stop instruction needs to identify a temporal chain already being controlled (or by
default, all of them). To identify the temporal chain means to identify the corresponding
<media> element, the corresponding descriptor, a <media> element’s interface and the
declarative hypermedia-object perspective.

The stop instruction issued by an NCL formatter shall be ignored by a declarative
hypermedia-object player if the temporal chain associated with the specified interface is not
being presented (if none of the events in the object list of events is in the occurring or
paused state) and the declarative hypermedia-object player is not waiting to exhibit that
temporal chain due to a delayed start instruction. If the temporal chain associated with the
specified interface is being presented, the main-event (the event passed as a parameter
when the temporal chain was started) and all monitored events of this temporal chain in the
occurring or in the paused state with end time equal or previous to the main-event end time
shall transit to the sleeping state, and their stops transitions shall be notified. Monitored
events in the occurring or in the paused state with end time posterior to the main-event end
time shall be put in the sleeping state, but their stops transitions shall not be notified and
their occurrences attribute shall not be incremented. The temporal chain presentation shall
be stopped. If the repetitions event attribute is greater than zero, it shall be decremented by
one and the main-event presentation shall restart after the repeat delay time (the repeat
delay shall have been passed to the media player as the start delay parameter). If the
temporal chain associated with the specified interface is waiting to be presented after a
delayed start instruction and a stop instruction is issued, the previous start instruction shall
be removed.

Different from other <media> elements, if any content anchor is stopped and all other
presentation events are in the sleeping state the whole content anchor shall be put in the
sleeping state. If a content anchor is stopped and at least one other presentation event is in
the occurring state the whole content anchor shall remain in the occurring state. In all other
cases, if a content anchor is stopped the whole content anchor shall be put in the paused
state. If the stop instruction is applied to a declarative hypermedia-object without
specifying the node’s interface, the whole content anchor is assumed. In this case, stop
instructions shall be issued for all temporal chains.

5.1.3. abort instruction

The abort instruction needs to identify a temporal chain already being controlled (or by
default, all of them). To identify the temporal chain means to identify the corresponding
<media> element, the corresponding descriptor, a <media> element’s interface and the
declarative hypermedia-object perspective.

 18

The abort instruction issued by an NCL formatter shall be ignored by a declarative
hypermedia-object player if the temporal chain associated with the specified interface is not
being presented (if none of the events in the object list of events is in the occurring or
paused state) and the declarative hypermedia-object player is not waiting to exhibit that
temporal chain due to a delayed start instruction. If the temporal chain associated with the
specified interface is being presented, the main-event (the event passed as a parameter
when the temporal chain was started) and all monitored events of this temporal chain in the
occurring or in the paused state, shall transit to the sleeping state, and their aborts
transitions shall be notified. The temporal chain presentation shall be stopped. If the
repetitions event attribute is greater than zero, it shall be set to zero and the temporal chain
presentation shall not restart. If the temporal chain associated with the specified interface is
waiting to be presented after a delayed start instruction and an abort instruction is issued,
the previous start instruction shall be removed.

Different from other <media> elements, if any content anchor is aborted and all other
presentation events are in the sleeping state the whole content anchor shall be put in the
sleeping state. If a content anchor is aborted and at least one other presentation event is in
the occurring state the whole content anchor shall remain in the occurring state. In all other
cases, if a content anchor is stopped the whole content anchor shall be put in the paused
state. If the abort instruction is applied to a declarative hypermedia-object without
specifying the node’s interface, the whole content anchor is assumed. In this case, abort
instructions shall be issued for all temporal chains.

5.1.4. pause instruction

The pause instruction needs to identify a temporal chain already being controlled (or by
default, all of them). To identify the temporal chain means to identify the corresponding
<media> element, the corresponding descriptor, a <media> element’s interface and the
declarative hypermedia-object perspective.

The pause instruction issued by an NCL formatter shall be ignored by a declarative
hypermedia-object player if the temporal chain associated with the specified interface is not
being presented (if none of the events in the object list of events is in the occurring or
paused state) and the declarative hypermedia-object player is not waiting to exhibit that
temporal chain due to a delayed start instruction. If the temporal chain associated with the
specified interface is being presented, the main-event (the event passed as a parameter
when the temporal chain was started) and all monitored events of this temporal chain in the
occurring shall transit to the paused state and their pauses transitions shall be notified. The
temporal chain presentation shall be paused and the pause elapsed time shall not be
considered as part its duration.

If the temporal chain associated with the specified interface is waiting to be presented after
a delayed start instruction and a pause instruction is issued, the temporal chain shall wait
for a resume instruction to continue waiting for the remaining start delay.

Different from other <media> elements, if any content anchor is paused and all other
presentation events are in the sleeping state or paused state the whole content anchor shall
be put in the paused state. If a content anchor is paused and at least one other presentation
event is in the occurring state the whole content anchor shall remain in the occurring state.
If the pause instruction is applied to a declarative hypermedia-object without specifying the

 19

node’s interface, the whole content anchor is assumed. In this case, pause instructions shall
be issued for all other content anchors that are in the occurring state.

5.1.5. resume instruction

The resume instruction needs to identify a temporal chain already being controlled (or by
default, all of them). To identify the temporal chain means to identify the corresponding
<media> element, the corresponding descriptor, a <media> element’s interface and the
declarative hypermedia-object perspective.

The resume instruction issued by an NCL formatter shall be ignored by a declarative
hypermedia-object player if the temporal chain associated with the specified interface is not
paused or the declarative hypermedia-object player is not waiting to exhibit that temporal
chain due to a delayed start instruction. If the declarative hypermedia-object player is
paused waiting for the start delay, it shall resume the wait from the instant it was paused. If
the temporal chain is in the paused state, the main-event and all monitored events in the
paused state shall be put in the occurring state and their resumes transitions shall be
notified.

Different from other <media> elements, if any content anchor is resumed, the whole
content anchor shall be set to the occurring state. If the resume instruction is applied to a
declarative hypermedia-object without specifying the node’s interface, the whole content
anchor is assumed. If the whole content anchor is not in the paused state due to a previous
receive of a pause instruction, the resume instruction is ignored. Otherwise, resume
instructions shall be issued for all other content anchors that are in the paused state, except
those that were already paused before the whole content anchor received the paused
instruction.

5.1.6. Natural end of a temporal chain section presentation

Events of a declarative hypermedia-object normally end their execution naturally, without
needing external instructions. In this case, the declarative hypermedia-object player shall
transit the event to the sleeping state and notify the stops transition. The same shall be done
for monitored events of the same temporal chain in the occurring state with the same end
time of the main-event or with unknown end time, when the main-event ends. Events chain
of the same temporal in the occurring state with end time posterior to the main-event end
time shall be put in the sleeping state but without generating the stops transition and
without incrementing the occurrences attribute.

In the case of a natural end of a main-event, if the repetitions event attribute is greater than
zero, it shall be decremented by one and the main-event presentation shall restart after the
repeat delay time (the repeat delay shall have been passed to the media player as the start
delay parameter).

Different from other <media> elements, if any content anchor execution ends and all other
presentation events are in the sleeping state the whole content anchor shall be put in the
sleeping state. If a content anchor execution ends and at least one other presentation event
is in the occurring state the whole content anchor shall remain in the occurring state. In all
other cases, if a content anchor execution ends, the whole content anchor shall be set to the
paused state.

 20

5.2. Instructions to Attribution Events

NCL formatters may also send instructions that may cause changes on state machines of
attribution events. Similarly to presentation events, any state changes on attribution event
state machines are notified to the NCL formatter.

5.2.1. start instruction

The start instruction issued by a formatter may be applied to a declarative hypermedia-
object’s property independent from the fact whether the object is being in execution (the
whole content anchor is in the occurring state) or not (in this latter case, although the object
is not being executed, its declarative hypermedia-object player shall have already been
instantiated). In the first case, the start instruction needs to identify the declarative
hypermedia-object, a monitored attribution event, and, if it is the case, a value to be to be
assigned to the attribute wrapped by the event. In the second case, the instruction shall also identify
the <descriptor> element that will be used when presenting the object (as it is done for the
start instruction for presentation). When setting a value to an attribute, the declarative
hypermedia-object player shall set the event state machine to the occurring state, and after
finishing the attribution, again to the sleeping state, generating the starts transition and
afterwards the stops transition.

For every monitored attribution event, if a declarative hypermedia-object player changes by
itself the corresponding attribute value, it shall proceed as if it had received an external
start instruction.

5.2.2. stop, abort, pause and resume instructions

With the exception of the start instruction, discussed in the previous section, all other
instructions has the same effect on the corresponding property attribution as they have on
any property attribution of any type of NCL object.

The stop instruction only stops the property attribution procedure, bringing the attribution
event state machine to the sleeping state.

The abort instruction stops the property attribution procedure, bringing the attribution event
state machine to the sleeping state and the property value to its original one.

The pause instruction only pauses the property attribution procedure, bringing the
attribution event state machine to the paused state.

Finally, the resume instruction only resumes the property attribution procedure, bringing
the attribution event state machine to the occurring state.

 21

6. Final Remarks

In order to offer a scalable hypermedia model, with characteristics that may be
progressively incorporated in hypermedia system implementations, NCM was divided in
several parts, and also its declarative XML application language: NCL. This technical
report deals with how declarative hypermedia-objects may be related with other objects in
NCL applications and how declarative hypermedia-object players shall behave, which
comprises Part 11 – Declarative Hypermedia Objects in NCL.

Acknowledgements

Many people have contributed to the definition of the declarative hypermedia-objects.
Chief among them are Marcio Ferreira Moreno, Romualdo Resende Costa, Carlos Salles
Soares Neto and Marcelo Ferreira Moreno.

 22

References
[Anto00] Antonacci M.J. NCL: Uma Linguagem Declarativa para Especificação de

Documentos Hipermídia com Sincronização Temporal e Espacial. Master
Dissertation, Departamento de Informática, PUC-Rio, April 2000.

[AMRS00] Antonacci M.J., Muchaluat-Saade D.C., Rodrigues R.F., Soares L.F.G. NCL:
Uma Linguagem Declarativa para Especificação de Documentos Hipermídia na
Web, VI Simpósio Brasileiro de Sistemas Multimídia e Hipermídia -
SBMídia2000, Natal, Rio Grande do Norte, June 2000.

[CoMS 08] Costa R. R; Moreno, M. F.; Soares, L. F. G. Intermedia Synchronization
Management in DTV Systems. Proceedings of the ACM Symposium on
Document Engineering. São Paulo, Brazil. September 2008; pp. 289-297.
ISBN: 978-1-60558-081-4.

[RDF99] Resource Description Framework (RDF) Model and Syntax Specification, Ora
Lassila and Ralph R. Swick. W3C Recommendation, 22 February 1999.
Available at http://www.w3.org/TR/REC-rdf-syntax/

[SCHE01] XML Schema Part 0: Primer, W3C Recommendation, in
http://www.w3.org/TR/xmlschema-0/, May 2001.

[SoRo05] Soares L.F.G; Rodrigues R.F. Nested Context Model 3.0: Part 1 – NCM Core,
Technical Report, Departamento de Informática PUC-Rio, May 2005,
ISSN: 0103-9741.

[SoRo06] Soares L.F.G; Rodrigues R.F. Nested Context Language 3.0: Part 8 – NCL Live
Editing Commands, Technical Report, Departamento de Informática PUC-
Rio, December 2006, ISSN: 0103-9741.

[XML98] Bray T., Paoli J., Sperberg-McQueen C.M., Maler E. Extensible Markup
Language (XML) 1.0 (Second Edition), W3C Recommendation, in
http://www.w3.org/TR/REC-xml, February 1998.

