
 

PUC 
 

ISSN 0103-9741 

 

Monografias em Ciência da Computação 

n° 16/09 

 

A Pattern Language for Self-Organizing Systems 
 

Maíra Athanázio de Cerqueira Gatti 

Carlos José Pereira de Lucena 

Alessandro Fabricio Garcia 

 

 

 

Departamento de Informática 

 

 

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900 

RIO DE JANEIRO - BRASIL 
 

 

 



 

 

Monografias em Ciência da Computação, No. 16/09 ISSN: 0103-9741 
Editor: Prof. Carlos José Pereira de Lucena June, 2009 

A Pattern Language for Self-Organizing Systems 

Maíra Athanázio de Cerqueira Gatti, Carlos José Pereira de Lucena and 
Alessandro Fabricio Garcia 

Laboratório de Engenharia de Software – LES 

Departamento de Informática 
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brasil 

{mgatti, lucena, afgarcia}@inf.puc-rio.br 

Abstract. Developers and maintainers of self-organizing software systems need design 
patterns to facilitate design reuse. To tackle this problem, we propose a catalogue of 
agent-oriented design patterns for structuring the pivotal mechanisms of a self-
organizing system. The presented pattern language has a twofold purpose. First, it de-
fines the common self-organizing behavior and the underlying environment structure. 
Second, all the patterns describe how the information flow should be designed in a 
complex self-organizing system. The pattern language also shows how the basic pat-
terns can be composed to design more sophisticated self-organizing mechanisms. The 
automated guided vehicles application was chosen as a unified example of the pattern 
language usage, while a number of well-known pattern uses are also described. 

Keywords: Multi-Agent Systems, Self-organization, Design Patterns, Pattern Lan-
guage. 

Resumo. Desenvolvedores de sistemas de software auto-organizáveis precisam de 
padrões de projeto para facilitar o reuso do projeto. Neste sentido, propomos um 
catálogo de padrões de projeto orientados a agentes que estrutura os principais 
mecanismos de um sistema auto-organizável. A linguagem de padrões descrita possui 
dois propósitos principais. Primeiramente o de definir um comportamento em comum 
na estrutura do ambiente. E em segundo, os padrões descrevem como fluxos de 
informação devem ser projetados em um sistema auto-organizável. A linguagem de 
padrões também mostra como os padrões básicos podem ser compostos para projetar 
mecanismos mais sofisticados de auto-organização. A aplicação de veículos guiados 
automáticos foi escolhida como um exemplo unificado do uso da linguagem de 
padrões, enquanto que  o uso de padrões conhecidos também é descrito. 

Palavras-chave: Sistemas Multiagentes, Auto-Organização, Padrões de Projeto, 
Linguagem de Padrões. 



 

 ii 

 
 

 

In charge of publications: 

Rosane Teles Lins Castilho 
Assessoria de Biblioteca, Documentação e Informação 
PUC-Rio Departamento de Informática 
Rua Marquês de São Vicente, 225 - Gávea 
22451-900 Rio de Janeiro RJ Brasil 
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530  
E-mail: bib-di@inf.puc-rio.br 



 

 iii 

Table of Contents 

1. Introduction 1 

2. An Agent-Oriented Pattern Language for Self-Organizing Systems 1 

2.1. Generic Self-Organizing Architecture 2 

3. The Automated Guided Vehicles (AGVs) 5 

4. Self-Organizing Patterns 7 

4.1. Diffusion 7 

4.2. Evaporation 8 

4.3. Aggregation 8 

4.4. Gradient Fields 9 

4.5. Pheromone Path 10 

5. An Implementation Example of GSOA 10 

6. Concluding Remarks 12 

A Coordinated Statecharts Concepts 12 

References 13 

 



 

 1 

1. Introduction 

Software architects are increasingly relying on self-organizing mechanisms to design 
distributed autonomous systems. Each component in self-organizing systems acquires 
and maintains information about its environment and neighbors without external con-
trol. The emergent behavior may evolve or change over time [1][2]. When engineering 
a self-organizing emergent solution, the problem-solving power mainly resides in the 
interactions and coordination between agents instead of in intelligent reasoning of in-
dividual agents. Documented design practices are essential to provide developers and 
maintainers of complex self-organizing systems with proper design guidance and re-
use. They also facilitate quality assurance processes, such as software verification and 
testing.  

To maximize reuse, patterns are often described at several levels of abstraction; for 
instance, the patterns in the Gang of Four book [3] are described via class models and 
implementation examples. However, to the best of our knowledge, there are only con-
ceptual and architectural design patterns described in the literature [4][5][6] for self-
organizing systems. The problem is that architectural patterns are high-level strategies 
that concern the global design properties of a system, whereas design patterns com-
plement by describing commonly recurring structures of communicating components. 
Furthermore, a pattern language defines a collection of patterns and the rules to com-
bine them according to an underlying architectural style [20]. Pattern languages can be 
used to describe software frameworks or families of related systems.  

This paper proposes: (i) a catalogue of design patterns in the form of a pattern lan-
guage described at the detailed design and implementation levels; and (ii) a generic 
agent-oriented self-organizing architecture that guides the structure of each pattern in 
the language. They are behavioral patterns [3] that help designers define the commu-
nication between agents and their behaviors. Furthermore, the patterns help to design 
the information flow in a complex self-organizing system. The definition of the pattern 
language was also based on an identification of well-known uses of the documented 
pattern solutions. 

This work is organized as follows. Section 2 proposes the pattern language and a 
pattern describing a generic software architecture. Section 3 describes an application 
example using the pattern language: the automated guided vehicles problem. This ap-
plication is largely used and referenced in the literature of self-organizing systems. 
Section 4 presents the patterns used in the pattern language. Section 5 presents an im-
plementation example of the pattern language. Finally, we present the conclusions. 

2. An Agent-Oriented Pattern Language for Self-Organizing 
Systems 

A pattern language is a set of patterns that are used together to solve a problem. A pat-
tern language guides a designer by providing workable solutions to several of the 
problems known to arise in the course of design. This section proposes an agent-
oriented pattern language for self-organizing systems. The language is compliant with 
the well-known foundations for self-organized systems, which are previously defined 
in conceptual design patterns [4][5].  



 

 2 

The conception of our pattern language has three purposes: (i) the definition of a Ge-
neric Self-Organizing Architecture (GSOA for short); (ii) the description of five self-
organizing mechanisms as patterns, and (iii) the organization of these patterns as a 
comprehensive pattern language for self-organizing software systems. The basic pat-
terns are [5][10]: Diffusion, Evaporation, and Aggregation. They were isolated from the 
other patterns in the language so that they can be used individually. The combination 
of basic patterns is required to produce more complex patterns of self-organizing sys-
tems as Gradient Fields or Pheromone Path. GSOA focuses on the forces acting over 
the instantiation of our generic structure and behavior for the basic patterns. 

Figure 1 is a directed acyclic graph of dependence among patterns. An edge from pat-
tern A to pattern B means pattern B is generated from pattern A. GSOA generates the 
micro-architecture for the three basic patterns. All other patterns are combinations of 
these. Thus, all five self-organizing patterns instantiate GSOA. A walk on the graph is 
directed by two questions: What self-organizing mechanisms should be used to ad-
dress application needs? And how should the self-organizing mechanisms be struc-
tured as reusable and flexible components? 

 
Figure 1. Self-Organizing Design Patterns and Their Relationships 

2.1. Generic Self-Organizing Architecture 

Context     

Two or more entities are coordinated through self-organizing mechanisms in an envi-
ronment. The design of self-organizing components should be modular so that they 
can be easily combined to achieve the target coordination. 

Problem   

How to design a flexible agent-oriented micro-architecture for a self-organizing design 
in order to facilitate component reuse? 

Applicability   

When defining the best combination of self-organizing mechanisms to achieve optimal 
coordination. When a generic micro-architecture to several kinds of self-organizing 
mechanisms is necessary. 

Forces     

The dependencies between coordination features and application code should be 
minimized in order to facilitate reuse. The readability of programs with self-organizing 
code should be increased. 



 

 3 

Solution     

The Environment is inhabited by Agents and may contain Sub-Environments. The En-
vironment manages the Space that contains Locations. Each Agent is situated in one 
Location. A Location may have several Agents and Events. An Agent perceives the 
Events in each Location and may react or not to the events (Figure 2). 

 

For each coordination action, i.e. the agent reaction to a gradient, or propagation 
rule action there is an abstract class representing the Strategy Design Pattern [3]: the 
CoordinationStrategy and PropagationStrategy classes. The Strategy pattern is useful 
for dynamically swapping the algorithms used in an application. The Agent is the 
Context of the strategies. Hence the Agent must define them to later execute their be-
haviors. The coordinate() action will call one of the concrete coordination strategies. 
And the propagate() action will first choose from one of the propagation types, in loca-
tions, to agents or in space implemented by the respective operations propagateInLo-
cations(), propagateToAgents(), propagateInSpace(). 

Figure 3 illustrates the GSOA dynamics using Coordinated Statecharts  that extend 
the orthogonal behavior to support self-organizing mechanisms design [1]. The A1 Ini-
tiator Agent starts the coordination mechanism through the emission of an event, for 
instance the GF  event. An A2 agent will trigger the GF event and will propagate it in 
the neighborhood locations or spaces or agents according to the propagation rules. At 
the location, the propagation might represent the addition of the GF event in the loca-
tion or its removal . At the space, the propagation happens in all the locations it con-
tains. Other agents will perceive the event at the time of the propagation in the case the 
event is propagated to their locations or when they move their locations. Once an 
agent triggers the GF event, it decides for starting the coordination. It can also spread 
more GF events or stop the coordination. This decision depends on the coordination 
rules. Once the coordination process is stopped, the feedback loop is closed. 

Figure 2: GSOA Structure 



 

 4 

 
Figure 3. GSOA Dynamics 

Consequences     

� All the self-organizing mechanisms will present a common behavior and environ-
ment structure with concepts of Space and Location. 
� Feedback loops can be represented and reused when instantiating GSOA. 
� Ad hoc implementations of self-organizing mechanisms could perform better than 
GSOA instantiation if does not use an object-oriented approach. 
� Flexible and adaptable systems with self-organizing mechanisms can be more easily 
obtained when coordination and propagation algorithms are decoupled from their im-
plementations, and these two are, in turn, decoupled from the self-organizing mecha-
nisms.  
� Behaviors are defined as separate interfaces or abstract classes and their correspond-
ing concrete specific classes.  

Implementation Factors   

This pattern can be easily developed with object-oriented programming languages. 
Middlewares with space virtualization can be used to realize the GSOA relationships, 
structure and dynamics. For instance, Tuple Spaces based middlewares [14] and 
MESOF framework [11] provide space virtualization. 
In literature one can find that there are different ways to implement statecharts. The 
most common technique to implement statechart is the doubly nested switch state-
ments with a “scalar variable”. The latter is used as the discriminator in the first level 
of the switch and event-type in the second [3][11][15].  
Another approach uses the concept of object composition and delegation [16] and ex-
tends the State Design Pattern [3]. In this case, each state in the statechart diagram be-
comes a class. Each transition from that state becomes a method in the corresponding 
class and each action becomes a method in the context class that, in our case, will be 
the agent behavior. The context class delegates all events for processing to the current 
state object. It makes it possible to easily compose behaviors at run-time and to change 



 

 5 

the way they are composed. Although they have shown that this approach reduces 
source code in comparison to the first one, with a few more agents there would be an 
explosion of small classes since an Agent might have several behaviors. Moreover, the 
event cannot be implemented as a method. The event has to be added to a list that the 
agent manages and process the event whenever desired. 

Example   

An Automated Guided Vehicle (AGV) warehouse transportation system that uses mul-
tiple computer guided vehicles which move loads in a warehouse. This application is 
designed in section 3. Another example is routing service applications in overlay net-
works [17], which are logical structures built on top of physical network. And also 
mobile ad-hoc networks (MANETs) [17] which are a set of wireless mobile devices that 
self-organize into a network without relying on a fixed structure or central control. 

Known Uses   

All the self-organizing patterns described in section 4, and widely used in systems as 
motion coordination [4], data clustering [4][5], autonomic application servers, biologi-
cal computational simulation [2][11], TOTA[14], are instantiations of GSOA. 

3. The Automated Guided Vehicles (AGVs) 

In order to illustrate the applicability of this pattern language, we will use its self-
organizing patterns over a large example, the design of an automated guided vehicle 
warehouse transportation system [10]. We will consider only the self-organizing-based 
aspects of such applications.  

In the AGV warehouse transportation system the AGVs move loads (e.g. packets, 
materials) in a warehouse. Each AGV can only conduct a limited set of local actions, 
such as move, pick load, and drop load. The goal is to efficiently transport incoming 
loads to their destination. The AGV problem is dynamic: many lay-outs, loads arrive at 
any moment, AGVs move constantly and fail, obstacles and congestion might appear, 
etc. AGV movement should result in feedback to each other and the environment. 

 
Figure 4. AGV Structure 



 

 6 

 
Figure 5. AGV Dynamics – Dispatching Property 

Load dispatching means ‘assigning’ incoming loads to suitable AGVs. A load is only 
permanently assigned to an AGV when it has picked up the load. Until that moment, 
other AGVs that become better suited should be able to take over. In the case of rout-
ing, for moving towards a pick-up station and after a load is picked up, the AGV is 
routed through the factory. 

The dispatching and routing activities require a mechanism that enables aggrega-
tion and calculation of extra information while flowing through intermediate stations. 
Gradient fields allow this [4]. The pick up stations generate gradients while they have 
loads to be delivered, and propagate them in the neighborhood. The AGVs also propa-
gate gradients of movement in the environment. Such gradients can be used for infor-
mation about obstacles and congestions.  

Figure 4 illustrates the AGV structure and Figure 5 illustrates the AGV dynamics, 
both as an instantiation of the GSOA pattern language. Each station is a Space with 
one or more Locations. Each AGV is an agent. The global execution contains a global 
environment – AGVEnvironment – where the stations and the AGVs are situated. 

Each action that the AGV might take is realized as a coordination strategy (e.g. 
Move). The GradientField strategy is composed of the three basic strategies: Diffusion, 
Evaporation and Aggregation. 



 

 7 

4. Self-Organizing Patterns 

4.1. Diffusion 

Context      

A distributed entity wants to send information (represented by gradients) to a distant 
entity that is unaware of neither the entity nor its location.  

Problem     

How can the information be propagated in order that the distant entities react to them? 

Applicability   

When distributed entities need to be coordinated without a central control and without 
the knowledge about complete neighboring space. 

Forces     

Without a central control or knowledge about the environment, distant entities cannot 
be coordinated, unless a diffusion mechanism propagates the information in the envi-
ronment and guides the entities’ actions.  

Solution     

The coordinate() method of the concrete coordination strategy will be executed. The 
propagateInLocations() method of the propagation strategy implemented by the Diffu-
sion class will be called by the coordinate() method. It will fire an event stamped with 
a weight to the location in the neighborhood of radius one. Each entity on the target 
locations will trigger the event and will propagate in the same way (except to the loca-
tions already with the event). When propagating, the weight will be decreased locally 
and correspondingly increased in the neighborhood. 

Consequences     

Gradients are propagated in all directions without taking into account other gradients 
already present in different spaces or locations.  

There is the risk of some spaces having many gradients and there being too little in 
other spaces. For instance, in the AGV problem this pattern will work properly, be-
cause the AGVs will avoid these locations and consequently avoid congestion. How-
ever, in situations where the gradient represents loads and the goal is to achieve an 
equal distribution of loads the result is an inefficient load balancing mechanism. 

Implementation Factors   

Different radius sizes can be used for this pattern. It mostly depends on the kind of 
application being developed and on the access to the available neighborhood.  

Example   

An AGV wants to send information about its position when it is moving. Hence, the 
other AGVs can avoid congestion. The AGV will call the coordinate() method of the 
coordination strategy implemented by the Move class, which in turn will call the 
propagateInLocations(). Each AGV on the target locations will trigger the event and 
will propagate in the same way (except to the locations already with the event) but de-
creasing the weight locally and correspondingly increasing the weights in the 
neighborhood. The AGV might move or stay at the same location depending on the 
event weight. 

Known Uses   

A common use of this pattern is in the problem of calculating global functions 
[17],[18], and load balancing [17]. 



 

 8 

4.2. Evaporation 

Context      

Gradients were propagated in locations in the environment in order to coordinate (for 
instance, attract or repel) distributed entities. Once the coordination is achieved or the 
goal is satisfied, the gradients must disappear. 

Problem     

How can the gradients disappear from their locations? 

Applicability   

When the application is overwhelmed by information or gradients released. 

Forces     

The memory must be released to achieve higher performance and the information is no 
longer useful. 

Solution   

From time to time, the Environment will actively or reactively call the propagateInLo-
cations() or propagateInSpace() methods of the Evaporation class. Thus, it will apply 
the evaporation rate in obsolete gradients. Obsolete gradients can be gradients not be-
ing perceived by Agents in a period of time. The evaporation rate, for instance, can be 
decreasing the gradient’s weight until it reaches zero. 

Consequences     

Gradients cannot be recovered once evaporated. 

Implementation Factors   

The choice of the Environment actively evaporates gradients, or reactively (in response 
to a specific event) depending on performance requirements.  

Example   

The load_gradient event fired by the Dispatching Initiation Behavior will be diffused 
in the Environment. However, once the pickup_gradient event is fired by the AGV 
when it is at the Pickup Station and picks the load up, the AGVEnvironment triggers 
this event and calls the propagateInLocations() or propagateInSpace() methods of the 
Evaporation class in order to apply this pattern and evaporate all load_gradient events 
propagated in locations. Hence, other AGVs will not look for this load.  

Known Uses   

The most common uses of this pattern is in stigmergy-based systems [10] and phero-
mone path-based applications [19]. 

4.3. Aggregation 

Context      

In a feedback loop it might be useful to reinforce information in order to an emergent 
property  - a path – appear as a response of the reinforcement. 

Problem     

How to reinforce a positive or negative feedback loop in a self-organizing system?  

Applicability   

When Agents are guided by the gradient with higher intensities in order to produce 
learning paths. 

 

 



 

 9 

Forces     

If the Agents do not follow the gradient with higher intensities, they might take too 
long to reach the coordination goal. The shortest paths save time, resources and in-
crease performance. 

Solution     

Each time the same information is deposited in a Location, its intensity is increased 
locally. The Evaporation class implements this behavior through the propagateInLoca-
tions() and propagateInSpace() methods that can be called by Agents or Environment. 

Consequences     

Shortest paths are produced from the distributed reinforcement learning process, al-
though not necessarily the shortest path of all; i.e., for space circumstances a path 
emerges but might not be the shortest. 

Implementation Factors   

There are two main factors that impact on the result of this pattern at the implementa-
tion level: the rule for increasing the gradient intensity and the neighborhood radius. 
Also, how the intensity is modeled may influence the result. It could be a simple or 
more complex structure. 

Example   

For each AGV there would be a learning path so that they avoid other AGVs’ paths (to 
avoid congestion). Thus, on each call to coordinate() method of the Move class, the 
propagateInLocations() method of the Evaporation class will be executed and will 
propagate the correspondent gradient exactly and only to the new Location.  

Known Uses   

This pattern is commonly used in stigmergy-based systems [10] and pheromone path-
based applications [19]. It is also used in adaptive routing algorithms for wired and 
mobile networks [17]. 

4.4. Gradient Fields 
Context      

A system composed of distributed autonomous entities must be self-managed, self-
configured to achieve a global coordination function. 

Problem     

How to adaptively orchestrate distributed autonomous entities achieving a pattern 
formation?  

Applicability   

When Agents must be coordinated to achieve macro properties without any external 
or internal central control. 

Forces     

A centralized solution is often a bottleneck and single point of failure in a very dy-
namic situation. The solution must be flexible to achieve robustness. 

Solution     

This pattern is the composition of the Diffusion, Evaporation and Aggregation pat-
terns. There are two basic ways to achieve the composition: they can be randomly 
composed (i) using the three patterns at the same time in the Environment; or (ii) com-
posing them while propagating the information. As a result, agents follow the shape of 
the coordination combined field. If one wants to compose in a controlled manner the 
composition can be achieved using the Template Method pattern [3]. It will prevent 



 

 10 

others from replacing all your composition implementation and offering them a spe-
cific extension point. 

Consequences     

Usually, following the gradient field is the shortest path towards the initiator of the 
field. Although this pattern can be considered greedy because of the strictly local per-
spective of the agents. 

Implementation Factors   

Create a GradientField subclass of the PropagationStrategy which contains the gradi-
ent to be propagated. And delegate the order of the basic propagation strategies to the 
GradientField class.  

Example   

Instead of perceiving the individually events in the AGV example (for instance, the 
load_gradient event), an AGV will perceive an event that contains the combined gra-
dient and will react in response to it.  

Known Uses   

This pattern is commonly used in intelligent agents exploring the web, spatial shape 
formation, urban traffic management [4], etc. 

4.5. Pheromone Path 
Due to space constraints the Pheromone Path pattern will not be fully described. How-
ever, the solution rationale is the same for the Gradient Fields pattern and known uses 
can be found in [19], for instance. 

5. An Implementation Example of GSOA  
A simple implementation of the GSOA and its instantiation are described in this Sec-
tion using Java code and were developed in the multi-environment self-organization 
framework (MESOF, for short) Error! Reference source not found.. The interfaces 
IAgent and IEnvironment are not described in GSOA but used in the MESOF. 

Three classes are partially described: Agent, Environment and the Diffusion class, the 
concrete propagation strategy for the Diffusion pattern. The Agent class (Table 1) im-
plements the IAgent interface of MESOF and has a reference for the current Location 
and the Environment where it runs. It has a list of events, which are updated whenever 
there is an event in the Location where the agent is. Two references to the Coordina-
tionStrategy and PropagationStrategy classes are needed. The subclasses of the Agent 
class must override the start() and step() methods. Depending on the state of the 
agent, it will set the strategies at runtime and call its actions coordinate() and propa-
gate() that delegates the behavior to the strategies classes initialized.  

The Environment class (Table 2) extends the Agent class, representing an active envi-
ronment Error! Reference source not found. and implements the IEnvironment inter-
face. It has a reference to the agents running on it, and eventually sub-environments. 
The Environment manages the Space that contains all the Location where agents can be 
situated. If the Environment to be instantiated is the main environment, then the Envi-
ronment(Id) constructor must be called, otherwise the Environment (Id, Environ-
ment) constructer must be called passing the parent Environment. The methods ad-
dAgent(IAgent) and addEnvironment (IEnvironment) add agents and sub-
environments to the Environment. When instantiating the Environment class the start() 
method must be called by the start() method implemented by the subclass. It starts 
the existent entities of the environment. The same happens to the step() method. The 
Agent class inherits all other behaviors of perceiving and acting.  



 

 11 

 
Table 1. Agent Class 

class Agent implements IAgent{ 

   private Id id;    

   private Location location; 

   private ArrayList<Event> events; 

   private Environment env; 

   private CoordinationStrategy coStrategy; 

   private PropagationStrategy propStrategy; 

   public Agent(Id id, Environment env)   { 

      this.id = id; 

      this.env = env; 

      this.events = new ArrayList<Event>();} 

   public Id getId(){ 

      return id;} 

   public void receiveEvent(Event ev){ 

      this.events.add(ev); } 

   public Event consumeEvent(){ 

      if (this.events.size()>0) 

         return this.events.remove(0); 

      else  return null; } 

   public void start(){} 

   public void step() {} 

   private setCoordinationStrategy (CoordinationStrategy coordStrategy){ 

      this.coStrategy = coordStrategy; } 

   private set PropagationStrategy (PropagationStrategy propStrategy)  { 

      this.propStrategy = propStrategy;   } 

   private coordinate()   { 

      this.coStrategy.coordinate();  } 

   private propagate()   { 

      this.propStrategy. 

          propagateInLocations(); }} 

 
Table 2. Environment Class 

class Environment extends Agent  

                   implements IEnvironment { 

   private ArrayList<IAgent> agents; 

   private ArrayList<IEnvironment> environments; 

   private Space space; 

  public Environment(Id id)   { 

      super(id, null); 

      this.agents = new ArrayList<IAgent>(); 

      this.environments = new ArrayList<IEnvironment>();    } 

   public Environment (Id id, Environment env) { 

      super(id, env); 

      this.agents = new ArrayList<IAgent>(); 

      this.environments = new ArrayList<IEnvironment>();} 

    

    public void addAgent(IAgent agent) { 

       this.agents.add(agent); } 

    public void addEnvironment (IEnvironment environment) { 

       this.environments.add(environment); } 

    public void start() { 

       super.start(); 

       for (IEnvironment subEnv : environments){ 

              subEnv.start(); } 

       for (IAgent agent : this.agents){ 

              agent.start(); } } 

       public void step(){ 

         for (IAgent agent : this.agents){ 

              agent.step(); }} 

       public Space getSpace (){ 

              return this.space; }} 

 

The Diffusion class (Table 3) illustrates the instantiation of GSOA and, hence the 
MESOF framework. It extends the PropagationStrategy class which implements com-
mon behavior to all strategies as getNeighborhoodPositions (Location). It is neces-
sary to pass the Agent reference, which is the context, and the Event to be propagated. 



 

 12 

When the propagateInLocations() is called, for instance, the neighborhoods are re-
turned and for each neighbor location in the Space, the event is propagated. 

Table 3. Diffusion Class 

class Diffusion extends PropagationStrategy{ 

   public Diffusion (Agent agent, Event event){ 

     super(agent, event);} 

   public void propagateInLocations(){ 

     List<Location> neighbor = getNeighborhoodPositions (agent.getLocation()); 

      for (Location location: neighbor) { 

        //before insertion, decrease weight 
        //of the gradient encapsulated by 
        //the event object. 
        agent.getEnv().getSpace().insertObject(location, event);}}} 

6. Concluding Remarks  

There is increasing use of self-organizing mechanisms in the development of contem-
porary software applications. As a consequence, a reusable software architecture and 
design patterns are needed to facilitate the design, implementation and reuse of flexi-
ble and self-organizing systems.  

In order to achieve this goal, this work presented an agent-oriented pattern lan-
guage for self-organizing systems. We consider our pattern language to be complete 
and closed to the self-organizing domain for two reasons: (i) the five patterns, except 
GSOA, are widely used in many applications, and (ii) the GSOA is a result of the 
knowledge extracted from the engineering of a self-organizing framework and evalu-
ated in real-world applications [11]. 

ACKNOWLEDGMENT. This work was supported by MCT/CNPq through the 
“Grandes Desafios da Computação no Brasil: 2006-2016” (Main Computational Challenges 
in Brazil: 2006-2016) Project (Proc. CNPq 550865/2007-1).  

A Coordinated Statecharts Concepts 

The foundation of self-organizing representation model [1][2] considered uses a UML-
based model and it enables the design of event or data-oriented indirect communica-
tion through Coordinated Statecharts. 

In a multi-agent system an agent can execute several actions regarding its goals or 
perceptions. As well, the environment has the same features. The action behavior fea-
ture is executed during agent or environment execution without explicitly being called 
by other objects or agents. Agents interact with one another and the environment, 
sending and receiving messages or sending and receiving events through propaga-
tions in the environment. 

Coordinated statecharts combines statecharts [12] with action and communication 
of behaviors to allow the design of feedback loops [7][8]. More specifically, coordi-
nated statechart reuses and adapts the UML 2 behavioral state machine [9]. Each agent 
and environment behavior is designed using behavioral state machine diagrams (Fig-
ure 6). Each behavioral state machine diagram can communicate with all the other dia-
grams through a communication channel and the desired feedback loop appears as a 
result of that communications/coordination.  

 



 

 13 

 
Figure 6. The abstract coordinated statechart for an agent’s behavior 

Moreover, behaviors are composed of actions. Actions are executed through input 
events and pre-conditions and raise output events, as described before. The input and 
output events vary according to the following stereotypes: (i) emission: signal an asyn-
chronous interaction among agents and their environments. Broadcasting can be per-
formed through emissions; (ii) trigger: signal a change of agent state as a consequence 
of a perceived event. For instance, an agent can raise a trigger event when perceiving 
an emission event which changed its state; (iii) movement: signal an agent movement 
across the environment; (iv) reaction: signal a synchronous interaction among agents, 
however without an explicit receiver. It can be a neighbor of the agent or the environ-
ment; and (v) communication: signal a message exchange between agents with explicit 
receivers (one or more). 

Coordinated statecharts compose behaviors in parallel. With coordinated state-
charts, a behavior is a particular instance of the agent or environment in a scenario that 
represents a typical path through the state space within a single state machine, i.e., an 
ordered sequence of state transitions triggered by events and accompanied by actions. 

Coordinated statecharts extend the orthogonal behavior to support self-organizing 
mechanisms. Each agent behavior can be considered as an orthogonal behavior with 
broadcasting capabilities [13]. But in broadcasting, for instance, when an event occurs, 
it is transferred to all orthogonal regions simultaneously, resulting in the several (the 
number of regions) final states. Therefore, how could you have orthogonal behavior 
co-existing although not being activated at the same time? Furthermore, how could 
you detach this behavior one from another, so you can reuse it in other models? Coor-
dinated statecharts address these issues. 

References 

[1] Gatti, M.A. de C., Lucena, C.J.P.; “A Bio-inspired Representation Model for Engi-
neering Self-Organizing Emergent Systems,” XXII SBES, SP, Brazil, 2008. 

[2] Gatti, M.A. de C., Lucena, C.J.P.: Engineering Self-Organizing Multiagent Systems 
based on a Bio-inspired Representation Model and Coordinated Statecharts. Submitted 
to a Special Issue Track in the ISJ, 25 pgs., 2009. 

[3] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995 Design Patterns: Elements 
of Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc. 

[4] De Wolf, T. and Holvoet, T.; Design Patterns for Decentralised Coordination in 
Self-organising Emergent Systems, in Eng. Self-Organising Systems: Fourth Int. Work-



 

 14 

shop, ESOA 2006, Future University-Hakodate, Japan, 2006, Lecture Notes in Com-
puter Science, Vol. 4335, 2007, pp. 28–49, Springer Verlag. 

[5] Gardelli, L., Viroli, M., Omicini; A.; Design Patterns for Self-Organizing Multi-
agent Systems. 2nd Int. Workshop on EEDAS’2007. At the 4th IEEE Int. Conf. on 
Autonomic Computing. June 11th, 2007, Jacksonville, Florida, USA. 

[6] De Wolf, T. and Holvoet, T.; Designing Self-Organising Emergent Systems based 
on Information Flows and Feedback-loops. Proc. of the First IEEE Int. Conf. on (SASO), 
Editors: Di Marzo Serugendo et al.,  MIT, Boston, USA, pp 295-298, ISBN 0-7695-2906-
2, July 9-11, 2007. 

[7] Wiener, N.. Cybernetics or Control and Communication in the Animal and the Ma-
chine, Paris, Hermann et Cie - MIT Press, Cambridge, MA, 1948. 

[8] Camazine,S., Deneubourg,, J.-L. Franks, N. R., Sneyd, J.,  Theraula, G., Bonabeau, 
E.; Self-Organization in Biological Systems. Princeton University Press, 2003. 

[9] UML 2.x  OMG Specification. http://www.omg.org/ 

[10] De Wolf, T.; Analysing and engineering self-organising emergent applications, 
Ph.D. Thesis, Department of Computer Science, K.U.Leuven, Leuven, Belgium, May, 
2007, 183. 

[11] Gatti, M.A. de C., Lucena, C.J.P.; A Multi-Environment Multi-Agent Simulation 
Framework for Self-Organizing Systems. In The 10th MABS at AAMAS'09, Budapest, 
May 2009. 

[12] Harel, D.; On visual formalisms. Communications of the ACM, V31 I5 pp514-
530, 1988. 

[13] Yacoub, S.M. and Ammar, H.H.; A pattern language of statecharts, Proc. Fifth 
Annual Conf. on the PatternLanguages of Program (PLoP’98), Monticello, IL, USA, 
1998, TR #WUCS-98-29. 

[14] M. Mamei and F. Zambonelli. Programming pervasive and mobile computing 
applications with the TOTA middleware. In Proc. of the 2nd Int. Conference on Perva-
sive Computing and Communications. IEEE Computer Society, Washington, DC, USA, 
2004. 

[15] Gatti, M.A.C., Sangiorgi, U.B., Lucena, C.J.P.de; Towards a Model Driven Ap-
proach for Engineering Self-Organizing Multi-Agent Systems. In Monografias em 
Ciência da Computação, 11/09, Departamento de Informática, PUC-Rio, Brazil, March 
2009. 

[16] Niaz, A. I., Tanaka, J.; Code Generation from UML Statecharts.in Proc. 7 the 
IASTED International Conf. on SEA, Marina Del Rey, 2003. 

[17] Babaoglu, O., Canright, G., Deutsch, A., Caro, G. A., Ducatelle, F., Gambardella, 
L. M., Ganguly, N., Jelasity, M., Montemanni, R., Montresor, A., and Urnes, T. 2006. 
Design patterns from biology for distributed computing. ACM Trans. Auton. Adapt. 
Syst. 1, 1 (Sep. 2006), 26-66. 



 

 15 

[18] Weyns, D., Boucké, N., and Holvoet, T.; Gradient field-based task assignment 
in an AGV transportation system. In Proc. of the Fifth Int. Joint Conf. on AAMAS (Ja-
pan, May, 2006). ACM, New York, NY, 842-849. 

[19] Parunak, H. V. D., Brueckner, S. A. and Sauter, J.; Digital pheromones for coor-
dination of unmanned vehicles. In Environments for Multi-Agent Systems, volume 
3374 of LNAI, pg. 246–263. Springer, February 2005. 

[20] Alexander, C., Ishikawa, S., Silverstin, M. A Pattern Language. Oxford Univer-
sity Press, New York, 1997. 


