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Abstract. Time-lapse (4-D) seismic reservoir monitoring is a relative new technology 
that is gaining recognition in oil and gas producing areas around the world. In this 
paper, we propose an application of Horn-Schunck’s optical flow estimation method 
in order to obtain the movement field between pairs of seismic images. Optical flow 
estimation can provide important information about velocity of each image pixel. This 
way, we show that is possible to catch important displacements between pairs of 
seismic images separated by a time interval. In this work, each seismic image was de-
formed through the application of a synthetic field. The results obtained show that this 
method is able to recover with reasonable precision tiny displacements commonly 
found in time-lapse seismic data.  

Keywords: Time-Lapse, Seimic, Image Processing, Optical Flow. 

Resumo. A análise sísmica em 4 dimensões é uma tecnologia relativamente recente 
que está ganhando destaque na exploração de óleo e gás em todo o mundo. Neste tra-
balho, propomos uma aplicação do método de Horn-Schunck para obter o campo de 
movimento entre pares de imagens sísmicas. A estimativa do fluxo óptico pode forne-
cer importantes informações sobre a velocidade de cada pixel. Desta forma, é possível 
capturar importantes deslocamentos entre pares de imagens separadas por um inter-
valo de tempo. Neste trabalho, cada imagem sísmica foi deformada através da aplica-
ção de um campo sintético. Os resultados obtidos mostram que o método é capaz de 
recuperar com razoável precisão pequenos deslocamentos comumente encontrados 
nos dados sísmicos separados por um lapso de tempo.   
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1  Introduction 

The use of time-lapse technologies in order to perform analysis and monitoring of the 
fluid and pressure in oil and gas producing areas has advanced rapidly in two last 
decades (Lumley, 2004). These technologies involve the process of taking several seis-
mic surveys separated by a calendar interval, at same site, in order to image and detect 
important changes in a producing reservoir. If each seismic survey is formed by 3-D 
data, the extra dimension is calendar time. So, the set of these techniques are often 
termed “4-D seismic”, and they are quickly becoming a very important engineering 
reservoir management tool, that can save hundred of million of dollars, when correctly 
applied (Lumley, 2001). 

Although 4-D seismic techniques can provide an improved seismic monitoring, re-
sidual differences, that are independent of changes in the subsurface geology, may ex-
ist in the repeated time-lapse data. These residual differences add noise to the model 
and consequently impact the effectiveness of the method. So, it is important to ensure 
seismic repeatability in time-lapse seismic monitoring. A variety of factors are in-
volved in the seismic repeatability study, such as the depth of buried detectors small 
variations in water table, tides, currents and temperature, ambient noise, transition 
zone, subsidence, source and geophone positions, source signatures, geometry design, 
and CMP stack fold distribution. Some of the non-repeatability problems can be 
solved by the careful deployment of source and receiver positions. However, problems 
such as those caused by annual near surface variations are more complicated to solve 
at the acquisition stage. Commonly, these problems can only be solved in the post-
processing steps (Zhang and Schmitt, 2006). 

There are several researches and study cases in seismic literature involving time-
lapse techniques application in producing reservoirs. Van Gestel et al. (2008) present 
their experience in five years of continuous seismic monitoring of Vahal Field, located 
in the North Sea. The authors show that a combination of permanently installed seis-
mic sensors and highly repeatable acquisition can provide high-quality 4-D images. 
These images can be used to improve reservoir model and help to plan and reduce 
risk when drilling new wells. Foster et al. (2008) present an overview of the status of 
BP’s three ocean-bottom cables (OBC) monitoring systems and installation and opera-
tion of similar systems at Clair and ACG. OBC systems, in the way that they have 
been implemented in the three BP deployments, promise highly effective seismic 
monitoring data, providing both imaging quality and repeatability. Davies et al. (2008) 
shows that the use of permanent sensors deployed in the wellbore and along the tub-
ing, in the surface production network and in the facilities provide a rich data flow to 
support advanced well and reservoir management techniques. Arts et al. (2004) pre-
sent seismic interpretation of time-lapse seismic data provided by monitoring of CO2 
injection into a saline aquifer. The authors conclude that the effect of CO2 on the seis-
mic data is large in terms of seismic amplitude and in observed velocity pushdown 
effects. 

A new alternative to detect time-lapse seismic effects is proposed by Matos et al. 
(2004). The authors use self organized maps (SOM) combined with wavelet transform 
to detect time-lapse changes. Wavelet transform is used in order to detect seismic 
traces singularities of each time-lapse 3-D cube. Then, these detected objects are classi-
fied using the clustering of SOM. The authors also show a successful application of 
this technique to the Troll West gas province, offshore Norway. 
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Claudino et al. (2008) examine the main effects of permeability barriers on seismic 
response using fluid flow simulations to generate pressure and saturation fields. The 
authors have performed several simulations in a simple reservoir model which has 
vertical and horizontal variations of porosity as well as permeability barriers. The au-
thors use fluid substitution theory, Gassmann and patchy models, and Batzle and 
Wang’s empirical relationship to model the main seismic parameters, such as acoustic 
impedance and compressional velocity. Synthetics seismograms and some contrast 
sections were generated to compare the seismic images prior and after fluid injection 
events in subsequent time periods to analyze possible differences in the seismic pa-
rameters due to changes in barriers properties. A methodology to examine barriers 
effects on seismic response is also proposed. 

Hale (2007) presents a new method for estimating displacement vectors from time-
lapse seismic images. The author uses a local phase-correlation instead of a local cross-
correlation in order to improve features detection in seismic data. Furthermore, it is 
showed that a cyclic sequence of searches of correlation peaks constrained to one of 
the axis of the data can be a better strategy than searching directly for peaks in all data 
axis. 

In computer vision, optical flow estimation is a key problem and consists of finding 
the motion of objects in a given sequence of images. Optical flow algorithms can gen-
erate an approximation of the local scene motion based upon local derivatives, in a 
given sequence of images. Optical flow may be used to perform motion detection, ob-
ject segmentation, and time-to-collision and focus of expansion calculations, motion 
compensated encoding, and stereo disparity measurement (Beauchemin and Barron, 
1995). There are several known methods for optical flow computation.  

Horn and Schunck (1981) present a method that estimated image velocity field 
based on time-space derivatives. The method assumes small intervals between images, 
constant illumination and movement smoothness. An advantage of Horn-Schunck me-
thod is that it generates a high density of flow vectors. A negative point, is that it is 
more sensitive to noise than others methods. 

Another popular method is proposed by Lucas and Kanade (1981). This method is 
a version of two-frame differential methods for motion estimation and can be used in 
combination with statistical methods to improve the performance in presence of out-
liers in noisy images. The solution as given by Lucas and Kanade is a non-iterative 
method, which assumes a locally constant flow. It is a very robust method in presence 
of noise. However, it does not generate high density vector fields. 

McCane et al. (2001) present an evaluation of seven optical flow algorithms, using 
synthetic and real sequences. The authors present a test suite for benchmarking optical 
flow algorithms and propose that researchers should benchmark their algorithms us-
ing a standard test suite. Also, it is offered an Web site as a repository for standard se-
quences and results. 

In this work, we propose the application of Horn-Schunck’s optical flow estimation 
method in order to obtain the movement field between pairs of seismic images. Impor-
tant seismic alterations can be observed by analyzing the movement field provided by 
optical flow computations. In this way, the use of optical flow methods in time-lapsed 
seismic data can provide a reasonable support in analysis and monitoring of produc-
ing areas. 
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2  Optical Flow 

Optical flow (Beauchemin and Barron, 1995) can be defined as the pattern of apparent 
motion of objects, surfaces, and edges in a visual scene. It can be caused by the relative 
motion between an observer and the scene, or by the movement of the objects in scene. 
Through optical flow estimation techniques it is possible to recover the 2D velocity fi-
eld, which describes the aparent movement in a pair of images.  

Methods for optical flow computation can be divided into three main groups: dif-
ferential techniques, techniques of correlation and frequency-based techniques (Barron 
et al, 1994). In these techniques, the initial hypotheses for the computation of optical 
flow are that the intensity between different frames in a sequence of images is ap-
proximately constant in a small time interval and the displacement will be minimal.  

If we consider I (x, y, t) the intensity of the pixel located at position (x, y) at time t, it 
is assumed, by definition, that the time interval between two images is very small and 
the intensity is approximately constant (Figure 1).  

 
Figure 1: Image region at position (x,y,t) is the same as at (x+x ,y+y,t+t) . 

Thus, considering only small local translations, we can formulate a motion con-
straint expression, given by   

),,(),,( dttdyydxxItyxI  . (1) 

Performing a 1st order Taylor series expansion about I (x, y, t) in Equation (1) and 
through some algebraic manipulations (Barron and Thacker, 2005), we obtain the fol-
lowing equation  
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te Equation (2) more compactly as 

0.  tIvI , (3) 

and this equation is known as Motion Constraint Equation. 

However, only Equation (3) is not sufficient to estimate the components of velocity 
vector. This happens because the number of terms to be found is greater than the 
number of equations available.  



 

 4

Therefore, It is necessary to add other constraints to the model in order to find all 
velocity components. At this point, the methods of Lucas-Kanade and Horn-Schunck 
are commonly used in order to estimate the values of the velocity vector. In this work, 
we choose Horn-Schunck method in order to estimate 2-D velocity fields from pairs of 
seismic images. 

3  Horn-Schunck Method 

In order to simplify the process of motion field estimation, Horn-Shunck method as-
sumes that incident light on the surface is uniform. It is also assumed that the reflec-
tion varies smoothly and there are not discontinuities in velocity flow. Thus, the model 
contains two constraints: the constant illumination constraint, which assumes that the 
total light is constant in both images and the smoothing constraint, which assumes 
that neighboring points have similar velocities. 

In constant illumination constraint, if the illumination of an image point (x, y) in 
image plane at time t is described by E (x, y, t), we can write the following equation 

0
dt
dE . 

(4) 

Applying the chain rule, we have 
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and 
dt
dxu   and 

dt
dyv   are the components of the demanded velocity vector, result-

ing on a single equation with two unknown terms, given by 

0 tyx EvEuE . (6) 

Equation (6) expresses the same motion constraint given by Equation (3). So, at this 
point, Horn-Schunck method adds the smoothness constraint in order to find all un-
known terms.  

We know that if each point move independently, it would be almost impossible to 
recover the movement field. Thus, smoothness constraint indicates that neighboring 
points have similar velocities and the velocity varies smoothly in most of the velocity 
field. This constraint can be expressed mathematically by minimizing the square of the 
magnitude of the velocity gradient in both directions (Barron and Thacker, 2005). 

The estimation of partial derivatives Ex, Ey and Et is held by calculating the average 
of the first four adjacent regions of the pair of images, as follows 
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(9) 

At this point, the problem becomes a minimization problem, and we must to find 
the values u and v that minimizes the following expression 

tyxb EvEuE  , (10) 

with the smoothness constraint 
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A direct solution of this minimization problem has a high 
computational cost, so it is necessary to try an iterative 
method (Barron and Thacker, 2005). In order to find the 
optical flow field (u, v) which minimizes the functional in Equation (12), we apply the 
Euler-Lagrange equation from variational calculus. 

dxdybc  )( 2222   (12) 

Using the laplacian operator discretization we achieve a linear equations system 
which is commonly solved by the Gauss-Seidel method. At each iteration, new values 
for u and v can be obtained as follows  
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where u and v arose from the discretization of laplacian operator. The weight fac-
tor is a parameter which can be used to emphasize the constant illumination constraint 
or the smoothing constraint. One can refer to Horn and Schunck (1981) for more de-
tails. 
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4  Accuracy Measures 

The most common performance measure in optical flow literature is the angular error 
(AE) (Baker et al., 2007). The AE between two vectors (u0, v0) and (u1, v1) is the angle in 
3-D space between (u0, v0, 1.0) and (u1, v1, 1.0). Thus, the AE is usually computed by 
normalizing the vectors, taking the dot product, and then taking the inverse cosine of 
their dot product. 

The goal of angular error is to provide a relative performance measure that avoids 
divisions by zero in case of null flows. In optical flow applications, the angular error is 
calculated between real field vectors and estimated field vectors and provides a good 
error measurement. In this work, we use the average angular error (AAE), i.e, the av-
erage among all angular errors at each image point in order to measure velocity field 
estimation performance. 

Another measure often used is the error defined by 

2
10

2
10 )()( vvuue  , (15) 

which provides a more absolute accuracy measure between real and estimated vec-
tors (Baker et al., 2007). The average of this measure calculated using each pair of vec-
tors (real and estimated) was used as a performance criterion in this work.  

5  Results 

Seismic data used in this work correspond to 7 sections (slices) of a real 3-D seismic 
volume (Figure 2). The deformation of each slice was made from a synthetic radial de-
formation, in which all the vectors tend to point to the center of the image, as shown in 
Figure 3. Bilinear interpolation was used in order to reconstruct deformed image sig-
nal. 
 

 
Figure 2: Example of seismic image used in this work. 
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Figure 3: Radial distortion field applied in each seismic image in order to measure 

optical flow motion estimation performance. 

 

We apply tests varying the value of alpha parameter and the maximum size that 
each velocity component can reach, in pixels units. Several values were tested for the 
parameter alpha, ranging from 1 to 64, and the best value found was 32. Each dis-
placement vector component can have size of 0.1, 0.5, 1.0, 2.5, 4.0 and 5.0 pixels units.  

Figure 4 shows an estimated field for a pair of images of dataset. The maximum 
displacement component is 1.0 pixel. 

 
Figure 4: Example of estimated velocity provided by Horn-Shunck method 

The number of iterations performed in each test was 400. The average time to proc-
ess each pair of images was 10s on a 2.4 GHz processor with 2.0 GB of RAM. 
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Table 1 summarizes the results obtained by application of Horn-Schunck method in 
seismic images. The average errors shown are calculated by the sum of the average 
error of each processed image, divided by the value n = 7, which is the total number of 
images available. 

 
Table 1: Average results for alpha=32 and maximum vector component size 

ranging from 0.1 to 5.0. 

Maximum 
component 
size 

AAE/n Average 
Error/n 

0.1 0.9672 0.0170 

0.5 2.6313 0.0509 

1.0 3.0340 0.0724 

2.5 4.21140 0.2217 

4.0 9.9488 0.7658 

5.0 18.7389 1.4347 

For small displacements, which are commonly found in seismic data, these results 
indicate that the method has reasonable performance, with average angular error of a 
few degrees. As the displacement increases, however, this error will increase, and this 
fact implies that for vector displacements whose components are larger than 4, the me-
thod does not present good performance. 

6  Conclusions and Future Works 

The use of new tools able to perform time-lapse seismic reservoir monitoring is grow-
ing in acceptance in recent years. The wide acceptance of the use of 4-D seismic analy-
sis for petroleum industry is evidenced by the large number of recent publications in 
major conferences and journals in the area who witnessed cases of geophysical suc-
cessful application of such technologies. 

Based on the observed results, we conclude that optical techniques, such Horn-
Schunck method can be applied in 4-D analysis in order to recover displacement vec-
tors with a reasonable accuracy even in small magnitude vector fields. The results 
showed that for displacements of the order of sub-pixels, commonly found in seismic 
data, the method is able to estimate the optical flow with a reasonable error. In order 
to better assess the methodology, however, further investigations are necessary, such 
as the use of seismic data with fields of natural displacements. For future work is to 
realize the extent of the implementation of the Horn-Schunck algorithm for 3-D seis-
mic data and the implementation of other known techniques to estimate optical flow, 
such as variational techniques. 
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