

ISSN 0103-9741

Monografias em Ciência da Computação

n° 13/09

Nested Context Language 3.0

Part 13 - Ginga-NCL Implementors Guide v1.0

Luiz Fernando Gomes Soares, Marcelo Ferreira Moreno, Romualdo Resende Costa, Carlos
Salles Soares Neto, Marcio Ferreira Moreno, Carlos Eduardo Freira Batista, Francisco

Sant'Anna, Rafael Savignon, Felipe Nogueira, Guilherme Ferreira Lima, Bruno Seabra Lima,
Roberto de Albuquerque Azevedo, José Geraldo de Sousa Jr., Eduardo Cruz Araújo, Alvaro

Veiga, Felipe Nagato

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

 2

Monografias em Ciência da Computação, No. 13/09 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Março/2009

Nested Context Language 3.0

Part 13 - Ginga-NCL Implementors Guide v1.0

Luiz Fernando Gomes Soares, Marcelo Ferreira Moreno, Romualdo Resende Costa, Carlos
Salles Soares Neto, Marcio Ferreira Moreno, Carlos Eduardo Freira Batista, Francisco

Sant'Anna, Rafael Savignon, Felipe Nogueira, Guilherme Ferreira Lima, Bruno Seabra Lima,
Roberto de Albuquerque Azevedo, José Geraldo de Sousa Jr., Eduardo Cruz Araújo, Alvaro

Veiga, Felipe Nagato

Laboratório TeleMídia DI – PUC-Rio
Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ - 22451-900.

lfgs@inf.puc-rio.br

Abstract. This technical report provides operational guidelines for Ginga-NCL
middleware implementations aiming at terrestrial and satellital DTV, and IPTV
systems, which follows Norms ABNT 15606.2 and 15606-5, and ITU-T
Recommendation H.761.

Keywords:, digital TV; middleware; declarative environment; NCL; Lua; Ginga-
NCL.

Resumo. Este relatório técnico fornece o guia operacional para implementações
do middleware Ginga-NCL, visando os sistemas de TV digital terrestre, por
satélite e sistemas de IPTV que seguem as normas ABNT 15606.2 e 15606-5, e a
Recomendação ITU-T H.761.

Palavras chave: TV digital; middleware; linguagem declarativa; NCL; Lua;
Ginga-NCL.

 3

Nested Context Language 3.0
Part 13 - Ginga-NCL Implementors Guide v1.0

© Laboratório TeleMídia da PUC-Rio – Todos os direitos reservados
Impresso no Brasil

As informações contidas neste documento são de propriedade do Laboratório TeleMídia (PUC-
Rio), sendo proibida a sua divulgação, reprodução ou armazenamento em base de dados ou
sistema de recuperação sem permissão prévia e por escrito do Laboratório TeleMídia (PUC-Rio).
As informações estão sujeitas a alterações sem notificação prévia.
Os nomes de produtos, serviços ou tecnologias eventualmente mencionadas neste documento são
marcas registradas dos respectivos detentores.
Figuras apresentadas, quando obtidas de outros documentos, são sempre referenciadas e são de
propriedade dos respectivos autores ou editoras referenciados.
Fazer cópias de qualquer parte deste documento para qualquer finalidade, além do uso pessoal,
constitui violação das leis internacionais de direitos autorais.

Laboratório TeleMídia
Departamento de Informática
Pontifícia Universidade Católica do Rio de Janeiro
Rua Marquês de São Vicente, 225, Prédio ITS - Gávea
22451-900 – Rio de Janeiro – RJ – Brasil
http://www.telemidia.puc-rio.br

 4

Table of Contents

1. Introduction...8

2. NCL Historical Evolution...9

3. Overview of NCL Elements ...12

4. NCL: XML application declarative language for interactive multimedia
presentations ...15

5. NCL modules..16

5.1. NCL 3.0 Enhanced DTV profile...16

5.2. NCL 3.0 BasicDTV profile...21

5.3. Structure module...25

5.3.1. Default values ...25

5.3.2. Exception handling ...25

5.4. Layout module ..25

5.4.1. Default values ...27

5.4.2. Exception handling ...27

5.5. Media module ...27

5.5.1. Continuous media object in TS elementary streams.................................27

5.5.2. Special NCL object types ...28

5.5.3. Default values ...29

5.5.4. Exception handling ...30

5.6. Context module...30

5.7. MediaContentAnchor module ..30

5.7.1. Default values ...31

5.7.2. Exception handling ...31

5.8. PropertyAnchor module..31

5.8.1. Default values ...32

 5

5.8.2. Exception handling ...32

5.9. CompositeNodeInterface module ...33

5.10. SwitchInterface module ..33

5.10.1. Default values ...33

5.11. Descriptor module ..33

5.11.1. Default values ...34

5.11.2. Exception handling ...34

5.12. Linking module...34

5.12.1. Default values ...34

5.12.2. Exception handling ...35

5.13. Connectors functionality...35

5.13.1. Default values ...36

5.13.2. Exception handling ...37

5.14. TestRule module...37

5.14.1. Exception handling ...38

5.15. TestRuleUse module...38

5.16. ContentControl module ..38

5.16.1. Exception handling ...38

5.17. DescriptorControl module ..39

5.17.1. Exception handling ...39

5.18. Timing module..39

5.18.1. Default values ...39

5.19. Import module ..40

5.19.1. Exception handling ...40

5.20. EntityReuse module..40

5.20.1. Exception handling ...41

5.21. ExtendedEntityReuse module...41

 6

5.21.1. Default values ...42

5.22. KeyNavigation Module ..42

5.22.1. Default values ...43

5.22.2. Exception handling ...43

5.23. Animation module ..43

5.23.1. Default values ...43

5.24. Transition module...44

5.24.1. Default values ...44

5.24.2. Exception handling ...45

5.25. Metainformation module ..45

6. Media objects in NCL presentations...46

6.1. Expected behavior of basic media players..46

6.1.1. start instruction for presentation events..46

6.1.2. stop instruction..47

6.1.3. abort instruction ..48

6.1.4. pause instruction ...48

6.1.5. resume instruction...49

6.1.6. start instruction for attribution events...49

6.1.7. addEvent instruction ...49

6.1.8. removeEvent instruction...49

6.1.9. Natural end of a presentation..50

6.2. Expected behavior of media players after instructions applied to composite
objects 50

6.2.1. Binding a composite node ..50

6.2.2. Starting a context presentation..50

6.2.3. Stopping a context presentation..51

6.2.4. Aborting a context presentation..51

 7

6.2.5. Pausing a context presentation..51

6.2.6. Resuming a context presentation ..51

6.3. Expected behavior of hypermedia players in NCL applications51

6.4. Relation between the presentation-event state machine of a node and the
presentation-event state machine of its parent node ...52

6.5. Expected behavior of imperative players in NCL applications52

6.5.1. Imperative-Object Execution Model ..53

6.5.2. Instructions to Presentation Events...54

6.5.3. Instructions to Attribution Events...58

7. Live Editing and NCL Stream Events ..60

7.1. Resource Identification...61

7.2. Default values ...62

7.3. Exception handling ...62

8. NCLua API ...63

8.1. The canvas module ...63

8.1.1. Default values ...63

8.2. The event module..63

8.2.1. Default values ...63

8.2.2. Exception handling ...63

9. Final Remarks...64

References...65

 8

Nested Context Language 3.0
Part 13 - Ginga-NCL Implementors Guide v1.0

Luiz Fernando Gomes Soares, Marcelo Ferreira Moreno, Romualdo Resende Costa, Carlos
Salles Soares Neto, Marcio Ferreira Moreno, Carlos Eduardo Freira Batista, Francisco

Sant'Anna, Rafael Savignon, Felipe Nogueira, Guilherme Ferreira Lima, Bruno Seabra Lima,
Roberto de Albuquerque Azevedo, José Geraldo de Sousa Jr., Eduardo Cruz Araújo, Alvaro

Veiga, Felipe Nagato

Laboratório TeleMídia DI – PUC-Rio
Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ - 22451-900.

lfgs@inf.puc-rio.br

Abstract. This technical report provides operational guidelines for Ginga-NCL
middleware implementations aiming at terrestrial and satellital DTV, and IPTV
systems, which follows Norms ABNT 15606.2 and 15606-5, and ITU-T
Recommendation H.761.

1. Introduction

Ginga-NCL is the declarative environment of Ginga middleware responsible that is for
running NCL applications. This Technical Reference provides operational guidelines for
Ginga-NCL middleware implementations aiming at terrestrial and satellital DTV and IPTV
systems, which follows Norms ABNT 15606.2 and 15606-5, and ITU-T Recommendation
H.761.

This Technical Report is firstly intended to be used by entities implementing receivers
based on Ginga-NCL. Secondly, it is intended for developers of applications that use the
Ginga functionalities and APIs. It shall be stressed however that the Ginga-NCL
Operational Guidelines do not specify any implementation in a compliant receiver. The
Operational Guidelines aim to ensure the same application behavior in different
implementations of platforms supporting Ginga-NCL.

NOTE Ginga is a trademark of PUC-Rio and UFPB
 NCL is a trademark of PUC-Rio

This report is organized as follows. Section 2 gives an historical evolution of the NCL
versions. Section 3 presents a brief overview of the NCL 3.0 elements. Section 4 presents
the identifiers for the modules and profiles of the NCL version 3.0. Section 5 discusses how
the NCL 3.0 element and attribute semantics must be interpreted, which are their possible
and default values, and the operational guidelines for an NCL formatter (user agent) when
managing these elements and attributes. In Sections 6 the behavior of NCL media object
players is established. Section 7 presents the guidelines for managing NCL editing
commands and receiving data and events from DSM-CC object carousel. Section 8 presents
the guidelines for NCLua media objects. Finally, Section 9 concludes the report.

 9

2. NCL Historical Evolution

The first version of NCL [Antonacci 00, AMRS 00] was specified through an XML DTD –
Document Type Definition [XML 1.0].

The second version of NCL, named NCL 2.0, was specified using XML Schema [SCHE
01]. Following recent trends, from version 2.0 on, NCL has been specified in a modular
way, allowing the combination of its modules in language profiles.

Besides the modular structure, NCL 2.0 introduced new facilities to the previous version
1.0, among others:
• definition of hypermedia connectors and connector bases;
• use of hypermedia connectors for link authoring;
• definition of ports and maps for composite nodes, satisfying the document

compositionality property;
• definition of hypermedia composite-node templates, allowing the specification of

constraints on documents;
• definition of composite-node template bases;
• use of composite-node templates for authoring composite nodes;
• refinement of document specifications with content alternatives, through the <switch>

element, grouping a set of alternative nodes;
• refinement of document specifications with presentation alternatives, through the

<descriptorSwitch> element, grouping a set of alternative descriptors;
• use of a new spatial layout model.

NCL 2.1 brought some refinements to the previous version: a module for defining cost
functions associated with media object duration was introduced; a module aiming at
describing the selection rules of <switch> and <descriptorSwitch> elements was defined;
and refinements in some NCL modules were made, mainly in the XTemplate module.

NCL 2.2 made minor refinements in some NCL 2.1 modules, concerning their element
definitions, and introduced a different approach in defining NCL modules and profiles.

NCL 2.3 introduced two new modules for supporting base and entity reuse, and refined the
definition of some elements in order to support the new features.

NCL 2.4 reviewed and refined the reuse support introduced in version 2.3, and the
specification of the switch and descriptor switch elements. This version also split the
Timing module introduced by NCL 2.1, creating a new module to encapsulate issues
related with time-scaling operations (elastic time computation using temporal cost
functions) in hypermedia documents.

The NCL 3.0 edition revised some functionalities contained in NCL 2.4. NCL 3.0 is more
specific regarding some attribute values. This new version introduced two new
functionalities, as well: Key Navigation and Animation functionalities. In addition, NCL
3.0 made depth modifications on the Composite-Node Template functionality and
introduces some SMIL based modules to NCL profiles for transition effects in media
presentation and for metadata definition. NCL 3.0 also reviewed the hypermedia connector
specification in order to have a more concise notation. Relationships among imperative and

 10

declarative objects and other objects are also refined in NCL 3.0, as well as the behavior of
imperative e declarative object players. Finally, NCL 3.0 also refined the support to
multiple exhibition devices and introduced the support to NCL live editing commands.

NCM is the model underlying NCL. However, in its present version 3.0, NCL does not
reflect all NCM 3.0 facilities yet. In order to understand NCL facilities in depth, it is
necessary to understand the NCM concepts. With the aim of offering a scalable hypermedia
model, with characteristics that may be progressively incorporated in hypermedia system
implementations, the NCM and NCL family was divided in several parts.

The Nested Context Model is composed of Parts 1, 2, 3, and 4 of the collection:

• Part 1 – NCM Core
concerned with the main model entities, which should be present in all NCM
implementations1.

• Part 2 – NCM Virtual Entities
concerned mainly with the definition of virtual anchors, nodes and links.

• Part 3 – NCM Version Control
concerned with model entities and attributes to support versioning.

• Part 4 – NCM Cooperative Work
concerned with model entities and attributes to support cooperative document handling.

The NCL (Nested Context Language) specification is composed of Parts 5 to 12 of the
collection:

• Part 5 – NCL (Nested Context Language) Full Profile
concerned with the definition of an XML application language for authoring and
exchanging NCM-based documents, using all NCL modules, including those for the
definition and use of templates, and also the definition of constraint connectors,
composite-connectors, temporal cost functions, transition effects and metainformation
characterization.

• Part 6 – NCL (Nested Context Language) XConnector Profile Family
concerned with the definition of an XML application language for authoring connector
bases. One profile is defined for authoring causal connectors, another one for authoring
causal and constraint connectors, and a third one for authoring both simple and
composite connectors.

• Part 7 – Composite Node Templates
concerned with the definition of the NCL Composite-Node Template functionality, and
with the definition of an XML application language (XTemplate) for authoring template
bases.

• Part 8 – NCL (Nested Context Language) Digital TV Profiles
concerned with the definition of an XML application language for authoring documents

1 It is also possible to have NCM implementations that ignore some of the basic entities, but this is not
relevant so as to deserve a minimum-core definition.

 11

aiming at the digital TV domain. Two profiles are defined: the Enhanced Digital TV
(EDTV) profile and the Basic Digital TV (BDTV) profile.

• Part 9 – NCL Live Editing Commands
concerned with editing commands used for live authoring applications based on NCL.

• Part 10 – Imperative Objects in NCL: The NCLua Scripting Language (this document)
concerned with the definition of objects that contain imperative code and how these
objects may be related with other objects in NCL applications.

• Part 11 – Declarative Hypermedia Objects in NCL: Nesting Objects with NCL Code in
NCL Documents
concerned with the definition of hypermedia objects that contain declarative code
(including nested objects with NCL code) and how these objects may be related with
other objects in an NCL application.

• Part 12 – Support to Multiple Exhibition Devices
concerned with the use of multiple devices for simultaneously presenting an NCL
document.

• Part 13 – Ginga-NCL Implementors Guide v1.0
concerned with operational guidelines for Ginga-NCL middleware implementations.

 In order to understand NCL, the reading of Part 1: NCM Core is recommended.

 12

3. Overview of NCL Elements

NCL is an XML application that follows the modularization approach. The modularization
approach has been used in several W3C language recommendations. A module is a
collection of semantically-related XML elements, attributes, and attribute’s values that
represents a unit of functionality. Modules are defined in coherent sets. A language profile
is a combination of modules. Several NCL profiles have been defined, among them those
defined by Parts 5, 6, 7, and 8 of the NCL collection presented in Section 2. Of special
interest are the profiles defined for Digital TV, the EDTVProfile (Enhanced Digital TV
Profile) and the BDTVProfile (Basic Digital TV Profile). This section briefly describes the
elements that compose these profiles. The complete definition of the NCL 3.0 modules for
these profiles, using XML Schemas, is presented in [NCL Part 8]. Any ambiguity found in
this text can be clarified by consulting the XML Schemas.

The basic NCL structure module defines the root element, called <ncl>, and its children
elements, the <head> element and the <body> element, following the terminology adopted
by other W3C standards.

The <head> element may have <importedDocumentBase>, <ruleBase>, <transitionBase>
<regionBase>, <descriptorBase>, <connectorBase>, <meta>, and <metadata> elements as
its children.

The <body> element may have <port>, <property>, <media>, <context>, <switch>, and
<link> elements as its children. The <body> element is treated as an NCM context node. In
NCM [NCL Part 1], the conceptual data model of NCL, a node may be a context, a switch
or a media object. Context nodes may contain other NCM nodes and links. Switch nodes
contain other NCM nodes. NCM nodes are represented by corresponding NCL elements.

The <media> element defines a media object specifying its type and its content location.
NCL only defines how media objects are structured and related, in time and space. As a
glue language, it does not restrict or prescribe the media-object content types. However,
some types are defined by the language. For example: the “application/x-ncl-settings” type,
specifying an object whose properties are global variables defined by the document author
or are reserved environment variables that may be manipulated by the NCL document
processing; and the “application/x-ncl-time” type, specifying a special <media> element
whose content is the Universal Time Coordinated (UTC).

The <context> element is responsible for the definition of context nodes. An NCM context
node is a particular type of NCM composite node and is defined as containing a set of
nodes and a set of links [NCL Part 1]. Like the <body> element, a <context> element may
have <port>, <property>, <media>, <context>, <switch>, and <link> elements as its
children.

The <switch> element allows the definition of alternative document nodes (represented by
<media>, <context>, and <switch> elements) to be chosen during presentation time. Test
rules used in choosing the switch component to be presented are defined by <rule> or
<compositeRule> elements that are grouped by the <ruleBase> element, defined as a child
element of the <head> element.

 13

The NCL Interfaces functionality allows the definition of node interfaces that are used in
relationships with other node interfaces. The <area> element allows the definition of
content anchors representing spatial portions, temporal portions, or temporal and spatial
portions of a media object (<media> element) content. The <port> element specifies a
composite node (<context>, <body> or <switch> element) port with its respective mapping
to an interface of one of its child components. The <property> element is used for defining
a node property or a group of node properties as one of the node’s interfaces. The
<switchPort> element allows the creation of <switch> element interfaces that are mapped
to a set of alternative interfaces of the switch’s internal nodes.

The <descriptor> element specifies temporal and spatial information needed to present each
document component. The element may refer a <region> element to define the initial
position of the <media> element (that is associated with the <descriptor> element)
presentation in some output device. The definition of <descriptor> elements shall be
included in the document head, inside the <descriptorBase> element, which specifies the
set of descriptors of a document. Also inside the document <head> element, the
<regionBase> element defines a set of <region> elements, each of which may contain
another set of nested <region> elements, and so on, recursively; regions define device areas
(e.g. screen windows) and are referenced by <descriptor> elements, as previously
mentioned.

A <causalConnector> element represents a relation that may be used for creating <link>
elements in documents. In a causal relation, a condition shall be satisfied in order to trigger
an action. A <link> element binds (through its <bind> elements) a node interface with
connector roles, defining a spatio-temporal relationship among objects (represented by
<media>, <context>, <body> or <switch> elements).

The <descriptorSwitch> element contains a set of alternative descriptors to be associated
with an object. Analogous to the <switch> element, the <descriptorSwitch> choice is done
during the document presentation, using test rules defined by <rule> or <compositeRule>
elements.

In order to allow an entity base to incorporate another already-defined base, the
<importBase> element may be used. Additionally, an NCL document may be imported
through the <importNCL> element. The <importedDocumentBase> element specifies a set
of imported NCL documents, and shall also be defined as a child element of the <head>
element.

Some important NCL element’s attributes are defined in other NCL modules. The
EntityReuse module allows an NCL element to be reused. This module defines the refer
attribute, which refers to an element URI that will be reused. Only <media>, <context>,
<body> and <switch> may be reused. The KeyNavigation module provides the extensions
necessary to describe focus movement operations using a control device like a remote
control. Basically, the module defines attributes that may be incorporated by <descriptor>
elements. The Animation module provides the extensions necessary to describe what
happens when a property value is changed. The change may be instantaneous, but it may
also be carried out during an explicitly declared duration, either linearly or step by step.
Basically, the Animation module defines attributes that may be incorporated by actions,
defined as child elements of <causalConnector> elements.

 14

Some SMIL functionalities are also incorporated by NCL. The <transition> element and
some transition attributes have the same semantics of homonym element and attributes
defined in the SMIL BasicTransitions module and the SMIL TransitionModifiers module.
The NCL <transitionBase> element specifies a set of transition effects, defined by
<transition> elements, and shall be defined as a child element of the <head> element.

Finally, the MetaInformation module is also incorporated, inheriting the same semantics of
SMIL MetaInformation module. Meta-information does not contain content information
that is used or display during a presentation. Instead, it contains information about content
that is used or displayed. The Metainformation module contains two elements that allow
describing NCL documents. The <meta> element specifies a single property/value pair. The
<metadata> element contains information that is also related to meta-information of the
document. It acts as the root element of an RDF tree: RDF element and its sub-elements
(for more details, refer to W3C metadata recommendations [RDF 99]).

 15

4. NCL: XML application declarative language for interactive
multimedia presentations

Each NCL profile can group a subset of NCL modules, allowing the creation of languages
according to user needs. Two profiles were defined for Ginga.

The NCL 3.0 Enhanced DTV profile includes the Structure, Layout, Media, Context,
MediaContentAnchor, CompositeNodeInterface, PropertyAnchor, SwitchInterface,
Descriptor, Linking, CausalConnectorFunctionality, ConnectorBase, TestRule,
TestRuleUse, ContentControl, DescriptorControl, Timing, Import, EntityReuse,
ExtendedEntityReuse KeyNavigation, Animation and TransitionBase modules of NCL 3.0,
and also the BasicTransition, and Metainformation modules of SMIL2.0.

The NCL 3.0 Basic DTV profile includes the Structure, Layout, Media, Context,
MediaContentAnchor, CompositeNodeInterface, PropertyAnchor, SwitchInterface,
Descriptor, Linking, CausalConnectorFunctionality, ConnectorBase, TestRule,
TestRuleUse, ContentControl, DescriptorControl, Timing, Import, EntityReuse,
ExtendedEntityReuse and KeyNavigation modules.

The XML namespace identifier for the complete set of NCL 3.0 modules, elements and
attributes, are contained within the following namespace:

• http://www.ncl.org.br/NCL3.0/

Profiles identify modules collectively. The following module collections are defined:
• http://www.ncl.org.br/NCL3.0/EDTVProfile

For the modules used by the NCL 3.0 Enhanced DTV profile.
• http://www.ncl.org.br/NCL3.0/BDTVProfile

For the modules used by the NCL 3.0 Basic DTV profile.
• http://www.ncl.org.br/NCL3.0/CausalConnectorProfile

For the modules used by the NCL 3.0 Causal Connector profile.

The following processing instructions must be written in an NCL document. They identify
NCL documents that contain only elements defined in [NCL Part 8], and the NCL version
to which the document conforms.

<?xml version="1.0" encoding="ISO-8859-15"?>
<ncl id="any string" xmlns="http://www.ncl.org.br/NCL3.0/profileName">

The <ncl> element id attribute may receive any string that ·matches· the NCName
production in [Namespaces in XML] as a value.

The version number of an NCL document consists of a major number and a minor number,
separated by a dot. The numbers are represented as a decimal number character string with
leading zeros suppressed. The initial NCL standard version number is 3.0.

The profileName, in the URI path, must be EDTVProfile, BDTVProfile or
CausalConnectorProfile.

 16

5. NCL modules

The complete definition of these NCL 3.0 modules, using XML Schemas, is presented in
“NCL –Nested Context Language 3.0 Part 8 – NCL Digital TV Profiles, which establishes
the basis for ABNT Norms 15606-2 and 15606-5, and the ITU-T Recommendation
H.761.Any ambiguity found in this text may be clarified by consulting the XML Schemas
defined in [NCL Part 8].

For each NCL profile (Enhanced DTV profile and Basic DTV profile), a table is presented
indicating the module elements and their attributes. For a given profile, the attributes and
contents (child elements) of elements can be defined in the module itself or in the language
profile that groups the modules. Therefore, the tables in this section show the attributes and
contents that come from the profiles, besides those defined in the modules themselves.
Tables in Section 5.1 show the attributes and contents that come from the NCL Enhanced
DTV profile. Tables in Section 5.2 show the attributes and contents that come from the
NCL Basic DTV profile. Element attributes that are required are underlined. In the tables,
the following symbols are used: (?) optional (zero or one occurrence), (|) or, (*) zero or
more occurrences, (+) one or more occurrences. The child element order is not specified in
the tables.

Sections 5.3 to 5.25 discuss operation values and guidelines for each module.

5.1. NCL 3.0 Enhanced DTV profile

Table 5.1 – Extended Structure Module elements and attributes used in the Enhanced DTV profile

Elements Attributes Content

ncl id, title, xmlns (head?, body?)

head (importedDocumentBase?, ruleBase?,
transitionBase?, regionBase*, descriptorBase?,
connectorBase?, meta*, metadata*)

body id (port | property | media | context | switch| link | meta |
metadata)*

Table 5.2 – Extended Layout Module elements and attributes used in the Enhanced DTV profile

Elements Attributes Content

regionBase id, device, region (importBase|region)+

region id, title, left, right, top, bottom, height, width,
zIndex

(region)*

 17

Table 5.3 – Extended Media Module element and attributes used in the Enhanced DTV profile

Elements Attributes Content

media id, src, refer,
instance, type,
descriptor

(area|property)*

Table 5.4 – Extended Context Module element and attributes used in the Enhanced DTV profile

Elements Attributes Content

context id, refer (port|property|media|context|link|switch|meta|metadata)*

Table 5.5 – Extended MediaContentAnchor Module element and attributes used in the Enhanced

DTV profile

Elements Attributes Content

area id, coords, begin, end, text, position, first, last,
label, clip

empty

Table 5.6 – Extended CompositeNodeInterface Module element and attributes used in the

Enhanced DTV profile

Elements Attributes Content

port id, component, interface empty

Table 5.7 – Extended PropertyAnchor Module element and attributes used in the Enhanced DTV

profile

Elements Attributes Content

property name, value empty

Table 5.8 – Extended SwitchInterface Module elements and attributes used in the Enhanced DTV

profile

Elements Attributes Content

switchPort id mapping+

mapping component, interface empty

 18

Table 5.9 – Extended Descriptor Module elements and attributes used in the Enhanced DTV profile

Elements Attributes Content

descriptor id, player, explicitDur, region,
freeze, moveLeft,
moveRight, moveUp,
moveDown, focusIndex,
focusBorderColor,
focusBorderWidth,
focusBorderTransparency,
focusSrc,focusSelSrc,
selBorderColor, transIn,
transOut

(descriptorParam)*

descriptorParam name, value empty

descriptorBase id (importBase|descriptor|descriptorSwitch)+

Table 5.10 - Extended Linking Module elements and attributes used in the Enhanced DTV profile

Elements Attributes Content

bind role, component, interface,
descriptor

(bindParam)*

bindParam name, value empty

linkParam name, value empty

link id, xconnector (linkParam*, bind+)

Table 5.11 – Extended CausalConnectorFunctionality module elements and attributes used in the

Enhanced DTV profile

Elements Attributes Content

causalConnector id (connectorParam*,
(simpleCondition |
compoundCondition),
(simpleAction |
compoundAction))

connectorParam name, type empty

simpleCondition role, delay, eventType,
key, transition, min, max,
qualifier

empty

compoundCondition operator, delay ((simpleCondition |
compoundCondition)+,

 19

(assessmentStatement |
compoundStatement)*)

simpleAction role, delay, eventType,
actionType, value, min,
max, qualifier, repeat,
repeatDelay, duration, by

empty

compoundAction operator, delay (simpleAction |
compoundAction)+

assessmentStatement comparator (attributeAssessment,
(attributeAssessment |
valueAssessment))

attributeAssessment role, eventType, key,
attributeType, offset

empty

valueAssessment value empty

compoundStatement operator, isNegated (assessmentStatement |
compoundStatement)+

Table 5.12 – Extended ConnectorBase module element and attribute used in the Enhanced DTV

profile

Elements Attributes Content

connectorBase id (importBase|causalConnector)*

Table 5.13 – Extended TestRule Module elements and attributes used in the Enhanced DTV profile

Elements Attributes Content

ruleBase id (importBase|rule|compositeRule)+

rule id, var,
comparator,
value

empty

compositeRule id, operator (rule | compositeRule)+

Table 5.14 – Extended TestRuleUse Module element and attributes used in the Enhanced DTV

profile

Elements Attributes Content

bindRule constituent, rule empty

 20

Table 5.15 – Extended ContentControl Module elements and attributes in the Enhanced DTV profile

Elements Attributes Content

switch id, refer defaultComponent?, (switchPort | bindRule |
media | context | switch)*)

defaultComponent component empty

Table 5.16 – Extended DescriptorControl Module elements and attributes used in the Enhanced

DTV profile

Elements Attributes Content

descriptorSwitch id (defaultDescriptor?, (bindRule |
descriptor)*)

defaultDescriptor descriptor empty

Table 5.17 – Extended Import Module elements and attributes used in the Enhanced DTV profile

Elements Attributes Content

importBase alias, documentURI,
region

empty

importedDocumentBase id (importNCL)+

importNCL alias, documentURI empty

Table 5.18 – Extended TransitionBase Module element and attribute used in the Enhanced DTV

profile

Elements Attributes Content

transitionBase id (importBase, transition)+

Table 5.19 – Extended BasicTransition module element and attributes used in the Enhanced DTV

profile

Elements Attributes Content

transition id, type, subtype, dur,
startProgress, endProgress,
direction, fadeColor, horRepeat,
vertRepeat, borderWidth,
borderColor

empty

 21

Table 5.20 – Extended Metainformation module elements and attributes used in the Enhanced DTV

profile

Elements Attributes Content

meta name, content empty

metadata empty RDF tree

5.2. NCL 3.0 BasicDTV profile

Table 5.21 – Extended Structure Module elements and attributes used in the Basic DTV profile

Elements Attributes Content

ncl id, title, xmlns (head?, body?)

head (importedDocumentBase? ruleBase?,
regionBase*, descriptorBase?, connectorBase?),

body id (port| property| media|context|switch|link)*

Table 5.22 - Extended Layout Module elements and attributes used in the Basic DTV profile

Elements Attributes Content

regionBase id, device, region (importBase|region)+

Region id, title, left, right, top, bottom, height, width,
zIndex

(region)*

Table 5.23 – Extended Media Module elements and attributes used in the Basic DTV profile

Elements Attributes Content

media id, src, refer,
instance, type,
descriptor

(area|property)*

Table 5.24 – Extended Context Module elements and attributes used in the Basic DTV profile

Elements Attributes Content

context id, refer (port|property|media|context|link|switch)*

 22

Table 5.25 – Extended MediaContentAnchor Module elements and attributes used in the Basic DTV

profile

Elements Attributes Content

area id, coords, begin, end, text, position, first, last,
label, clip

empty

Table 5.26 – Extended CompositeNodeInterface Module elements and attributes used in the Basic

DTV profile

Elements Attributes Content

port id, component, interface empty

Table 5.27 – Extended PropertyAnchor Module elements and attributes in the Basic DTV profile

Elements Attributes Content

property name, value empty

Table 5.28 – Extended SwitchInterface Module elements and attributes used in the Basic DTV

profile

Elements Attributes Content

switchPort id mapping+

mapping component, interface empty

Table 5.29 – Extended Descriptor Module elements and attributes used in the Basic DTV profile

Elements Attributes Content

descriptor id, player, explicitDur, region, freeze,
moveLeft, moveRight, moveUp,
moveDown, focusIndex, focusBorderColor;
focusBorderWidth,
focusBorderTransparency,
focusSrc,focusSelSrc, selBorderColor

(descriptorParam)*

descriptorParam name, value empty

descriptorBase id (importBase |
descriptor |
descriptorSwitch)+

 23

Table 5.30 - Extended Linking Module elements and attributes used in the Basic DTV profile

Elements Attributes Content

bind role, component, interface,
descriptor

(bindParam)*

bindParam name, value empty

linkParam name, value empty

link id, xconnector (linkParam*, bind+)

Table 5.31 – Extended CausalConnectorFunctionality module elements and attributes in the Basic

DTV profile

Elements Attributes Content

causalConnector id (connectorParam*,
(simpleCondition |
compoundCondition),
(simpleAction |
compoundAction))

connectorParam name, type empty

simpleCondition role, delay, eventType,
key, transition, min, max,
qualifier

empty

compoundCondition operator, delay ((simpleCondition |
compoundCondition)+,
(assessmentStatement |
compoundStatement)*)

simpleAction role, delay, eventType,
actionType, value, min,
max, qualifier, repeat,
repeatDelay

empty

compoundAction operator, delay (simpleAction |
compoundAction)+

assessmentStatement comparator (attributeAssessment,
(attributeAssessment |
valueAssessment))

attributeAssessment role, eventType, key,
attributeType, offset

empty

valueAssessment value empty

compoundStatement operator, isNegated (assessmentStatement |
compoundStatement)+

 24

Table 5.32 – Extended ConnectorBase module element and attributes used in the Basic DTV profile

Elements Attributes Content

connectorBase id (importBase|causalConnector)*

Table 5.33 – Extended TestRule Module elements and attributes used in the Basic DTV profile

Elements Attributes Content

ruleBase id (importBase|rule|compositeRule)+

rule id, var,
comparator,
value

empty

compositeRule id, operator (rule | compositeRule)+

Table 5.34 – Extended TestRuleUse Module elements and attributes used in the Basic DTV profile

Elements Attributes Content

bindRule constituent, rule empty

Table 5.35 – Extended ContentControl Module elements and attributes used in the Basic DTV

profile

Elements Attributes Content

switch id, refer (defaultComponent?,(switchPort|
bindRule|media| context | switch)*)

defaultComponent component empty

Table 5.36 – Extended DescriptorControl Module elements and attributes used in the Basic DTV

profile

Elements Attributes Content

descriptorSwitch id (defaultDescriptor?, (bindRule |
descriptor)*)

defaultDescriptor descriptor empty

 25

Table 5.37 – Extended Import Module elements and attributes used in the Basic DTV profile

Elements Attributes Content

importBase alias, documentURI,
region

empty

importedDocumentBase id (importNCL)+

importNCL alias, documentURI, empty

5.3. Structure module

The xmlns attribute of the <ncl> element declares an XML namespace ― that is, it declares
the primary collection of XML-defined constructs the document uses. Three values are
allowed for the xmlns attribute: http://www.ncl.org.br/NCL3.0/EDTVProfile and
http://www.ncl.org.br/NCL3.0/BDTVProfile, for the Enhanced and Basic DTV profiles,
respectively, and http://www.ncl.org.br/NCL3.0/CausalConnectorProfile, for the Causal
Connector profile. An NCL formatter shall know that the schemaLocation for these
namespaces are, by default, respectively:

http://www.ncl.org.br/NCL3.0/profiles/NCL30EDTV.xsd,
http://www.ncl.org.br/NCL3.0/profiles/NCL30BDTV.xsd, and
http://www.ncl.org.br/NCL3.0/profiles/NCL30CausalConnector.xsd

5.3.1. Default values

There are not any default values.

5.3.2. Exception handling

1. Documents with xmlns attribute different from the three previously mentioned values
shall be ignored by an implementation in conformance with [ABNT 15606-2, ABNT
15606-5 and ITU H.761].

2. id attributes whose values are not strings that match the NCName production in
[Namespaces in XML] shall be ignored by an implementation in conformance with
Standard ABNT NBR 15606 and ITU H.761.

5.4. Layout module

Each <regionBase> element is associated with a device where presentation will take place.
In order to identify the association, the <regionBase> element defines the device attribute.

Each <regionBase> element is associated with a class of devices where presentation will
take place. In order to identify the association, the <regionBase> element defines the device
attribute, which may have the values: “systemScreen (i)” or “systemAudio(i)”, where i is an
integer greater than or equal to 1.

 26

There are two different types of device classes: active and passive. In an active class, a
device is able to run media players. In a passive class, a device is not required to run media
players, only to exhibit a bit map or a sequence of audio samples received from another
device.

Multiple device support shall follow the guidelines established in “Nested Context
Language 3.0: Part 12 – Support to Multiple Exhibition Devices” [NCL Part 12].

In SBTVD, systemScreen(1) and systemAudio(1) are reserved to passive classes, and
systemScreen (2) and systemAudio(2) are reserved to active classes.

The interpretation of the region nesting inside a <regionBase> should be made by the
software in charge of the document presentation orchestration (called formatter).

The position of a region, as specified by its top, bottom, left, and right attributes, is always
relative to the parent geometry, which is defined by the parent <region> element or the total
device area in the case of first nesting level regions. Attribute values may be non-negative
“percentage” values, or integer pixel units. For pixel values, the author may omit the “px”
unit qualifier (e.g. “100”). For percentage values, on the other hand, the “%” symbol shall
be indicated (e.g. “50%”). The percentage is always relative to the parent’s width, in the
case of right, left and width definitions, and parent’s height, in the case of bottom, top and
height definitions.

The top and left attributes are the primary region positioning attributes. They place the left-
top corner of the region in the specified distance away from the left-top edge of the parent
region (or the device left-top edge in the case of the outermost region). Sometimes,
explicitly setting the bottom and right attributes is helpful. Their values state the distance
between the region’s right-bottom corner and the right-bottom corner of the parent region
(or the device right-bottom edge in the case of the outermost region) (see Figure 5.1).

region

left width right

top

height

bottom parent region

region

left width right

top

height

bottom parent region

Figure 5.1 – Region positioning attributes

The zIndex attribute specifies the region superposition precedence, where regions with
greater zIndex values are stacked on top of regions with smaller zIndex values. If two
presentations generated by elements A and B have the same stack level then, if the display
of an element B starts later than the display of an element A, the presentation of B is
stacked on top of the presentation of A (temporal order); otherwise, if the display of the
elements starts at the same time, the stacked order is chosen arbitrarily by the formatter.

 27

5.4.1. Default values

1. The <regionBase> element that defines a passive class may also have a region attribute.
If the attribute is not specified the exhibition will take place only on the passive class
devices.

2. When a nested region doesn’t specify a positioning or size value and this value cannot
have its value computed from the other attributes, it shall assume the same value of the
corresponding parent absolute attribute’s value. In particular, when a first level region
doesn’t specify any positioning or size values, it will be assumed to be the whole device
presentation area.

3. When not specified, the zIndex attribute shall be set equal to zero.

5.4.2. Exception handling

1. When the user specifies top, bottom and height information for the same <region>,
spatial inconsistencies can occur. In this case, the top and height values shall have
precedence over the bottom value. Analogously, when the user specifies inconsistent
values for the left, right and width <region> attributes, the left and width values shall be
used to compute a new right value.

2. Child regions must be completely contained in the area established by their parent
regions. When some portion of the child region lies outside its parent region, the child
region shall be ignored (considered as if it is not specified).

5.5. Media module

The Media module defines basic media object types. For defining media objects, this
module defines the <media> element. Each media object has two main attributes, besides
its id attribute: src, which defines the URI of the object content, and type, which defines the
object type.

Note that media objects with the same src value and with its URI scheme different from
“ncl-mirror” have the same content to be presented; however, the content of each object can
be presented in a different moment in time, depending on which time the media objects
were started. On the other hand, if the URI scheme is equal to “ncl-mirror”, the media
object whose src attribute defines this scheme and the media object referred by the scheme
shall have the same content presentation in the same moment in time, when both media
objects are being presented, independent from their starting time.

5.5.1. Continuous media object in TS elementary streams

As usual, if more than one media object has the same src attribute with a value referring to
a content transported in the transport stream (TS) and are started, more than one
presentation shall be started. Moreover, as usual, these objects can have different
presentation regions that can be redimensioned by an application. However, it should be
remarked that the number of media objects that can be presented in the SBTVD video plan
depends on the receiver implementation. From the H.264 players implemented in hardware

 28

it is only required one content presentation at a time. To allow more than one video media
object on the video plan is optional. If the number media objects of a certain type surplus
the maximum allowed number, the start of exceeding media objects shall be ignored.

Regarding the video plan of the base exhibition device, if, and only if, there are not any
media object being presented in this plan referring (through its src attribute) to a video
elementary stream of a tuned transport stream (no matter in which application of the private
base that represents this TV channel), a video ES that is not referred by a media object shall
be presented, and in full screen. This video ES shall be the one referred by the last media
object that had its presentation stopped in this video plan, or else, the primary video ES of
the tuned transport stream, as defined by [ABNT 15604].

If, and only if there are not any media object referring (through its src attribute) to an audio
stream of a tuned transport stream in any application of the private base that represents a
TV channel being presented in the base exhibition device, an audio ES that is not referred
by a media object shall be presented, and in full sound level. This audio ES shall be the one
referred by the last media object that had its presentation stopped or else, the primary audio
ES of the tuned transport stream, as defined by [ABNT 15604].

5.5.2. Special NCL object types

Five special types are defined: application/x-ginga-NCL (or application/x-ncl-NCL);
application/x-ginga-NCLua (or application/x-ncl-NCLua; application/x-ginga-NCLet (or
application/x-ncl-NCLet); application/x-ginga-settings (or application/x-ncl-settings); and
application/x-ginga-time (or application/x-ncl-time).

Four very special objects are those that allow imperative and hypermedia declarative code
embedded in an NCL document: text/html; application/x-ginga-NCL (or application/x-ncl-
NCL); application/x-ginga-NCLua (or application/x-ncl-NCLua; application/x-ginga-
NCLet (or application/x-ncl-NCLet). As such, they deserve to be discussed in the following
three sections. The presentation of media objects also deserves a deep analysis, as presented
in Section 6.

5.5.2.1. Declarative Hypermedia objects embedded in NCL presentations

Declarative hypermedia objects (with NCL code or coded with another declarative
language) may be inserted into NCL documents. The way to add a declarative hypermedia
object into an NCL document is to define a <media> element, whose content (located
through the src attribute) is the declarative code to be executed. Both EDTV and BDTV
profiles of NCL 3.0 allow the <media> element of text/html and application/x-ginga-NCL
(or application/x-ncl-NCL) types to be nested in an NCL document.

5.5.2.1.1. NCL objects embedded in NCL applications

NCL objects embedded in NCL applications shall follow the guidelines established in
“Nested Context Language 3.0: Part 11 – Declarative Hypermedia Objects in NCL: Nesting
Objects with NCL code in NCL Documents” [NCL Part 11].

 29

5.5.2.1.2. XHTML objects embedded in NCL applications

Any XHTML-based media object implementation shall support all common XML markups
and stylesheet properties for the BML for basic services ("fixed terminal profile"), ACAP-
X and DVB-HTML, as defined in ITU-T J.201 Recommendation [ITU J.201]. Common
features of ECMAScript native objects and DOM APIs are optionals.

Although an XHTML-based browser shall be supported, the use of XHTML elements to
define relationships (including XHTML links and stream events) should be dissuaded when
authoring NCL documents.

HTML-based objects embedded in NCL applications shall follow the guidelines established
in “Nested Context Language 3.0: Part 11 – Declarative Hypermedia Objects in NCL:
Nesting Objects with NCL code in NCL Documents” [NCL Part 11].

5.5.2.2. Lua coded objects embedded in NCL applications

NCLua objects embedded in NCL applications shall follow the guidelines established in
“Nested Context Language 3.0: Part 10 – Imperative Objects in NCL: The NCLua Scripting
Language [NCL Part 10].

5.5.2.3. Java coded objects embedded in NCL applications

NCLet objects embedded in NCL applications shall follow the guidelines established in
“Nested Context Language 3.0: Part 10 – Imperative Objects in NCL: The NCLua Scripting
Language [NCL Part 10].

5.5.2.4. NCL settings

The application/x-ginga-settings type (or application/x-ncl-settings type) shall be applied to
a special <media> element whose properties are global variables defined by the document
author or reserved environment variables that may be manipulated by the NCL document
processing.

The user.location property deserves a special attention depending on which country adopts
Ginga. It shall be the country code concatenated with the country post code number (only
numbers, without hyphen, underscore or slash characters), in the case of an implementation
for Brazil.

5.5.3. Default values

1. The type attribute is optional (except for <media> elements with no src attribute defined)
and should be used to guide the player (presentation tool) choice by the formatter. When
the type attribute is not specified, the formatter should use the content extension
specification in the src attribute to choose the player. Which players are associated with
each type value is defined in Chapter 7 of this Operational Guidelines.

2. For media objects with the src attribute whose value identifies the “sbtvd-ts” scheme, the
specific part of the scheme, more precisely, the program_number.component_tag, can be
substituted by the following reserved words:

 30

video Corresponding to the primary video ES being presented on the video plan,
as defined by [ABNT 15604].

audio Corresponding to the primary audio ES, as defined by [ABNT 15604].

text Corresponding to the primary text ES, as defined by [ABNT 15604].

video(i) Corresponding to the ith smaller video ES pid listed in the PMT of the
tuned services.

audio(i) Corresponding to the ith smaller audio ES pid listed in the PMT of the
tuned services.

text(i) Corresponding to the ith smaller text ES pid listed in the PMT of the
tuned services.

5.5.4. Exception handling

1. References to streaming video or audio resources shall not cause tuning. References that
imply tuning to access a resource shall behave as if the resource were unavailable.

2. Except for <media> elements of application/x-ginga-settings (or application/x-ncl-
settings) and application/x-ginga-time (or application/x-ncl-time) types, the attribute src
should be explicitly declared. If this attribute is not specified the resource represented by
the <media> element shall be assumed as unavailable.

3. Any action on a <media> element representing an unavailable resource shall be ignored
by the NCL formatter. Any condition or assessment based on a <media> element
representing an unavailable resource shall be considered as false.

4. If the number of media objects of a certain type surplus the maximum allowed number
for that type in a particular exhibition device, the start of exceeding media objects shall
be ignored.

5.6. Context module

No comments.

5.7. MediaContentAnchor module

The MediaContentAnchor module defines the <area> element.

For media objects of application/x-ginga-NCL (or application/x-ncl-NCL) type, the clip
and label attribute values shall follow the guidelines established in “Nested Context
Language 3.0: Part 11 – Declarative Hypermedia Objects in NCL: Nesting Objects with
NCL code in NCL Documents” [NCL Part 11].

NOTE In later version of ABNR NBR 15606-2, the label attribute could assume the “(chainId,
beginOffset, endOffset)” triple value, and other string values. In order to be complaint with ITU

 31

Recommendation, a new attribute is added, the clip attribute, to specify the special value: “(chainId,
beginOffset, endOffset)”.

For media objects of application/x-ginga-NCLua (or application/x-ncl-NCLua) type, the
label attribute values shall follow the guidelines established in “Nested Context Language
3.0: Part 10 – Imperative Objects in NCL: The NCLua Scripting Language [NCL Part 10].

5.7.1. Default values

1. In NCL, every node (<media> or <context> elements) must have an anchor with a
region representing the whole content of the node. This anchor is called the whole
content anchor and is declared by default in NCL. Every time an NCL component is
referenced without specifying one of its anchors, the whole content anchor must be
assumed.

2. In temporal content anchors, if the begin attribute of an <area> element is defined, but
the end attribute is not specified, the end of the whole media content presentation shall
be assumed as the anchor ending. On the other hand, if the end attribute is defined, but
without an explicit begin definition, the start of the whole media content presentation
shall be considered as the anchor beginning. Analogous behavior is expected from the
first and last attributes. In the case of a <media> element of the application/x-ginga-time
type, the begin and end attributes shall be always defined and shall assume an absolute
value of the Universal Time Coordinated (UTC).

5.7.2. Exception handling

No comments.

5.8. PropertyAnchor module

The <property> element defines the name attribute, which indicates the name of the
property or property group. A parent element cannot have <property> elements with the
same name attribute values.

The <body>, <context>, and <media> elements may have several embedded properties
which are not explicitly declared. However, when an embedded property is used in a
relationship, it must be explicitly declared as a <property> (interface) element.

The value of the contentId property (associated to a continuous-media object whose content
is defined referring to an elementary stream) is defined by the middleware system. It shall
have the “null” value initially and be set to the identifier value transported in the NPT
reference descriptor (in a field identified by the same name: contentId), as soon as the
associated continuous-media object is started.

The value of the standby property is also defined by the middleware system. It shall be set
to “true” while an already started continuous-media object content referring to an
elementary stream is temporarily interrupted by another interleaved content, in the same
elementary stream.

 32

NOTE The standby property may be set to “true” automatically by the middleware when the
identifier value transported in the NPT reference descriptor (in a field identified by the same name:
contentId) signalled as non-paused is different from the contentId property value.

USE CASE The standby property can be used to pause an application when the continuous-
media object content referring to an elementary stream transporting the main video of a TV program
is temporarily interrupted by another interleaved content, for example an advertisement (TV
commercial). The same property can then be used to resume the application.

When the visible property associated with a <context> or <body> element is equal to
“true”, the visible property of each child element of the composition shall be taken into
account to define how each of these child element will be exhibited.

When the visible property associated with a <context> or <body> element is equal to
“false”, all child elements of the composition shall be exhibited as hidden. In particular,
when a document has its <body> element with its visible property set to “false” and its
presentation event is in the paused state, the document is said to be in stand-by. When there
is only one application in execution and this application is in stand-by, the service’s main
video shall be dimensioned to 100% of the screen, and the main audio shall be set to 100%
of its volume.

It should be remarked that an object with a visible property equal to “false”, that is, an
object exhibited as hidden, may not transit selection event machines defined by its content
anchors to the “occurring” state while the visible property value persists as “false”.

5.8.1. Default values

1. The value attribute of a <property> element is optional and defines an initial value for
the property declared as name. When the value is not specified, the property assumes as
its initial value the one defined in homonym attributes of its node’s associated descriptor
or region. When the value is specified, it has precedence over the value defined in
homonym attributes of its node’s associated descriptor or region.

2. If the left, right, top, bottom, width or height properties are not defined and cannot be
inferred from property values defined on <property>, <descriptor> and its child
elements, or <region> elements, they shall assume the “0” value.

5.8.2. Exception handling

1. When a formatter treats a change in a property group it shall only test the process
consistency at its end.

2. When the user specifies top, bottom and height information for the same <region>,
spatial inconsistencies can occur. In this case, the top and height values shall have
precedence over the bottom value. Analogously, when the user specifies inconsistent
values for the left, right and width <region> attributes, the left and width values shall be
used to compute a new right value.

3. Child regions must be completely contained in the area established by their parent
regions. When some portion of the child region lies outside its parent region, the child
region shall be ignored.

 33

4. If two or more <property> elements with the same name attribute are defined as child
elements of the same <media> element, only the last value defined shall be taken into
account. The others shall be ignored.

5.9. CompositeNodeInterface module

The CompositeNodeInterface module defines the <port> element, which specifies a
composite node port with its respective mapping to an interface (interface attribute) of one
and only one of its components (specified by the component attribute).

5.10. SwitchInterface module

The SwitchInterface module allows the creation of <switch> element interfaces (see [NCL
Part 8]), which may be mapped to a set of alternative interfaces of the switch’s internal
objects, allowing a link to anchor on the component chosen when the <switch> is
processed. This module introduces the <switchPort> element, which contains a set of
mapping elements. A mapping element defines a path from the <switchPort> to an interface
(interface attribute) of one of the switch’s components (specified by its component
attribute).

5.10.1. Default values

1. A reference to an internal switch component shall be made through a <switchPort>
element or, by default, to the <switch> element without specifying any <switchPort>. In
this case, it is considered as if the reference is made to a default <switchPort> that
contains a set o mapping elements to all child objects of the switch and referring to their
whole content anchors.

5.11. Descriptor module

A <descriptor> element may have <descriptorParam> child elements, which are used to
parameterize the presentation control of the object associated with the descriptor element.

A descriptor attribute is associated with any media object through <media> elements and
through link endpoints (<bind> elements).

The plan parameter of a <descriptorParam> element defines in which plan of a structured
screen an object will be placed. The value of this attribute can be: “background”, “video”
and “graphic”, following the plan definition of ABNT NBR 15606-1.

The reusePlayer and playerLife attributes offer additional support for media-objects’s
player management, and can be used or be ignored by a particular middleware
implementor. The playerLife attribute specifies what will happen to a player instance at the
end of a media object presentation. Maintaining a player instance demands memory space
however decreases the player loading time and the probability for synchronization
mismatches, as a consequence. The reusePlayer attribute allows using the same player

 34

instance to more than one media object presentation, including using a player left in the
memory space by the playerLife attribute.

5.11.1. Default values

1. Table 5.38 summarizes the default values for reserved parameter/attribute names.

Table 5.38 – Reserved parameter/attribute default values

Parameter/attribute
name Value

background “transparent”

visible “true”

transparency “0”

plan “video”,for media with src attribute referring to a TS’s PES,
”graphics”, for all other cases.

fit “fill”

scroll “none”

soundLevel,
balanceLevel,
trebleLevel,
bassLevel

“1”

zIndex “0”

fontColor “white”
reusePlayer “false”
playerLife “close”

5.11.2. Exception handling

1. If several values are specified for the same parameter/attribute, the value defined in a
<property> element has precedence over the one defined in a <descriptorParam>
element, which has precedence over the value defined in an attribute of the
corresponding <descriptor> element (including the region attribute).

5.12. Linking module
A <link> element must have an xconnector attribute, which refers to a hypermedia
connector URI. The reference must have the format: alias#connector_id, or
documentURI_value#connector_id, for connectors defined in an external document; or
simply connector_id, for connectors defined in the document itself.

5.12.1. Default values

1. The interface attribute of a <bind> child element of a <link> element may refer to any
node interface, that is, an anchor, a property or a port, if it is a composite node. The

 35

interface attribute is optional. When it is not specified, the association will be done with
the whole node content.

5.12.2. Exception handling

1. A <link> element must be ignored if the xconnector attribute refers to an inexistent
hypermedia connector.

5.13. Connectors functionality

The Connectors Functionality defines the CausalConnectorFunctionality module that
groups a set of basic Connector Functionality’s modules, in order to make it easy to define
a language profile. This is the case of the EDTV and BDTV profiles.

Relations in NCL are based on events. An event is an occurrence in time that can be
instantaneous or have a measurable duration. NCL 3.0 defines the following types of
events: presentation, selection, attribution, and composition (see [NCL Part 8]).

Each event defines a state machine that must be maintained by the NCL formatter, as
shown in Figure 5.2. Moreover, every event has an associate attribute, named occurrences,
which counts how many times the event transits from the occurring to the sleeping state
during a document presentation. Events like presentation and attribution have also an
attribute named repetitions, which counts how many times the event must be automatically
restarted (transited from the sleeping to the occurring state) by the formatter. This attribute
can contain the “indefinite” value, leading to an endless loop of the event occurrences until
some external interruption.

occurringprepared

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end occurringprepared

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end occurringprepared

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end occurringsleeping

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end occurringprepared

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end occurringprepared

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end occurringprepared

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end occurringsleeping

paused

start

abort

start |
resume

pausestop |
abort

stop | natural end

Figure 5.2 - Event state machine

The composition event is defined by the presentation of the structure of a composite node.
The feature to present the composite node structure is optional. However, it should be
emphasized that it is very useful in presenting the nested organization of a composition,
since this is the organization of an application (a DTV program).

Relations are defined based on event states, changes on the event state machines, on event
attribute values, and on node (<media>, <body>, <context> or <switch> element) property
values. The CausalConnectorFunctionality module allows only the definition of causal
relations, defined by the <causalConnector> element of the CausalConnector module. A
<causalConnector> element represents a causal relation. In a causal relation, a condition
shall be satisfied in order to trigger an action.

 36

The <compoundCondition> element has a Boolean operator attribute (“and” or “or”)
relating its child elements. When an “and” compound condition relates more than one
trigger condition (i.e. a condition that is satisfied only in an infinitesimal time instant – as
for example, the end of an object presentation), the compound condition must be
considered true in the instant immediately after all the trigger conditions are satisfied.

As with <simpleCondition> elements the role cardinality specifies the minimal (min
attribute) and maximal (max attribute) number of participants that may play the role
(number of binds) when the <causalConnector> is used for creating a link. If minimal and
maximal cardinalities are not informed, “1” must be assumed as the default value for both
parameters. When the maximal cardinality value is greater than one, several participants
may play the same role. When it has the “unbounded” value, the number of binds is
unlimited.

Table 5.39 – Reserved action role values associated to event state machines

Role Value Action Type Event Type
start start presentation
stop stop presentation
abort abort presentation
pause pause presentation
resume resume presentation
set start attribution

The <compoundAction> element has an operator attribute (“par” or “seq”) relating its child
elements. It is important to mention that when the sequential operator is used, actions must
be fired in the specified order. However, an action does not need to wait the previous one to
be finished in order to be fired.

5.13.1. Default values

1. If an eventType value of a <simpleCondition> element is “selection”, the role can also
define to which selection apparatus (for example, keyboard or remote control keys) it
refers, through its key attribute. If this attribute is not specified, the selection via a
pointer device (mouse, touch screen, etc.) shall be assumed.

NOTE When a same selection apparatus is pressed, more than one <simple condition> may
be considered satisfied, if this selection apparatus is defined in the key attribute of the
<simpleCondition> and the interfaces bounded by <link> elements referring to the
<simpleCondition> (through the role attributes of their <bind> elements) are being presented.

2. In a <simpleCondition> element and in a <simpleAction>, the role cardinality specifies
the minimal (min attribute) and maximal (max attribute) number of participants that may
play the role (number of binds) when the <causalConnector> is used for creating a
<link>. If minimal and maximal cardinalities are not informed, “1” shall be assumed as
the default value for both parameters.

3. A qualifier attribute should inform the logical relationship among binds of the same
simple condition. If it is not specified, the default value “or” shall be assumed.

 37

4. A qualifier attribute should inform the logical relationship among binds of the same
simple action. If it is not specified, the default value “par” shall be assumed.

5. If an eventType value of a <attributeAssessment> element is “selection”, the role can
also define to which selection apparatus (for example, keyboard or remote control keys)
it refers, through its key attribute. If this attribute is not specified, the selection via a
pointer device (mouse, touch screen, etc.) shall be assumed.

6. if the eventType value of a <attributeAssessment> element is “attribution” the
attributeType is optional and has the value “nodeProperty” as default.

5.13.2. Exception handling

1. The minimal role’s cardinality value shall always be a positive finite value, greater than
zero and lesser than or equal to the maximal cardinality value, otherwise the link shall be
ignored.

2. If an eventType value is “attribution”, the <simpleAction> shall also define the value
that shall be assigned, through its value attribute. If the value is specified as
“$anyName” (where $ is a reserved symbol and anyName is any string, except reserved
role names), the assigned value shall be retrieved from the property associated with the
role=“anyName” and defined by a <bind> child element of the <link> element that
refers the connector. If this value cannot be retrieved, no attribution shall be made.

3. If an eventType value is “attribution”, and the <simpleAction> defines the value that
shall be assigned as “$anyName”, the value to be attributed shall be the value of a
property (<property> element) of a component of the same composition where the link
(<link> element) that refers to the event is defined, or a property of the composition
where the link is defined, or a property of an element that can be reached through a
<port> element of the composition where the link is defined, or even a property of an
element that can be reached through a port (elements <port> or <switchPort>) of a
composition nested in the same composition where the link is defined. Otherwise, no
attribution shall be made.

4. An <attributeAssessment> element defines an offset attribute whose value may be added
to the value of the variable referred by the corresponding attributeType attribute. The
offset value shall have the same type and shall be specified with the same unit of the
value to which it will be added, otherwise the offset value shall be ignored.

5. Selection events may only be defined on information units of a media object being
presented, that is on information units whose associated presentation event is in the
“occurring” state.

5.14. TestRule module
The TestRule module allows the definition of rules that, when satisfied, select alternatives
for document presentation. These rules may be simple, defined by the <rule> element, or
composite, defined by the <compositeRule> element.

 38

Comparisons in simple rules are done based on the binary representation of the variable’s
value to be compared and the binary representation of the other value used in the
comparison.
A <rule> element defined as child of a <compositeRule> element may have its id attribute
omitted.

5.14.1. Exception handling

1. In simple rules, the comparator attribute relates the variable to a value. The variable type
and the value type shall be equal; otherwise the rule definition shall be ignored.

5.15. TestRuleUse module
No comments.

5.16. ContentControl module

The ContentControl module specifies the <switch> element. NCL formatters shall delay the
switch evaluation to the moment when a link anchoring in the switch needs to be evaluated.
Test rules used to choose the switch component to be presented shall be defined by the
TestRule module.

The ContentControl module also defines the <defaultComponent> element, whose
component attribute identifies the default element that should be selected if none of the
bindRule rules is evaluated as true.

During a document presentation, from the moment a <switch> is evaluated on, it is
considered resolved until the end of the current switch presentation, that is, while its
corresponding presentation event is in the “occurring” or “paused” state. The chosen
alternative can be referred through any <switchPort> element mapped to one of its
interfaces.

When a <context> is defined as a child of a <switch> element, the <link> elements
recursively contained in the <context> must be considered by an NCL player only if the
<context> is selected after the switch evaluation. Otherwise, the <link> elements should be
considered disabled and must not interfere with the document presentation.

5.16.1. Exception handling

1. If the <defaultComponent> element is not defined in a <switch> element and if none of
the bindRule rules is evaluated as true to a component bound by a <mapping> element
child of the <switchPort> from which the <switch> element is referred, no component is
selected for presentation and the NCL formatter shall behave as if the component does
not exist.

 39

5.17. DescriptorControl module

The DescriptorControl module specifies the <descriptorSwitch> element. Analogous to the
<switch> element, the <descriptorSwitch> choice shall be done using test rules defined by
the TestRule module. The descriptorSwitch evaluation must be delayed until the object
referring the descriptorSwitch needs to be prepared to be presented.

The DescriptorControl module also defines the <defaultDescriptor> element, whose
descriptor attribute identifies the default element that should be selected if none of the
bindRule rules is evaluated as true.

During a document presentation, from the moment on a <descriptorSwitch> is evaluated, it
is considered resolved until the end of the presentation of the <media> element that was
associated to it, that is, while any presentation event associated with this <media> element
is in the “occurring” or “paused” state.

5.17.1. Exception handling

1. If the <defaultDescriptor> element is not defined in a <descriptorSwitch> element and if
none of the bindRule rules is evaluated as true, no descriptor is selected for presentation
and the NCL formatter shall behave as if the descriptor does not exist.

5.18. Timing module

This module defines the freeze attribute for specifying what happens with a <media>
element at the end of its presentation. When freeze is specified with a value equal to “true”
the last image map of the object must be frozen indefinitely, that is, until its end is
determined by an external event (for example, coming from a <link> evaluation), or by the
explicitDur value for that object.

The Timing module also defines the explicitDur attribute specifying the presentation
duration of an object represented by a <media> element. Note that the explicitDur attribute
gives the presentation duration of an object and not the presentation duration of the object’s
content. If the explicitDur value is greater than the content presentation duration what must
happen on the end of the content presentation depends on the freeze attribute previously
mentioned. If the explicitDur value is smaller than the content presentation duration, the
content presentation is cut. Note that a player may, optionally, make elastic time
adjustments on the media content in order to make the content presentation duration as
close as possible to the explicitDur value.

5.18.1. Default values

1. When not specified, the value of the freeze attribute value shall be considered as “false”.

2. When not specified, the value of the explicitDur attribute value shall be considered as
equal to the natural content presentation duration.

 40

5.19. Import module

The <importBase> element has two attributes: documentURI and alias. The documentURI
refers to a URI corresponding to the NCL document containing the base to be imported.
The alias attribute specifies a name to be used as prefix when referring to elements of the
imported base. The alias name shall be unique in a document and its scope is constrained to
the document that has defined the alias attribute.

The <importNCL> element does not “include” the referred NCL document but only makes
the referred document visible to have its components reused by the document that has
defined the <importNCL> element. New relationships can be defined among new nodes
created by reuse, but no new relationships can be defined inside imported context nodes
since, when reused, a node cannot have its content modified, but can only be related to
other nodes.

The <importNCL> element has two attributes: documentURI, and alias. The documentURI
refers to a URI corresponding to the document to be imported. The alias attribute specifies
a name to be used when referring to an element of this imported document. As in the
<importBase> element, the name shall be unique (type=ID) and its scope is constrained to
the document that has defined the alias attribute. The reference would have the format:
alias#element_id. It is important to note that the same alias should be used when referring
to elements defined in the imported document bases (<regionBase>, <connectorBase>,
<descriptorBase>, etc.).

5.19.1. Exception handling

1. The <importBase> operation is transitive, that is, if baseA imports baseB that imports
baseC, then baseA imports baseC. However, the alias defined for baseC inside baseB
shall not be considered by baseA.

2. The <importNCL> element operation has also the transitive property, that is, if
documentA imports documentB that imports documentC, then documentA imports
documentC. However, the alias defined for documentC inside documentB shall not be
considered by documentA.

5.20. EntityReuse module

The EntityReuse module allows an NCL element to be reused. Only <media>, <context>,
<body> and <switch> may be reused.

When an element declares a refer attribute, all attributes and child elements defined by the
referred element are inherited. For <media> elements, new child <area> and <property>
elements may be added, and a new attribute, instance, may also be defined.

The referred element and the element that refers to it shall be considered the same,
regarding their data specification.

 41

5.20.1. Exception handling

1. An element that refers to another element cannot be reused; that is, its id cannot be the
value of any refer attribute. When an element has the refer attribute with a value
corresponding to an id of an element that refers to another one, the element shall be
considered as nonexistent.

2. If the referred node is defined within an imported document D, the refer attribute value
shall have the format “alias#id”, where “alias” is the value of the alias attribute
associated with the D import. Otherwise, the element that contains the refer attribute
shall be considered as nonexistent.

3. A <media> element may only refer to another <media> element; a <switch> element
may only refer to another <switch> element; a <context> or <body> element may only
refer to another <context> or <body> element. In all other cases, the element that
contains the refer attribute shall be considered as nonexistent.

4. All attributes and child elements defined by a referring element shall be ignored by the
NCL formatter, except the id attribute that shall be defined. The only other exception is
for <media> elements, in which new child <area> and <property> elements may be
added, and a new attribute, instance, may be defined.

5. If the new added <property> element has the same name attribute of an already existing
<property> element (defined in the reused <media> element), the new added <property>
shall be ignored. Similarly, if the new added <area> element has the same id attribute of
an already existent <area> element (defined in the reused <media> element), the new
added <area> shall be ignored.

6. A <body>, <context> or <switch> elements may not include more than one element
from the set composed of the referring object and corresponding referred objects. If this
is the case, all reffered objects shall be considered as nonexistent.

5.21. ExtendedEntityReuse module

The ExtendedEntityReuse module defines the instance attribute.

The referred element and the element that refers to it shall be considered independent
objects regarding their presentation, if the instance attribute receives a “new” value.

The referred element and the element that refers to it shall be considered the same regarding
their presentation, if the instance attribute receives a “instSame” or “gradSame” value. The
following semantics shall be respected:

• Assume the set of <media> elements composed of the referred <media> element and
all the referring <media> elements. If any element of the subset formed by the referred
<media> element and all other <media> elements having the instance attribute equal to
“instSame” or “gradSame” is scheduled to be presented, all other elements in this
subset, which are not child descendents of a <switch> element, are also assumed as
scheduled for presenting, and additionally, when they are being presented, they shall be

 42

represented by the same presentation instance. Descendent elements of a <switch>
element shall also have the same behavior, if all rules needed to present these elements
are satisfied; otherwise they shall not be scheduled for presenting.

• If the instance attribute is equal to “instSame”, all scheduled nodes of the subset shall
be immediately presented through a unique instance (start instruction applied on all
subset elements).

• If the instance attribute is equal to “gradSame”, all scheduled nodes of the subset shall
be presented through a unique instance, but now gradually, as start instructions are
applied, coming from a link, etc.

• The common instance being presented shall notify all events associated with the
<area> and <property> elements defined in all <media> elements of this subset that
were scheduled for presenting.

• On the other hand, <media> elements in the set that have instance attribute values
equal to “new” shall not be scheduled for presenting. When they are individually
scheduled for presenting, no other element in the set is affected. Moreover, new
independent presentation instances shall be created at the start of each individual
presentation.

5.21.1. Default values

1. The instance attribute has “new” as its default value.

5.22. KeyNavigation Module
The KeyNavigation module provides the extensions necessary to describe focus movement
operations using a control device like a remote control.

The focusIndex attribute specifies an index for the <media> element to which the focus may
be applied.

When an element on focus is selected by pressing the “activate (select or enter) key”, the
focus control shall be passed to the <media> element renderer (player). The player can then
follow its own rules for navigation. The focus control shall be passed back to the NCL
formatter when the “back key” is pressed. In this case, the focus goes to the element
identified by the service.currentFocus property of the settings node (<media> element of
application/x-ginga-settings type). In a multiple device environment, the hierarchical rules
for input key control and exhibition device control shall follow the guidelines established in
“Nested Context Language 3.0: Part 12 – Support to Multiple Exhibition Devices” [NCL
Part 12].

Note The focus control may also be passed by setting the service.currentKeyMaster property of
the settings node (<media> element of application/x-ginga-settings type). This may be done through
a link action, through an imperative code command executed by an imperative-code node (NCLua
object), or by the player of a node that has the current control.

 43

5.22.1. Default values

1. When a <descriptor> element does not define the focusIndex attribute, it shall be
considered as if no focus could be set.

2. When the focusBorderColor, the focusBorderWidth, the focusBorderTransparency, or
the selBorderColor attribute are not defined, default values shall be assumed. These
values are specified in properties of the <media> element of application/x-ginga-settings
(or application/x-ncl-settings) type: defaultFocusBorderColor,
defaultFocusBorderWidth, defaultFocusTransparency, defaultSelBorderColor.

5.22.2. Exception handling

1. In a certain presentation moment, if the focus has not been already defined, or is lost, a
focus will be initially applied to the element that is being presented whose descriptor has
the smallest index value.

2. Values of focusIndex attribute shall be unique in an NCL document. Otherwise, the
repeated attributes shall be ignored if in a certain moment there are more than one
<media> element to gain the focus.

3. When a <media> element refers to another <media> element (using the refer attribute),
the focusIndex specified by the <descriptor> element associated with the referred
<media> element shall be ignored.

4. When the focus is applied to an element with the visible property set to false, or to an
element that it is not being presented, the current focus does not move.

5. When the focus is applied to an element with the visible property set to false, every
selection on the element shall be ignored.

5.23. Animation module

Since NCL animation can be computationally intensive, it is only supported by the EDTV
profile and only the properties that define numerical values and colors can be animated. An
NCL formatter following the BDTV profile may ignore the animation attributes.

5.23.1. Default values

1. When setting a new value to a property the change is instantaneous by default
(duration=″0″).

2. When setting a new value to a property the change from the old value to the new one can
be linear by default (by=″indefinite″).

 44

5.24. Transition module

The Transition module has just one element called <transition>. Each <transition> element
defines a single transition template and shall have an id attribute so that it may be referred
inside a <descriptor> element.

Transitions are classified according to a two-level taxonomy of types and subtypes. The
type attribute is required and is used to specify the general transition. The subtype attribute
provides transition-specific control.

Only the default subtype for the five required transition types listed in Table 5.40 shall be
supported, the others, defined in [SMIL 2.1], are optional.

Table 5.40 – Required transition types and subtypes

Transition type Default transition subtype

barWipe leftToRight
irisWipe rectangle
clockWipe clockwiseTwelve
snakeWipe topLeftHorizontal
fade crossfade

The Transition module also defines attributes to be used in <descriptor> elements to use the
transition templates defined by <transition> elements: transIn and transOut attributes.

All transitions defined in the Transition module accept four additional attributes coming
from [SMIL 2.1] that may be used to control the visual appearance of the transitions:
horRepeat; vertRepeat; borderWidth; and borderColor.

5.24.1. Default values

1. Te subtype attribute is optional. If this attribute is not specified then the transition reverts
to the default subtype for the specified transition type, as shown in Table 40.

2. The default value for the dur attribute is 1 second.

3. The startProgress attribute specifies the amount of progress through the transition at
which to begin execution. The default value is 0.0.

4. The endProgress attribute specifies the amount of progress through the transition at
which to end execution. The default value is 1.0.

5. The direction attribute specifies the direction the transition will run. The default value is
“forward”.

6. The default value for the fadeColor attribute is “black”.

7. The default value for both the transIn and the transOut attributes is an empty string,
which indicates that no transition shall be performed.

 45

8. The horRepeat attribute specifies how many times to perform the transition pattern along
the horizontal axis. The default value is 1.

9. The vertRepeat attribute specifies how many times to perform the transition pattern
along the vertical axis. The default value is 1.

10. The borderWidth attribute specifies the width of a generated border along a wipe
edge. The default value is 0.

11. The borderColor attribute specifies the content of the generated border along a wipe
edge. The default value for this attribute is the color "black".

5.24.2. Exception handling

1. If the named transition’s type is not supported by the NCL formatter, the transition shall
be ignored.

2. The subtype attribute, if specified, shall be one of the transition supported subtypes that
is appropriate for the specified type, otherwise the transition shall be ignored.

3. The endProgress attribute values are real numbers in the range [0.0,1.0], and the value
of this attribute shall be greater than or equal to the value of the startProgress attribute.
If endProgress value is specified as less than the startProgress value, the transition
effect shall be ignored. If endProgress is equal to startProgress, then the transition
remains at a fixed progress for the duration of the transition.

4. Note that not all transitions will have meaningful reverse interpretations. For instance, a
crossfade is not a geometric transition, and therefore has no interpretation of reverse
direction. Transitions that do not have a reverse interpretation should have the direction
attribute ignored and the default value of “forward” assumed.

5. If the value of the type attribute is not “fade”, or the value of the subtype attribute is not
“fadeToColor” or “fadeFromColor”, then the fadeColor attribute shall be ignored.

6. If the value of the transIn attribute or the transOut attribute does not correspond to the
value of the XML identifier of any one of the transition elements defined, then the value
of the attribute shall be considered to be the empty string and therefore no transition
should be performed.

5.25. Metainformation module

No comments.

 46

6. Media objects in NCL presentations

As the Ginga-NCL architecture and implementation is a choice of each receiver developer,
the goal of this section is just to define the expected behavior of a media player when
controlling objects that take part in an NCL document.

A media player (or its adapter) must be able to receive presentation commands, to control
the events’ state machines of the media object, and answer queries from the formatter. This
section describes how a media player must behave for each expected instruction issued by
the formatter.

6.1. Expected behavior of basic media players

This section deals with media players for <media> elements whose types are different from
“application/x-ginga-NCL” (or “application/x-ncl-NCL”), “application/x-ginga-NCLua”
(or “application/x-ncl-NCLua”) and text/html.

6.1.1. start instruction for presentation events

Before sending a start instruction, the formatter should find the more appropriate media
player to be called based on the content type to be exhibited. For this sake, the formatter
takes into consideration the player attribute of the <descriptor> element associated with the
media object to be exhibited. If this attribute is not specified, the formatter shall take into
account the type attribute of the <media> element. If this attribute is not specified either,
the formatter shall consider the file extension specified in the src attribute of the <media>
element.

The start instruction issued by a formatter shall inform the following parameters to the
media player: the media object to be controlled, its associated descriptor, a list of events
(presentation, selection or attribution) that need to be monitored by the media player, the
presentation event that needs to be started (called here main-event), an optional offset-time
and an optional delay-time.

The media object shall be derived from a <media> element, whose src attribute shall be
used, by the media player, to locate the content and start its presentation. If the content
cannot be located, or if the media player does not know how to handle the content type, the
media player shall finish the starting operation without performing any action.

The descriptor shall be chosen by the formatter following the directives specified in the
NCL document. If the start instruction results from a link action that has a descriptor
explicitly declared in its <bind> element (descriptor attribute of the <link> element’s
children <bind> element), the resulting descriptor informed by the formatter shall merge
the attributes of the bind descriptor with the attributes of the descriptor specified in the
corresponding <media> element, if this attribute was specified. For the common attributes,
the <bind> descriptor information shall superpose the <media> descriptor data. If the
<bind> element does not contain an explicit descriptor, the descriptor informed by the
formatter shall be the <media> descriptor, if this attribute was specified. Otherwise, a
default descriptor for that type of <media> shall be chosen by the formatter.

 47

The list of events to be monitored by a media player should also be computed by the
formatter, taking into account the NCL document specification. It shall check all links in
which the media object and the resulting descriptor participate. When computing the events
to be monitored, the formatter shall take into account the media-object perspective, i.e., the
path of <body> and <context> elements to reach the <media> element. Only links
contained in these <body> and <context> elements should be considered to compute the
monitored events.

The offset-time parameter is optional, it has “zero” as its default value, and it is meaningful
only for continuous media or static media with explicit duration. In this case, this parameter
defines a time offset from the beginning (beginning-time) of the main-event, from which
the presentation of the main-event shall be immediately started (i.e., it commands the player
to jump to the beginning-time + offset-time). Obviously, the offset-time value shall be
lower than the main-event duration. If the offset-time is greater than zero, the media player
shall put the main-event in the occurring state, but the event starts transition shall not be
notified. If the offset-time is zero, the media player shall put the main-event in the
occurring state and notify the occurrence of the starts transition. Events that would have
their end-times before the beginning-time of the main-event and events that would have
their beginning times after the end-time of the main-event do not need to be monitored by
the media player (the formatter should do this verification when building the monitored
event list). Monitored events that would have beginning-times before the beginning-time of
the main-event and end-times after the beginning-time of the main-event shall be put in the
occurring state, but their starts transitions shall not be notified (links that depend on this
transition shall not be fired). Monitored events that would have their end times after the
main-event beginning-time, but before the start time (beginning-time + offset-time) shall
have their occurrences attribute incremented but the starts and stops transitions shall not be
notified. Monitored events that have beginning-times before the start time (beginning-time
+ offset-time) and end time after the start time shall be put in the occurring state, but the
corresponding starts transition shall not be notified.

The delay-time is also an optional parameter and its default value is “zero” too. If greater
than zero, this parameter contains a time to be waited by the media player before starting
the presentation. This parameter shall only be considered if the offset-time parameter is
equal to “zero”.

If a media player receives a start instruction for an object already being presented (paused
or not), it shall ignore the instruction and keep on controlling the ongoing presentation. In
this case, the <simpleAction> element that has caused the start instruction shall not cause
any transition on the corresponding event state machine.

6.1.2. stop instruction

The stop instruction only needs to identify a media object already being controlled. To
identify the media object means to identify the <media> element, the corresponding
descriptor and the media-object perspective. Therefore, if a <simpleAction> element with
an actionType attribute equal to “stop” is bound through a link to a node interface, the
interface shall be ignored when the action is performed.

If the object is not being presented (none of the events in the object list of events is in the
occurring or paused state) and the media player is not waiting due to a delayed start

 48

instruction, the stop instruction shall be ignored. If the object is being presented, the main-
event (the event passed as a parameter when the media object was started) and all
monitored events in the occurring or in the paused state with end time equal or prior to the
main-event end time shall transit to the sleeping state, and their stops transitions shall be
notified. Monitored events in the occurring or in the paused state with end time posterior to
the main-event end time shall be put in the sleeping state, but their stops transitions shall
not be notified and their occurrences attribute shall not be incremented. The object content
presentation shall be stopped. If the repetitions event attribute is greater than zero, it shall
be decremented by one and the main-event presentation shall restart after the repeat delay
time (the repeat delay shall have been passed to the media player as the start delay
parameter). If the media object is waiting to be presented after a delayed start instruction
and a stop instruction is issued, the previous start instruction shall be removed.

NOTE When all media objects referring to video elementary streams target to the video plan are in
the sleeping state a video ES that is not referred by any media object shall be presented, and in full
screen. An elementary video stream can be redimensioned only using a media object in
presentation. The same happens with the audio. When all media objects referring to audio
elementary streams are in the sleeping state, an audio ES shall be presented with 100% of its
volume.

6.1.3. abort instruction

The abort instruction only needs to identify a media object already being controlled. If a
<simpleAction> element with an actionType attribute equal to “abort” is bound through a
link to a node interface, the interface shall be ignored when the action is applied.

If the object is not being presented and is not waiting to be presented after a delayed start
instruction, the abort instruction shall be ignored. If the object is being presented, the main-
event and all monitored events in the occurring or in the paused state shall transit to the
sleeping state, and their aborts transitions shall be notified. Any content presentation shall
stop. If the repetitions event attribute is greater than zero, it shall be set to zero and the
media object presentation shall not restart. If the media object is waiting to be presented
after a delayed start instruction and an abort instruction is issued, the previous start
instruction shall be removed.

6.1.4. pause instruction

The pause instruction only needs to identify a media object already being controlled. If a
<simpleAction> element with an actionType attribute equal to “pause” is bound through a
link to a node interface, the interface shall be ignored when the action is applied.

If the object is not being presented (the main-event, passed as a parameter when the media
object was started, is not in the occurring state) and the media player is not waiting for the
start delay, the instruction shall be ignored. If the object is being presented, the main-event
and all monitored events in the occurring state shall transit to the paused state and their
pauses transitions shall be notified. The object presentation shall be paused and the pause
elapsed time shall not be considered as part of the object duration. As an example, if an
object has an explicit duration of 30 s and, after 25 s it is paused, even if the object stays
paused for 5 min, after resuming the object main-event shall stay occurring for 5 s. If the
main-event is still not occurring because the media player is waiting for the start delay, the

 49

media object shall wait for a resume instruction to continue waiting for the remaining start
delay.

6.1.5. resume instruction

The resume instruction only needs to identify a media object already being controlled. If a
<simpleAction> element with an actionType attribute equal to “resume” is bound through a
link to a node interface, the interface shall be ignored when the action is applied.

If the object is not paused (the main-event, passed as a parameter when the media object
was started, is not in the paused state) or the media player is not paused (waiting for the
start delay), the instruction shall be ignored. If the media player is paused waiting for the
start delay, it shall resume the wait from the instant it was paused. If the main-event is in
the paused state, the main-event and all monitored events in the paused state shall be put in
the occurring state and their resumes transitions shall be notified.

6.1.6. start instruction for attribution events

The start instruction may be applied to an object property independently from the fact
whether the object is being presented or not (in this last case, although the object is not
being presented, its media player shall be already instantiated). In the first case, the start
instruction needs to identify the media object being controlled, a monitored attribution
event and a value to be assigned to the attribute wrapped by the event. In the second case,
the instruction shall also identify the <descriptor> element that will be used when
presenting the object (as it is done for the start instruction for presentation). When setting a
value to the attribute, the media player shall set the event state machine to the occurring
state, and after finishing the attribution, again to the sleeping state, generating the starts
transition and afterwards the stops transition.

For every monitored attribution event, if the media player changes by itself the
corresponding attribute value, it shall also proceed as if it had received an external set
instruction.

6.1.7. addEvent instruction

The addEvent instruction is issued in the case of receiving an addInterface NCL editing
command (see Section 9). The instruction needs to identify a media object already being
controlled and a new event that shall be included to be monitored. All rules applied to the
intersection of monitored events with the main-event shall be applied to the new event. If
the new event start time is prior to the object current time and the new event end time is
posterior to the object current time, the new event shall be put in the same state of the main-
event (occurring or paused), without notifying the corresponding transition.

6.1.8. removeEvent instruction

The removeEvent instruction is also issued in the case of receiving an removeInterface
NCL editing command. The instruction needs to identify a media object already being
controlled and a monitored event that should be no more controlled. The event state shall be
put in the sleeping state without generating any transition.

 50

6.1.9. Natural end of a presentation

Events of an object that has an explicit or an intrinsic duration normally end their
presentations naturally, without needing external instructions. In this case, the media player
shall transit the event to the sleeping state and notify the stops transition. The same shall be
done for monitored events in the occurring state with the same end time of the main-event
or with unknown end time, when the main-event ends. Events in the occurring state with
end time posterior to the main-event end time shall be put in the sleeping state but without
generating the stops transition and without incrementing the occurrences attribute. It is
important to remark that, if the main-event corresponds to an object internal temporal
anchor, when this anchor presentation finishes, the whole media object presentation shall
finish.

NOTE An application author should take into account that the natural end of contents received as
elementary streams can be notified only some time later, due to the delay of descriptors carrying
this information.

6.2. Expected behavior of media players after instructions applied to
composite objects

This section applies only for objects represented by <context>, <body> and <switch>
elements.

6.2.1. Binding a composite node

A <simpleCondition> or <simpleAction> with eventType attribute value equal to
“presentation” may be bound by a link to a composite node (represented by a <context> or
<body> element) as a whole (i.e. without an interface being informed). Analogously, an
<attributeAssessment> with eventType attribute value equal to “presentation” and
attributeType equal to “state”, “occurrences” or “repetitions” may be bound by a link to a
composite node (represented by a <context> or <body> element) as a whole, and the
attribute value should come from the event state machine of the presentation event defined
on the composite node. If a <simpleAction> with eventType attribute value equal to
“presentation” is bound by a link to a composite node (represented by a <context> or
<body> element) as a whole (i.e. without an interface being informed), the instruction shall
also be reflected to the event state machines of the composite child nodes, as explained in
the following subsections.

6.2.2. Starting a context presentation

If a <context> or <body> element participates on an action role whose action type is
“start”, when this action is fired, the start instruction shall also be applied to all
presentation events mapped by the <context> or <body> element’s ports.

If the author wants to start the presentation using a specific port, it shall in addition indicate
the <port> id as the <bind> interface value. In this case, the start instruction shall also be
applied to the presentation event mapped by the <context> or <body> element’s port.

 51

6.2.3. Stopping a context presentation

If a <context> or <body> element participates in an action role whose action type is “stop”,
when this action is fired, the stop instruction shall also be applied to all presentation events
of the composite child nodes.

If the composite node contains links being evaluated (or with their evaluation paused), the
evaluations shall be suspended and no action shall be fired.

6.2.4. Aborting a context presentation

If a <context> or <body> element participates in an action role whose action type is
“abort”, when this action is fired, the abort instruction shall also be applied to all
presentation events of the composite child nodes.

If the composite node contains links being evaluated (or with their evaluation paused), the
evaluations shall be suspended and no action shall be fired.

6.2.5. Pausing a context presentation

If a <context> or <body> element participates in an action role whose action type is
“pause”, when this action is fired, the pause instruction shall also be applied to all
presentation events of the composite child nodes that are in the occurring state.

If the composite node contains links being evaluated, all evaluations shall be suspended
until a resume, stop or abort action is issued.

If the composite node contains child nodes with presentation events already in the paused
state when the pause action is issued, these nodes shall be identified because if the
composite receives a resume instruction, these events shall not be resumed.

6.2.6. Resuming a context presentation

If a <context> or <body> element participates in an action role whose action type is
“resume”, when this action is fired, the resume instruction shall also be applied to all
presentation events of the composite child nodes that are in the paused state, except those
that were already paused before the composite has been paused.

If the composite contains links with paused evaluations, they shall be resumed.

6.3. Expected behavior of hypermedia players in NCL applications

NCL media objects (<media> elements of “application/x-ginga-NCL” or “application/x-
ncl-NCL” type) and HTML-based objects (<media> elements of “text/html” type)
embedded in NCL applications shall follow the guidelines stablished in “Nested Context
Language 3.0: Part 11 – Declarative Hypermedia Objects in NCL: Nesting Objects with
NCL code in NCL Documents” [NCL Part 11].

 52

6.4. Relation between the presentation-event state machine of a node and the
presentation-event state machine of its parent node

This section applies for objects represented by <context>, <body>, <switch> elements a
<media> element of “application/x-ginga-NCL” (or “application/x-ncl-NCL”) type.

Whenever the presentation event of a node (media or composite) goes to the occurring
state, the presentation event of the composite node (or NCL node of “application/x-ncl-
NCL” or “application/x-ginga-NCL” type) that contains the node shall also enter in the
occurring state.

When all child nodes of a composite node (or an NCL node of “application/x-ncl-NCL” or
“application/x-ginga-NCL” type) have their presentation events in the sleeping state, the
presentation event of the composite node (or NCL node of “application/x-ncl-NCL” or
“application/x-ginga-NCL” type) shall also be in the sleeping state.

Composite nodes (or NCL node of “application/x-ncl-NCL” or “application/x-ginga-NCL”
type) do not need to infer aborts transitions from their child nodes. These transitions in
presentation events of composite nodes shall occur only when instructions are applied
directly to the composite node (or the NCL node of “application/x-ncl-NCL” or
“application/x-ginga-NCL” type) presentation event.

When all child nodes of a composite node (or an NCL node of “application/x-ncl-NCL” or
“application/x-ginga-NCL” type) have their presentation events in a state different from the
occurring state and at least one child node have its main-event in the paused state, the
presentation event of the composite node (or the NCL node of “application/x-ncl-NCL” or
“application/x-ginga-NCL” type) shall also be in the paused state.

If a <switch> element is started, but it does not define a default component and none of the
<bindRule> referred rules is evaluated as true, the switch presentation shall not enter in the
occurring state.

6.5. Expected behavior of imperative players in NCL applications

Imperative players for NCL media objects of “application/x-ginga-NCLua” (or
“application/x-ncl-NCLua”) and “application/x-ginga-NCLet” (or “application/x-ncl-
NCLet”) types shall follow the guidelines established in Section 5 of the Technical Report
“Nested Context Language 3.0: Part 10 - Imperative Objects in NCL: The NCLua Scripting
Language”, [NCL Part 10]. This section is an authorized copy of reference [NCL Part 10],
due to its importance in the definition of the bridge between Ginga-NCL and an imperative
environment.

Document authors may define NCL links to start, stop, pause, resume or abort the
execution of an imperative code. An imperative player (the language engine) shall interface
the imperative execution environment with the NCL formatter.

Analogous to perceptual media content players (video, audio, image, etc.), imperative-code
players shall control event state machines associated with the imperative object. As an
example, if the code finishes its execution, the player shall generate the stops transition in

 53

the event presentation state machine corresponding to the code execution. However,
different from media content players, an imperative-code player does not have sufficient
information to control by itself all event state machines, and shall rely on the imperative
application content to command these controls.

NCL links may be bound to imperative object interfaces (<area> and <property> elements,
and the default content anchors).

If an external link starts, stops, pauses, resumes or aborts the presentation of an anchor
representing an <area> element or the main content anchor, callbacks in the imperative
code shall be triggered. The way these callbacks are defined is responsibility of each
imperative code associated with the imperative object.

On the other hand, an imperative code may also command the start, stop, pause or resume
of its associated content anchors through an API offered by the language. These transitions
may be used as conditions in NCL links to trigger actions on other objects of the same NCL
document. Thus, a two-way synchronization can be established between the imperative
code and the remainder of the NCL document.

An imperative code may also be synchronized with other objects through <property>
elements. When the <property> element is mapped to a code span (function, method, etc.)
through its name attribute, a link action “start” applied to the property shall cause the code
execution, with the set values interpreted as parameters passed to the code span. When the
<property> element is mapped to an imperative-code attribute the action “start” shall assign
the value to the attribute. As usual, the event state machine associated with the property
shall be controlled by the imperative-object player, but sometimes, commanded by the
imperative application.

A <property> element defined as a child of a <media> element representing an imperative
object may also be associated with an NCL link assessment role. In this case, the NCL
formatter shall query the property value in order to evaluate the link expression. If the
<property> element is mapped to a code attribute, the code attribute value shall be returned
by the imperative-object player to the NCL formatter. If the <property> element is mapped
to a code span, the code shall be executed and its output value shall be returned by the
imperative-object player to the NCL formatter.

6.5.1. Imperative-Object Execution Model

The lifecycle of an imperative object is controlled by the NCL formatter. The formatter is
responsible for triggering the execution of an imperative object and for mediating the
communication among this object and other nodes in an NCL document.

As with all media object players, once instantiated, the imperative-object player shall
execute an initialization procedure. However, different from other media players, this
initialization code is specified by the author of the imperative code. This initialization
procedure is executed only once, for each instance, and creates all code spans and data that
may be used during the imperative-object execution and, in particular, registers one (or
more) event handler for communication with the NCL formatter. Note that at least the code
span associated with the main content anchor shall be created during the initialization
procedure.

 54

After the initialization, the execution of the imperative object becomes event oriented in
both directions. That is, any action commanded by the NCL formatter reaches the
registered event handlers, and any NCL event state change notification is sent as an event to
the NCL formatter (as for example, the natural end of a code span execution). The
imperative-object player is then ready to perform any instruction as discussed in the next
sections.

6.5.2. Instructions to Presentation Events

NCL formatters may control imperative-object players issuing instructions that may cause
changes on state machines of presentation events (code span executions). On the other
hand, any state changes on these presentation event state machines are notified to the NCL
formatter.

6.5.2.1. start instruction

The start instruction issued by a formatter shall inform the following parameters to the
imperative-object player: the imperative object to be controlled, its associated descriptor, a
list of events (defined by the <media> element’s <area> and <property> child elements,
and by the default content anchors) that need to be monitored by the imperative-object
player, the content-anchor label, or by default the main content anchor, identifying the
associated imperative code to be started, and an optional delay-time. From the src attribute,
the imperative-object player tries to locate the imperative code and start its execution. If the
content cannot be located, the player shall finish the starting operation, without performing
any action.

The descriptor shall be chosen by the formatter following the directives specified in the
NCL document. If the start instruction results from a link action that has a descriptor
explicitly declared in its <bind> element (descriptor attribute of the <link> element’s
children <bind> element), the resulting descriptor informed by the formatter shall merge
the attributes of the bind descriptor with the attributes of the descriptor specified in the
corresponding <media> element, if this attribute was specified. For the common attributes,
the <bind> descriptor information shall superpose the <media> descriptor data. If the
<bind> element does not contain an explicit descriptor, the descriptor informed by the
formatter shall be the <media> descriptor, if this attribute was specified. Otherwise, a
default descriptor for that imperative-object type of <media> shall be chosen by the
formatter.

The list of events to be monitored by an imperative-object player should also be computed
by the formatter, taking into account the NCL document specification. The formatter shall
check all links where the imperative object and the resulting descriptor participate. When
computing the events to be monitored, the formatter shall take into account the media-
object perspective, i.e., the path of <body> and <context> elements to reach the <media>
element. Only links contained in these <body> and <context> elements should be
considered to compute the monitored events.

As with any other <media> element, the delay-time is an optional parameter and its default
value is “zero”. If greater than zero, this parameter contains a time to be waited by the
imperative-object player before starting the code execution.

 55

Different from what is performed on other <media> elements, if an imperative-object
player receives a start instruction for an event associated with a content anchor and this
event is in the sleeping state, it shall start the execution of the imperative code associated
with the element, even though other portion of the object’s imperative code is being in
execution (paused or not). However, if the event associated with the target content anchor is
in the occurring or paused state, the start instruction shall be ignored by the imperative-
code player that keeps on controlling the ongoing execution. As a consequence, differently
from what happens for other <media> elements, a <simpleAction> element with an
actionType attribute equal to “stop”, “pause”, “resume” or ”abort” shall be bound through a
link to a NCLua node interface, which shall not be ignored when the action is applied.

Since neither the formatter nor the imperative-code player has any other knowledge about
the imperative-object’s content anchors, except their id and label attributes, they do not
know which other content anchors shall have their associated event put in the occurring
state when a content anchor is started or is being in execution. Therefore, except for the
event associated with the whole content anchor, it is the responsibility of the imperative-
code span, as soon as it is started, to command the imperative-code player to change the
state of any other event state machine that is related to the event state machine associated to
the started code and to inform if a transition associated with a change shall be notified.
Similarly, it is the responsibility of the imperative-code span to command any event state
change, and to inform if the associated transition shall be notified, if the code-span
execution starts another code span associated with a content anchor.

Differently from other <media> elements, if any content anchor is started and the event
associated with the whole content anchor is in sleeping or paused state, it shall be put in the
occurring state and the corresponding transition shall be notified.

6.5.2.2. stop instruction

The stop instruction needs to identify an imperative code span already being controlled. To
identify the imperative code span means to identify the corresponding <media> element,
the corresponding descriptor, a <media> element’s interface and the imperative-object
perspective.

The stop instruction issued by an NCL formatter shall be ignored by an imperative-object
player if the imperative code span associated with the specified interface is not being
executed (if the corresponding event is not in the occurring or paused state) and the
imperative-object player is not waiting due to a delayed start instruction. If the imperative-
object interface is being executed, its corresponding presentation event shall transit to the
sleeping state, and their stops transitions shall be notified. The imperative code associated
with the interface shall be stopped. If the repetitions event attribute is greater than zero, it
shall be decremented by one and the imperative code associated with the interface shall
restart after the repeat delay time (the repeat delay shall have been passed to the media
player as the start delay parameter). If the imperative object is waiting to be presented after
a delayed start instruction and a stop instruction is issued, the previous start instruction
shall be removed.

For the same reason discussed in the start instruction, except for the event associated with
the whole content anchor, it is responsibility of the stopped-code span, before it stops, to
command the imperative-code player to change the state of any other event state machine

 56

that is related with the event state machine associated to the stopped code, and to inform if
a transition associated with a change shall be notified.

Different from other <media> elements, if any content anchor is stopped and all other
presentation events are in the sleeping state the whole content anchor shall be put in the
sleeping state. If a content anchor is stopped and at least one other presentation event is in
the occurring state the whole content anchor shall remain in the occurring state. In all other
cases, if a content anchor is stopped the whole content anchor shall be put in the paused
state. If the stop instruction is applied to an imperative object without specifying the node’s
interface, the whole content anchor is assumed. In this case, stop instructions shall be
issued for all other content anchors.

6.5.2.3. abort instruction

The abort instruction needs to identify an imperative code span already being controlled.
To identify the imperative code span means to identify the corresponding <media> element,
the corresponding descriptor, a <media> element’s interface and the imperative-object
perspective.

If the imperative code associated with the object’s interface is not being executed and is not
waiting to be executed after a delayed start instruction, the abort instruction shall be
ignored. If the imperative code associated with the object’s interface is being executed, its
associated event, in the occurring or in the paused state, shall transit to the sleeping state,
and their aborts transitions shall be notified. If the repetitions event attribute is greater than
zero, it shall be set to zero and the imperative-code execution shall not restart. If the
imperative code associated with the object’s interface is waiting to be executed after a
delayed start instruction and an abort instruction is issued, the previous start instruction
shall be removed.

For the same reason discussed in the start instruction, except for the event associated with
the whole content anchor, it is the responsibility of the aborted-code span, before it aborts,
to command the imperative-code player to change the state of any other event state machine
that is related to the event state machine associated to the aborted code, and to inform if a
transition associated with a change shall be notified.

Differently from other <media> elements, if any content anchor is aborted and all other
presentation events are in the sleeping state, the whole content anchor shall be put in the
sleeping state. If a content anchor is aborted and at least one other presentation event is in
the occurring state, the whole content anchor shall remain in the occurring state. In all
other cases, if a content anchor is aborted, the whole content anchor shall be put in the
paused state. If the abort instruction is applied to an imperative object without specifying
the node’s interface, the whole content anchor is assumed. In this case, abort instructions
shall be issued for all other content anchors.

6.5.2.4. pause instruction

The pause instruction needs to identify an imperative code span already being controlled.
To identify the imperative code span means to identify the corresponding <media> element,
the corresponding descriptor, a <media> element’s interface and the imperative-object
perspective.

 57

If the imperative code associated with the object’s interface is not being executed (and not
in the paused state) and is not waiting to be executed after a delayed start instruction, the
instruction shall be ignored. If the imperative code associated with the object’s interface is
being executed, its associated event in the occurring shall transit to the paused state, and
the pause elapsed time shall not be considered as part of the object duration. If the
imperative code associated with the object’s interface is waiting to be executed after a
delayed start instruction, the imperative-object’s interface shall wait for a resume
instruction to continue waiting for the remaining start delay.

For the same reason discussed in the start instruction, except for the event associated with
the whole content anchor, it is the responsibility of the paused-code span, before it pauses,
to command the imperative-code player to change the state of any other event state machine
that is related to the event state machine associated to the paused code, and to inform if a
transition associated with a change shall be notified.

Differently from other <media> elements, if any content anchor is paused and all other
presentation events are in the sleeping state or paused state the whole content anchor shall
be put in the paused state. If a content anchor is paused and at least one other presentation
event is in the occurring state, the whole content anchor shall remain in the occurring state.
If the pause instruction is applied to an imperative object without specifying the node’s
interface, the whole content anchor is assumed. In this case, pause instructions shall be
issued for all other content anchors that are in the occurring state.

6.5.2.5. resume instruction

The resume instruction needs to identify an imperative code span already being controlled.
To identify the imperative code span means to identify the corresponding <media> element,
the corresponding descriptor, a <media> element’s interface and the imperative-object
perspective.

If the imperative code associated with the object’s interface is not paused or the imperative-
object player is not paused (waiting for the start delay), the instruction shall be ignored. If
the imperative-object player is paused waiting for the start delay, it shall resume the wait
from the instant it was paused. If the imperative code associated with the object’s interface
is paused, its associated event shall transit to the occurring state, and their resumes
transitions shall be notified.

For the same reason discussed in the start instruction, except for the event associated with
the whole content anchor, it is the responsibility of the paused-code span, before it pauses,
to command the imperative-code player to change the state of any other event state machine
that is related to the event state machine associated to the paused code, and to inform if a
transition associated with a change shall be notified.

Differently from other <media> elements, if any content anchor is resumed, the whole
content anchor shall be set to the occurring state. If the resume instruction is applied to an
imperative object without specifying the node’s interface, the whole content anchor is
assumed. If the whole content anchor is not in the paused state due to a previous receive of
a pause instruction, the resume instruction is ignored. Otherwise, resume instructions shall
be issued for all other content anchors that are in the paused state, except those that were
already paused before the whole content anchor received the paused instruction.

 58

6.5.2.6. Natural end of a code execution

Events of an imperative object normally end their execution naturally, without needing
external instructions. In this case, immediately before ending, the code span shall command
the imperative-code player to change the state of any other event state machine that is
related to the event state machine associated to the ending code, and to inform if a
transition associated with a change shall be notified. The ending presentation event shall
transit to the sleeping state, and their stops transitions shall be notified. If the repetitions
event attribute is greater than zero, it shall be decremented by one and the imperative code
associated with the interface shall restart after the repeat delay time (the repeat delay shall
have been passed to the media player as the start delay parameter).

Differently from other <media> elements, if any content anchor execution ends and all
other presentation events are in the sleeping state, the whole content anchor shall be put in
the sleeping state. If a content anchor execution ends and at least one other presentation
event is in the occurring state, the whole content anchor shall remain in the occurring state.
In all other cases, if a content anchor execution ends, the whole content anchor shall be set
to the paused state.

6.5.3. Instructions to Attribution Events

NCL formatters may also send instructions that may cause changes on state machines of
attribution events (code span executions). Similarly to presentation events, any state
changes on attribution event state machines are notified to the NCL formatter.

Although imperative-node properties may be associated with code spans, the execution of
these spans does not change any state machine associated with content anchors of the
imperative object.

6.5.3.1. start instruction

The start instruction issued by a formatter may be applied to an imperative object’s
property independently from the fact whether the object is being in execution (the whole
content anchor is in the occurring state) or not (in this latter case, although the object is not
being executed, its imperative-object player shall have already been instantiated). In the
first case, the start instruction needs to identify the imperative object, a monitored
attribution event, and, if it is the case, a value to be passed to the imperative code wrapped
by the event. In the second case, the instruction shall also identify the <descriptor> element
that will be used when executing the object (as it is done for the start instruction for
presentation). When setting a value to an attribute, the imperative-object player shall set the
event state machine to the occurring state, and after finishing the attribution, again to the
sleeping state, generating the starts transition and afterwards the stops transition.

Note again that, if a start instruction is applied to a <property> element that calls the
execution of a code span, no content anchor state is affected.

For every monitored attribution event, if an imperative-object’s code span changes by itself
the corresponding attribute value, it shall also command the imperative-code player that
shall proceed as if it had received an external start instruction.

 59

6.5.3.2. stop, abort, pause and resume instructions

With the exception of the start instruction, discussed in the previous section, all other
instructions have the same effect on the corresponding property attribution as they have on
any property attribution of any type of object.

The stop instruction only stops the property attribution procedure, bringing the attribution
event state machine to the sleeping state.

The abort instruction stops the property attribution procedure, bringing the attribution event
state machine to the sleeping state and the property value to its original one.

The pause instruction only pauses the property attribution procedure, bringing the
attribution event state machine to the paused state.

Finally, the resume instruction only resumes the property attribution procedure, bringing
the attribution event state machine to the occurring state.

 60

7. Live Editing and NCL Stream Events

The core of the Ginga-NCL presentation engine is composed of the NCL Formatter and its
Private Base Manager module.

The NCL Formatter is in charge of receiving an NCL document and controlling its
presentation, trying to guarantee that the specified relationships among media objects are
respected. The formatter deals with NCL documents that are collected inside a data
structure known as private base. Ginga associates a private base with a TV channel. NCL
documents in a private base may be started, paused, resumed, stopped and may refer to
each other.

The Private Base Manager is in charge of receiving NCL document editing commands and
maintaining the active NCL documents (documents being presented).

The DSM-CC is adopted in SBTVD-T for carrying editing commands in MPEG-2 TS
elementary streams, when commands come from the terrestrial broadcast channel. DSM-
CC stream events and DSM-CC object carousel protocol are the basis for document
handling in the Ginga presentation engine in agreement with SBTVD-T.

Editing commands are codified as DSM-CC stream events. The Ginga presentation engine
shall be able to manage at least the Editing Command stream event, whose syntax is shown
in Figure 7.1

Syntax Number of bits
StreamEventDescriptor () {
 descriptorTag 8
 descriptorLength 8
 eventId 8
 reserved 31
 eventNPT 33
 privateDataLength 8
 commandTag 8
 sequenceNumber 7
 finalFlag 1
 privateDataPayload 8 to 2008
 FCS 8
}
Figure 7.1 - Editing command stream event descriptor

Event objects are used to map stream event names into stream event ids. Event objects are
used to inform Ginga about DSM-CC stream events that can be received. Event names
allow specifying types of events, offering a higher abstraction level for middleware
applications when registering and handling DSM-CC stream events. The Private Base
Manager, as well as NCL execution-objects (e.g. NCLua), must register themselves as
listeners of stream events they handle, using event names.

 61

NCL document files, and NCL media-object’s contents are organized in file system
structures. XML-based editing command parameters can be directly transported in the
payload of a stream event descriptor or, alternatively, organized in file system structures to
be transported, each one, in an object carousel. A DSM-CC carousel generator is used to
join the file systems and stream event objects into a data elementary stream.

When an NCL document editing command needs to be sent, a DSM-CC event object must
be created, mapping the string “nclEditingCommand” into a selected stream event id (see
[NCL Part 9]), and putting it as an object in a DSM-CC object carousel. One or more DSM-
CC stream event descriptors with the previous selected id are then created and sent in
another MPEG-2 TS elementary stream. These stream events usually have their time
reference set to zero, but can be postponed to be executed at a specific time. The Private
Base Manager must register itself as an “nclEditingCommand” listener and is notified when
this stream event arrives. The received commandTag is then used by the Private Base
Manager to interpret the complete command string semantics. If the XML-based command
parameter is short enough it is transported directly in the stream event descriptors payload.
Otherwise, the privateDataPayload carries a set of reference pairs. In the case of pushed
files (NCL documents or nodes), each pair relates a set of file paths with their respective
location in the transport system. In the case of pulled files received from an interactivity
channel or sited in the receiver itself, no reference pairs have to be sent, except the {uri,
“null”} pair associated with the NCL document or XML node specification that is
commanded to be added.

Receivers that only implement the NCL Basic DTV profile cannot handle the following
commands: pauseDocument, resumeDocument, addTransition, removeTransition,
addTransitionBase and removeTransitionBase.

Ginga associates a private base with a TV channel. When a channel is tuned, its
corresponding private base is opened and activated by the Private Base Manager; other
private bases shall be deactivated. For security reasons, only one private base may be active
at a time. The simplest and most restricted way to manage private bases is to have only one
private base associated with a TV channel open at a time. However, the number of private
bases that may be kept open is a specific middleware implementation decision.

NCL resident applications are managed in a specific private base.

Add commands always have NCL entities as their arguments (XML-based command
parameters). Whether the specified entity already exists or not, document consistency shall
be maintained by the NCL formatter, in the sense that all entity attributes classified as
required shall be defined.

7.1. Resource Identification

The “addDocument” e “addNode” editing commands must be used to map the server data
structures to the data structure used in the receiver, when XML documents referred by these
commands (NCL document files or other XML document files, respectively) are
transmitted through an object carousel. In this case, in the same object carousel that carries
the XML document specification, an event object must be transmitted in order to map the
name “nclEditingCommand” to the eventId of the DSM-CC stream event descriptor that
carries the addDocument or addNode editing command. The privateDataPayload of the

 62

stream event descriptor shall carry a set of {uri, id} reference pairs. The uri parameter of
the first pair shall have the “x-sbtvd” schema (optional) and the absolute path of the NCL
document or the NCL node specification (the path in the data server). The corresponding id
parameter in the pair shall refer to the NCL Document or NCL Node specification IOR
(carouselId, moduleId, objectKey; see ISO/IEC 13818-6) in the object carousel. If other file
systems have to be transmitted using other object carousels in order to complete the editing
command with media content (as it is usual in the case of addDocument or addNode
commands), other {uri, id} pairs shall be present in the command. In this case, the uri
parameter shall have the “x-sbtvd” schema (optional) and the absolute path of file system
root (the path in the datacast server), and the corresponding id parameter in the pair shall
refer to the IOR (carouselId, moduleId, objectKey; see ISO/IEC 13818-6) of any root child
file or directory in the object carousel (the IOR of the carousel service gateway).

Usually, the transmission of files systems using other object carousels different from the
one that carries the event object is necessary when the file systems that represent the
application cannot be modeled by a unique tree data structure. An example can be found in
[NCL Part9].

7.2. Default values

1. The baseId identifier of a private base associated with a TS channel assumes the tsid
(transport stream identifier) of this TV channel, which shall be obtained from the tsid
field of the PAT table.

2. When the baseId parameter of an nclEditingCommand transported in a transport stream
(TS) is not specified, it shall assumed the same tsid of TS where it is transported.

3. When the baseId parameter of an nclEditingCommand coming from an NCLua object
running in a certain private base is not specified, it shall assumed the same baseId value
of this private base.

4. In an addDocument nclEditingCommand, if all resources of the application are below
the same root, the id parameter of the {uri, id} pair may be omitted.

7.3. Exception handling

1. If the baseId parameter of an nclEditingCommand transported in a TS stream with tsid
identifier has a value different from the tsid value, it shall be ignored.

2. If the baseId parameter of an nclEditingCommand coming from an NCLua object
running in a certain private base has a value different from the baseId value of this
private base, it shall be ignored.

3. Receivers that only implement the NCL Basic DTV profile cannot handle the following
nclEditingCommands: pauseDocument, resumeDocument, addTransition,
removeTransition, addTransitionBase and removeTransitionBase.

4. An nclEditingCommand that can cause document inconsistency or referring to an
inexistent NCL element or any other inexistent identifier shall be ignored.

 63

8. NCLua API

The scripting language adopted by Ginga-NCL to implement procedural objects in NCL
documents is Lua (<media> elements of application/x-ginga-NCLua type, or application/x-
ncl-NCLua type).

Besides the Lua standard library, the following modules shall be implemented: canvas;
event; settings; persistent.

8.1. The canvas module

A canvas offers a graphical API to be used in an NCLua application. Using the API, it is
possible to draw lines, rectangles, font, images, etc.

8.1.1. Default values

1. In all canvas: drawXXX operations, the line width shall be assumed as 1 pixel.

2. In the canvas:drawEllipse (mode: string; xc, yc, width, height, ang_start, ang_end:
number) operation the angle units shall be assumed as degrees.

3. In the canvas:drawEllipse (mode: string; xc, yc, width, height, ang_start, ang_end:
number) operation the 0 degree angle is in the higher Y coordinate of the ellipse and the
angle progression follows the clockwise motion.

8.2. The event module

This module offers an API for event handling. Using the API, the NCL formatter may
communicate with an NCLua application asynchronously.

In the event.register ([pos: number]; f: function; [class: string]; […: any]), the initial
register position is 1.

In the event.post of class=’si’ and type=‘epg’, the hasInteractivity data-table subfield shall
consider the compatible carousel_ descriptor, the NCL editing commands and the AIT
tables in order to specify if the EPG event has (or has not) an application.

8.2.1. Default values

1. In ncl class, events may be directed to specific anchors or to the whole node, this is
identified by label field, which assumes the whole node when absent.

8.2.2. Exception handling

In the event.register ([pos: number]; f: function; [class: string]; […: any]), when a
handler is registered in a position occupied by another one, every handler position from
that position on shall be incremented, in order to give place to the new insertion. When a
handler is removed, all other handler positions, from the removed handler position on shall
be decremented.

 64

9. Final Remarks

In order to offer a scalable hypermedia model, with characteristics that may be
progressively incorporated in hypermedia system implementations, NCM was divided in
several parts, and also its declarative XML application language: NCL. Ginga-NCL is the
declarative environment of Ginga middleware responsible for running NCL applications.
This technical report deals with the operational guidelines for Ginga-NCL implementations
aiming at terrestrial and satellital DTV, and IPTV systems, which follows Norms ABNT
15606.2 and 15606-5, and ITU-T Recommendation H.761.

 65

References

[ABNT 15604] ABNT NBR 15604, Televisão digital terrestre – Receptores

ABNT NBR 15604, Digital terrestrial television – Receivers

Available:
http://www.abnt.org.br/imagens/Normalizacao_TV_Digital/ABNTNBR15604_20
07Ing_2008.pdf

[ABNT 15606-1] ABNT NBR 15606-1, Televisão digital terrestre – Codificação de dados e
especificações de transmissão para radiodifusão digital – Parte 1: Codificação de
dados

ABNT NBR 15606-1, Digital terrestrial television — Data coding and
transmission specification for digital Broadcasting - Part 1: Data coding
specification

Available:
http://www.abnt.org.br/imagens/Normalizacao_TV_Digital/ABNTNBR15606-
1_2007Ing_2008.pdf

[ABNT 15606-2] ABNT NBR 15606-2, Televisão digital terrestre – Codificação de dados e
especificações de transmissão para radiodifusão digital – Parte 2: Ginga-NCL
para receptores fixos e móveis – Linguagem de aplicação XML para codificação
de aplicações

ABNT NBR 15606-2, Digital Terrestrial TV – Data Coding and transmission
specification for digital broadcasting – Part 2: Ginga-NCL for fixed and mobile
receivers: XML application language for application coding.

Available:
http://www.abnt.org.br/imagens/Normalizacao_TV_Digital/ABNTNBR15606-
2_2007Ing_2008.pdf

[ABNT 15606-5] ABNT NBR 15606-5, Televisão digital terrestre – Codificação de dados e
especificações de transmissão para radiodifusão digital – Parte 5: Ginga-NCL
para receptores portáteis – Linguagem de aplicação XML para codificação de
aplicações

ABNT NBR 15606-5, Digital Terrestrial TV – Data Coding and transmission
specification for digital broadcasting – Part 5: Ginga-NCL for portable receivers:
XML application language for application coding

Available:
http://www.abnt.org.br/imagens/Normalizacao_TV_Digital/ABNTNBR15606-
5_2007Ing_2008.pdf

[Antonacci 00] Antonacci M.J. NCL: Uma Linguagem Declarativa para Especificação de
Documentos Hipermídia com Sincronização Temporal e Espacial. Master
Dissertation, Departamento de Informática, PUC-Rio, April 2000.

 66

[AMRS 00] Antonacci M.J., Muchaluat-Saade D.C., Rodrigues R.F., Soares L.F.G. NCL:
Uma Linguagem Declarativa para Especificação de Documentos Hipermídia na
Web, VI Simpósio Brasileiro de Sistemas Multimídia e Hipermídia -
SBMídia2000, Natal, Rio Grande do Norte, June 2000.

[ITU J.201] ITU Recommendation J.201:2004, Harmonization of declarative content format
for interactive television applications.

[ITU H.761] ITU-T Recommendation H.761, 2009. Nested Context Language (NCL) and
Ginga-NCL for IPTV Services. Geneva, April, 2009.

[NCL Part 1] Soares L.F.G; Rodrigues R.F. Nested Context Model 3.0: Part 1 – NCM Core,
Technical Report, Departamento de Informática PUC-Rio, May 2005, ISSN:
0103-9741.

[NCL Part 8] Soares L.F.G; Rodrigues R.F. Nested Context Language 3.0: Part 8 – NCL Live
Editing Commands, Technical Report, Departamento de Informática PUC-Rio,
December 2006, ISSN: 0103-9741.

[NCL Part 9] Soares, L.F.G.; Rodrigues, R.F.; Costa, R.R.; Moreno, M. F. Nested Context
Language 3.0: Part 9 – NCL Live Editing Commands. Technical Report,
Informatics Department, PUC-Rio, No. 36/06. Rio de Janeiro. December 2006.
ISSN 0103-9741.

[NCL Part 10] Soares, L.F.G.; Sant’Anna, F.F; Cerqueira, R. F. G. Nested Context Language 3.0:
Part 10 – Imperative Objects in NCL: The NCLua Scripting Language. Technical
Report, Informatics Department, PUC-Rio, No. 02/08. Rio de Janeiro. January
2008. ISSN 0103-9741.

[NCL Part 11] Soares, L.F.G. Nested Context Language 3.0: Part 11 – Declarative Hypermedia
Objects in NCL: Nesting Objects with NCL code in NCL Documents. Technical
Report, Informatics Department, PUC-Rio, No. 02/09. Rio de Janeiro. January
2009. ISSN 0103-9741.

[NCL Part 12] Soares, L.F.G. Nested Context Language 3.0: Part 12 – Support to Multiple
Exhibition Devices. Technical Report, Informatics Department, PUC-Rio, No.
03/09. Rio de Janeiro. January 2009. ISSN 0103-9741.

[RDF 99] Resource Description Framework (RDF) Model and Syntax Specification, Ora
Lassila and Ralph R. Swick. W3C Recommendation, 22 February 1999.
Available at http://www.w3.org/TR/REC-rdf-syntax/

[SCHE 01] XML Schema Part 0: Primer, W3C Recommendation, in
http://www.w3.org/TR/xmlschema-0/, May 2001.

[SMIL 2.1] W3C Recommendation, Synchronized Multimedia Integration Language – SMIL
2.1 Specification. December de 2005

[XML 1.0] Bray T., Paoli J., Sperberg-McQueen C.M., Maler E. Extensible Markup
Language (XML) 1.0 (Second Edition), W3C Recommendation, in
http://www.w3.org/TR/REC-xml, February 1998.

