

ISSN 0103-9741

Monografias em Ciência da Computação

n° 32/09

A Self-adaptive Process that Incorporates
a Self-test Activity

Andrew Diniz da Costa
Viviane Torres da Silva

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 32/09 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena November, 2009

A Self-adaptive Process that Incorporates
a Self-test Activity

Andrew Diniz da Costa, Viviane Torres da Silva1,
Carlos José Pereira de Lucena

1Departamento de Informática – Universidade Federal Fluminense (UFF)

acosta@inf.puc-rio.br, viviane.silva@ic.uff.br, lucena@inf.puc-rio.br

Abstract. The self-adaptation paradigm aims to develop software systems that can
autonomously adapt themselves to context changes and handle adverse situations on
their own. However, appropriate implementation of self-adaptive processes or archi-
tectures able not only to check the needs for the adaptations and perform them but also
to ensure their compliance with new environment requirements is still an open issue.
Therefore, this paper proposes a self-adaptive process that contemplates a new activity
that promotes the test of the adaptations in order to check their compliance with the
new requirements. Our approach extends a basic self-adaptive process composed of
four main activities (monitor, analyze, plan and execute) by including the test activity
that will check the adapted behavior before its execution. The applicability of the pro-
posed process is demonstrated by a case study where a system responsible for generat-
ing susceptibility maps, i.e., maps that show locations with landslides risks in a given
area, uses the self-adaptive process to adapt its behavior and to check the adaptations
before using them.

Keywords: Self-adaptation, self-testing, control loop, dynamic environment.

Resumo: O paradigma de auto-adaptação visa desenvolver aplicações que possam se
auto-adaptar devido mudanças de contexto e para tratar situações adversas. No entan-
to, a implementação apropriada de processos ou arquiteturas de auto-adaptação deve
considerar além da necessidade de realizar adaptações, a necessidade de garantir que
tais mudanças estão sendo realizadas de forma apropriada, respeitando novos requisi-
tos do ambiente. Assim, o artigo propõe um processo de auto-adaptação que oferece
uma nova atividade que realiza testes em possíveis adaptações. Nossa abordagem es-
tende um processo básico de auto-adaptação composto por quatro atividades princi-
pais (monitor, análise, plano e execução) incluindo a atividade de teste que possui a
responsabilidade de checar o comportamento adaptado antes de sua execução. A apli-
cabilidade do processo proposto é demonstrado por um estudo de caso onde o sistema
possui a responsabilidade de gerar mapas de suscetibilidade, isto é, mapas que indi-
cam localizações com riscos de deslizamento em uma dada área e que usa o processo
de auto-adaptação para adaptar seu comportamento e checar tais adaptações.

Palavras-chave: Auto-adaptação, auto-teste, loop de controle, ambiente dinâmico.

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

Table of Contents

1 Introduction 1
2 Related Work 2
3 Control Loop Applying Self-test 2

3.1 Self-adaptative + Self-test Control Loop 2
3.2 Test Activity 4

4 Case Study: Georisc 5
4.1 Main Idea 5
4.2 SM Agent 6

5 Conclusions and Future Work 8
References 8

 1

1 Introduction

Today’s complex software systems are able to autonomously work in dynamic
environments by adjusting and adapting their behavior. The characteristics of the
environments change unpredictably, forcing the systems to self-adapt and improve
their own behavior while trying to cope with such changes.

In this context, self-adaptive systems become one of the main focal points of
software engineers. Several approaches describing how systems can perform self-
adaptation have been investigated. Such approaches propose self-adaptation processes
or architectures able to check the need for the adaption and also to adapt the behavior
when it is necessary. However, only few (Neto et al., 2009), (Stevens et al., 2007),
(Weng et al., 2005) provide means to check if the adapted behavior is more adequate to
the new characteristics of the environment than the previous one. In order to do so, it is
necessary to test at runtime the adapted behavior by investigating its compliance with
the new environment requirements.

The main problems of the approaches that test the adapted behavior at runtime are
the following: (i) it is not possible to define different input data and output assertions
to the tests, (ii) different log formats, to be useful when analyzing the results of the per-
formed tests, cannot be defined, and (iii) the self-test activity that such approaches use
is specifically defined for a given self-adaptation process, i.e., such activity cannot be
used in any other process without great effort.

The goal of the paper is to present a self-adaptive process that contemplates an ac-
tivity that promotes the test of the adapted behavior and can be used in any other
process, i.e., a self-test activity that is process-independent. In order to do so, our ap-
proach extends the self-adaptive process proposed in (IBM, 2003). Such process is
composed of four activities: (i) monitor that collects application data; (ii) analyze that
analyzes those data by trying to detect problems, (iii) plan that decides what should be
done in the case of problems; and (iv) execute that changes the application due to exe-
cuted actions. This process (or control loop) was chosen since it clearly defines the ac-
tivities related to the self-adaptation process and has been used as a basis by different
approaches such as (Neto et al, 2009), (Stevens et al., 2007) and (Soeters and Van
Westen, 1996) by making it easier to relate the works.

The self-adaptive process being proposed extends a basic control loop with the new
activity that verifies (or tests) if the adapted behavior complies with the new require-
ments. In this paper we describe the dynamics of the extended control loop and detail
the test activity.

The paper is organized as follows. In Section 2 we present related works. Section 3
introduces our proposed control loop while detailing its dynamics and the test activity.
In Section 4 a case study is described to illustrate our approach. Section 5 concludes
and describes some future work.

 2

2 Related Work

(Denaro et al., 2007) present a self-adaptive approach for service-oriented applications
by using a control loop structured in the following way: monitoring mechanisms, di-
agnosis mechanisms, and adaptation strategies. A prototype of the self-adaptive ap-
proach was implemented and consists of a pre-processing and a generation step. The
pre-processing test is composed of the following phases: identification of possible inte-
gration problems, generation of test cases for revealing integration problems, and defi-
nition of suitable recovery actions. The main drawback of this approach is that the test
activity being proposed (called pre-processing) does not consider important steps de-
fined in our approach, such as the possibility to define input data and output asser-
tions to be used in different actions. Besides, the self-test being proposed is fixed to the
process, while our approach can be adapted to different control loops.

A framework for testing self-adaptive systems at runtime is proposed by (Stevens et
al., 2007). The authors introduce the concept of an autonomic container. An autonomic
container is a data structure that has self-managing capabilities, and also has the im-
plicit ability to self-test. They have implemented a reduced version of this autonomic
container and validated it using a prototype. The authors use a strategy that tests cop-
ies of managed resources while the actual managed resource is being used by an appli-
cation, a technique known as replication with validation. However, such an experiment
does not allow the use of the self-test activities in other architectures. The approach
works together with IBM’s layered architecture for autonomic computing (AC) systems
(IBM, 2003), which consists of managed resources, touchpoints, touchpoint managers,
orchestrating managers, and manual managers. Each test activity is connected with the
layers and is implemented according to such layer characteristics. Therefore, it is not
possible to use the proposed self-test activities in different self-adaptation processes.

(Wen et al, 2005) proposes a Software-Based Self-Test (SBST) framework in order to
be used in microprocessors. The SBST proposal consists of two key steps: (i) self-test of
on-chip processor core(s), and (ii) test and response analysis of other on-chip compo-
nents, using the tested processor core(s) as the pattern generator and response ana-
lyzer. Since the components of the framework are tied in with concepts of microproces-
sors, it is not possible to use it in different domains, such as the approach being pro-
posed in this paper.

3 Control Loop Applying Self-test

In this section we describe a new control loop of self-adaptation based on the model
illustrated in Figure 1 (IBM, 2003). As stated before, this model has four main activities
(monitor, analyze, plan and execute) that do not apply the self-test concept.

3.1 Self-adaptative + Self-test Control Loop

After adapting the behavior and before executing it, the agent may test if the self-
adapted behavior fulfills the new environment requirements. In order to contemplate
such task, a new control loop based on the self-adaptation process illustrated in Figure
1 and including a new activity called test was created. Figure 2 illustrates the interde-
pendences among the five activities defined in the new control loop: Monitor, Analyze,
Decision, Test and Execute, quickly introduced below. In the following sub-section the
new Test activity is explained in more details.

 3

Figure 1. Model suggested by the IBM (IBM, 2003)

1. Monitor: The monitor activity receives through the agent sensor information
coming from the environment. It is responsible for receiving, filtering and
formatting the data provided by the sensor. After noticing the available data,
the monitor filters and formats them to be manipulated by the other activi-
ties of the control loop. The filtered and formatted information is then made
available to the analyze activity;

2. Analyze: The analyze activity is responsible for providing methods to ana-
lyze the data collected in the previous activity in order to detect problems (or
necessities) and suggest new solutions;

3. Decision (called Plan in (IBM, 2003)): This is the third activity responsible for
deciding which action (behavior, service, etc) will be the next one to be exe-
cuted by the agent, while trying to achieve its goal. This decision is based on
the information provided by the analyze activity. Depending on such infor-
mation, it may be necessary to adapt the agent behavior. It is the aim of this
activity to choose if the behavior should be adapted and to effectively adapt
it by, for example, choosing an alternative action;

4. Test: Anytime an action is chosen, the decision activity can call the test activ-
ity to perform a set of tests to validate the selected action. The information
about the successes or failures met by the tests is provided to the decision ac-
tivity. The decision activity is then responsible to decide whether such action
should be skipped or changed for another one. If a new action is chosen, the
decision activity can call the test activity again to test such action;

5. Execute: This is the last step of the self-adaptation process. It receives the se-
lected action from the decision activity, and informs the agent about the ac-
tion to be executed.

 4

Figure 2. New control loop with test activity.

3.2 Test Activity

As mentioned previously, the test activity is responsible for testing the actions chosen
by the decision activity and to inform the decision activity if errors have occurred
when testing these actions. The test activity is composed of four steps. The first two
steps should be executed off-line and the other two are executed together with the ap-
plication:

1. In this step the application designer should relate the actions of the agent to
the test cases used to test such actions. The set of test cases are predefined by
the designer and related to the actions that they are able to test.

2. The next step defines the data to be used as input data and output assertions
while testing the actions. A test case uses the corresponding input data to
execute a given action and the associated output assertions to check if the re-
sults found after executing the task are the expected ones. Note that the same
input data can be used in different actions, such as in cases that test different
application versions.

3. After relating the test cases and the actions, and also defining the related
data, the tests can be executed when requested by the decision activity.
Therefore, the third step of the test activity executes the test per si. Different
types of tests can be executed, such as unit test, functional test, performance
test, etc.

4. In the sequence, it is time to generate the output logs with the results of the
executed test. These logs will be used by the decision activity in order to de-
cide to execute the action or choose another one.

In order to use the test activity in another control loop, it is necessary to:

1. Define the input and output assertions at design time;

2. Define at design time the type of logs that can be used to format the feed-
back provided by the test activity;

3. Associate the actions with the test cases that will be used to test them at de-
sign time;

 5

4. Implement an activity able to analyze at runtime the logs provided by the
test activity;

5. Call the test activity by providing the action that will be tested.

4 Case Study: Georisc

Landslides are natural phenomena, which are difficult to predict since they depend on
many (unpredicted) factors and on the relationships between them. The annual num-
ber of landslides is in the thousands, and the infrastructural damage is in billions of
dollars (Karam, 2005). Since there is a need to systematically deal with these factors,
one of the main challenges faced by the specialists is to decide the most appropriate
model configuration to generate susceptibility maps (SM), i.e., maps that show loca-
tions with landslide risks in a specific area. By using such a map, it is possible to iden-
tify the areas with highest risks in a region.

Considering this context, we implemented an application where a software agent
has the goal to generate an SM that shows the places with landslide risks in Rio de Ja-
neiro, a city in Brazil. The application agent tries to meet a susceptibility model that
creates the best SM based on data provided by a user. The agent adapts its behavior
while choosing the most appropriate model. Each model is implemented as a web ser-
vice, and the agent uses OWL-S (Martin et al, 2009) files in order to find such models.
OWL-S is an ontology, within the OWL-based framework of the Semantic Web, for de-
scribing Semantic Web Services.

4.1 Main Idea

The implemented system is composed of an agent called SM agent, as illustrated in
Figure 3. This agent uses a (default) model provided by a given web service to create
the SM. In the case a problem occurs while using the service or the input data that are
needed to execute the service are not available, the agent can adapt its behavior by
choosing another service. Several problems indicate that the agent should adapt its be-
havior, such as: the service cannot be accessed or the generated map is no good. In or-
der to find different models available as web services, the application provides OWL-S
files that can be used by the agent.

When a different service is chosen and before it is used, the agent tests if it is work-
ing satisfactorily – to be explained in the next section. The data to be used as input and
output assertions while testing the web services are stores in a XML file. Figure 4 illus-
trates one of these files. In the example, the data are related to a test that verifies
whether a susceptibility model generates the expected set of files. Such files contain
information about landslides in a specific area.

Note that different web services can use different data. If the service is approved by
the test, the agent behavior is adapted and such service is used to generate the SM.

 6

Figure 3. Georisc application.

Figure 4. XML file with input and output data to tests.

4.2 SM Agent

As stated previously, the SM agent is responsible for providing a satisfactory SM that is
generated by susceptibility models implemented as web services. The parameters for a
good SM are defined in a XML file. The SM is compared with an inventory map and
these parameters are checked. The inventory map stores the history of landslides that
have occurred in Rio de Janeiro over the last thirty years.

The default model executed by the agent is called the factor of safety (Soeters and
Van Westen, 1996). Such model uses a large set of data, such as environment tempera-
ture, the accumulated rain in the area, and its vegetation type, to generate the SM. In
the case the set of input data is not available, other models can be used, such as, the

 7

rain model (Soeters and Van Westen, 1996), which uses only the information about the
accumulated rain in the area.

If a problem occurs while using the service or the input data that are necessary to
execute the service are not available, the agent can choose to adapt its behavior by se-
lecting another service. With the aim to adapt its behavior, the agent may use the pro-
vided control loop composed of the five activities described in Section 3: monitor, ana-
lyze, decision, test and execute.

In the monitor activity the agent collects data provided by the user to be used by the
susceptibility model. Next, in the analyze activity the agent selects the OWL-S files that
can be used to find web-services able to create SMs. The OWL-S files describe the direc-
tions of the web-services, their names, the context where they execute, besides other
information that can be used to identify them. Figure 5 presents part of an OWL-S file
used in this example.

The decision activity receives the OWL-S files from the analyze activity and uses
them to choose a web-service that implements the default model. The test activity initi-
ates when the web-service is selected. Such activity executes a set of test cases and gen-
erates an output log with the result of the tests. Different test cases can be executed,
such as:

1. One of the most simple test cases only verifies if the web-service is online;

2. Another very simple test case checks if the agent has the data required by
the service to be executed. It can be checked by using the XML file where the
input data used by the services are described;

3. A more complex test may compare the SM in the inventory map with the SM
generated by the web-service to find out if the generated SM is satisfactory.
Note that, since it is only a test, the web-service will provide only a sample
of the map it is able to generate. The comparison is made based on this sam-
ple;

4. Another possible test checks how much time the service takes to generate the
sample maps in order to estimate the time to generate the whole map. This
may be important if the agent is seeking small response times.

Next, the decision activity is re-executed in order to analyze the log generated by the
test activity. If the web-service is “approved" by the test cases, the decision activity
adapts the agent behavior by choosing this web-service to be executed. If it is not the
case, another web-service is selected from the OWL-S files and sent to the test activity
to be tested.

In the last activity, called execute, the agent uses the chosen web-service that im-
plements the susceptibility model that will generate the SM.

 8

Figure 5. OWL-S file example.

5 Conclusions and Future Work

This paper presents a self-adaptive process that takes into account a self-test activity.
Before adapting the agent behavior it is important to check if such behavior contem-
plates the environment requirements.

In order to demonstrate the use of our proposed process, we have used it to assist in
the adaptation of agents that make use of web-services. The agents adapt their behav-
ior while selecting different web-services. Before such adaptation, the service is tested.
The agent behavior will only be adapted, i.e., the service will only be used, if the test
cases have approved it.

We are in the process of developing an application framework that implements the
self-adaptation +self-test process by making available several extension points to be
defined by the application itself. By using such a framework, the application agents
will be able to use test cases predefined by the framework and also others defined at
design time by the application designer.

References

Denaro, G., Pezze, M., and Tosi, D., 2007, Designing Self-Adaptive Service-Oriented
Applications. In Proceedings of the Fourth International Conference on Autonomic
Computing. International Conference on Autonomic Computing. IEEE Computer
Society, Washington, DC, 16.

 9

Fayad, M. , Johnson, R., Building Application Frameworks: Object-Oriented
Foundations of Framework Design (Hardcover), 1999,Wiley publisher, first edition,
ISBN-10: 0471248754, 1999.

Georisc, Last access at July 2009, http://wiki.les.inf.puc-rio.br/index.php/Georisc.

IBM. 2003, An architectural blueprint for autonomic computing. Technical Report.,
IBM.

Karam, K. S., Landslide Hazards Assessment and Uncertainties, 2005, Thesis:
Massachusetts Institute of Technology.

Kephart, J. O. and Chess, D. M., 2003, The Vision of Autonomic Computing. Computer
36, 1 (Jan. 2003), 41-50.

King, T. M., Babich, D., Alava, J., Clarke, P. J., and Stevens, R., 2007, Towards Self-
Testing in Autonomic Computing Systems. In Proceedings of the Eighth international
Symposium on Autonomous Decentralized Systems. ISADS. IEEE Computer Society,
Washington, DC, 51-58.

King, T. M., Ramirez, A., Clarke, P. J., and Quinones-Morales, B., 2008, A reusable
object-oriented design to support self-testable autonomic software. In Proceedings of
the 2008 ACM Symposium on Applied Computing (SAC). Fortaleza, Brazil ACM, New
York, NY, 1664-1669.

Martin, D., et. al. ,OWL-S: Semantic Markup for Web Services, Last access at July 2009,
http://www.w3.org/Submission/OWL-S/.

Mengusoglu, E., Pickering, B., 2007, Automated management and service provisioning
model for distributed devices, Proceeding of the 2007 workshop on Automating service
quality: Held at the International Conference on Automated Software Engineering
(ASE), New York, USA, pp38-41.

Neto, B. F. S., Costa, A. D., Netto, M. T. A., Silvia, V., Lucena, C. J. P., July 2009, JAAF:
A Framework to Implement Self-adaptive Agents. In Proceeding of the 21st
International Conference on Software Engineering Knowledge Engineering
(SEKE’2009), Boston, Massachusetts, USA, pp. 212-217.

Soeters, R. and Van Westen, C.J., 1996, Slope Instability Recognition, Analysis and
Zonation. In: Turner, A.K. and Schuster, R.L. (eds). Landslides, investigation and
mitigation. Transportation Research Board, National Research Council, Special Report
247, National Academy Press, Washington D.C., U.S.A., p 129-177.

Stevens, R., Parsons, B., and King, T. M., 2007, A self-testing autonomic container. In
Proceedings of the 45th Annual Southeast Regional Conference (Winston-Salem, North
Carolina). ACM-SE 45. ACM, New York, NY, 1-6.

Dobson, S., Denazis, S., Fernández, A., Gaiti, D., Gelenbe, E., Massacci, F., Nixon, P.,
Saffre, F., Schmidt, N., Zambonelli, F. 2006, A survey of autonomic communications,
ACM Transactions Autonomous Adaptive Systems (TAAS), 1(2):223{259, December.

King, T. M., Ramirez, A. E., Cruz, R., Clarke, P. J. 2007, An integrated self-testing
framework for autonomic computing systems, Journal of Computers, Vol. 2, No. 9,
November.

Web Services Activity, Last access at July 2009, http://www.w3.org/2002/ws/.

Wen, C., Wang, L.-C. Cheng, K.-T, Yang, K. Liu, W.-T.., May 2005, "On A Software-
Based Self-Test Methodology and Its Application". IEEE VLSI Test Symposium.

