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Application 
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Abstract. In this work we study a class of stochastic programming problems with 

endogenous uncertainty – i.e., those in which the probability distribution of the 

random parameters is decision-dependent – which is formulated as a MINLP. 

Although discussed in the context of the humanitarian logistics problem, the 

proposed methodology and obtained results are also valid for a more general class 

of problems which comprehends a variety of applications. In particular, we 

propose (i) a convexification technique for polynomials of binary variables, (ii) an 

efficient cut-generation algorithm and (iii) the incorporation of importance 

sampling concepts into the stochastic programming framework so as to allow the 

solution of large instances of the problem.  

Keywords. Stochastic programming; Endogenous uncertainty; Convexification; 

Importance sampling; Humanitarian logistics. 

Resumo. Neste trabalho estudamos uma classe de problemas de otimização 

estocástica com incertezas endógenas – i.e., aqueles em que a distribuição de 

probabilidade dos parâmetros aleatórios depende das decisões tomadas – que é 

formulado como um MINLP. Apesar de discutido dentro do contexto do problema 

de logística humanitária, a metodologia proposta e os resutados obtidos são 

válidos para uma classe geral de problemas que agrega uma variedade de 

aplicações. Em particular, propõe-se (i) uma técnica de convexificação de 

polinômios de variáveis binárias, (ii) um algoritmo de geração de cortes e (iii) a 

incorporação dos conceitos de importance sampling dentro do contexto de 

otimização estocástica de modo a permitir a solução de grandes instâncias do 

problema. 

Palavras-chave. Otimização estocástica; Incertezas endógenas; Convexificação; 

Logística Humanitária 
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1 INTRODUCTION 

1.1 Decision under uncertainty  

In a vast range of practical applications, the input data necessary for the 

solution of mathematical programs cannot be precisely determined beforehand. In 

general, that may happen either because data is inherently random or due to 

inevitable errors in measurement. In 1955, Dantzig [20] and Beale [6] first 

recognized that even a relatively small deviation from the values used as input 

data could compromise the quality of the optimal solution to a problem. Since 

then, two main methodologies have been developed with the aim of incorporating 

– into the modeling and solution procedures – the uncertainties which are part of a 

diverse set of problems: robust optimization and stochastic programming. 

 

1.2 Robust Optimization  

The field of robust optimization was founded in 1973 by Soyster’s seminal 

work [54] which proposed the solution to a problem similar to that in standard 

form (min�∈� ��� | �� ≤ � ) with the additional requirement that the optimal 

solution should be feasible for all elements of the set � = {�� , ∀" ∈ #}  of 

technology matrices.  

Following the notation of Bertsimas and Sim (2004) [15], let #% denote the 

set of coefficients in row & of matrix � which are subject to uncertainty and each 

element '%�, (" ∈ #%) be modeled as a symmetric and bounded random variable 

with support ['%� − '+%� , '%� + '+%�]. The formulation proposed by Soyster may be 

written as: 

 

-&. ���  (1.1)  

/0�"1�2 23: 5 '%����
+ 5 '+%�6��∈78

≤ �% ∀& (1.2)  

 −6� ≤ �� ≤ 6� ∀" (1.3)  



ISSN: 0103–9741 

9 

 

 9 ≤ � ≤ 0  (1.4)  

 6 ≥ 0  (1.5)  

 

where 9 and 0 are vectors of appropriate dimension which represent, respectively, 

lower and upper bounds on variables ��. 

Such an approach is shown by Soyster to be equivalent to a worst-case 

scenario analysis. This extreme conservativeness leads the value of the objective 

function at the optimal solution to be usually significantly worse than that of the 

original (or nominal-value) problem and motivated the search for different 

approaches which could provide a balance between feasibility and optimality. 

A quarter of a century after Soyster’s work, Ben-Tal and Nemirovksi ([9], 

[10], [11] and [12]) and El-Ghaoui et al. ([22] and [23]) proposed an alternative 

way to model the uncertainty by defining “ellipsoidal regions of uncertainty” 

around the nominal values of the coefficients, inside which one admits that the 

realization of the unknown parameters will be. The proposed approach results in a 

modification of the original constraints of the problem which turns it into a second 

order conic program, thus requiring specific solution procedures (which are, in 

general, not guaranteed to find the global optimum solution to a problem): 

 

-&. ���  (1.6)  

/0�"1�2 23: 5 '%����
+ 5 '+%�6%��∈78

+ Ω%<5 '+%�= >%�=�∈78
≤ �% 

∀& (1.7)  

   (1.8)  

 −6%� ≤ �� − >%� ≤ 6%� ∀" (1.9)  

 9 ≤ � ≤ 0  (1.10)  

 6 ≥ 0  (1.11)  

 

where Ω% is a user-defined parameter related to the probability of violation of each 

constraint – the authors prove that the probability of each constraint &  being 

violated is less or equal to exp(−Ω%=/2). 
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Robust optimization was again boosted in 2003 with the publication of [13], 

[14] and [15] by Bertsimas and Sim. The novel approach assumes a polyhedral 

uncertainty set and its major advantage is the fact that the formulation of the 

robust counterpart of a problem does not modify its structure, maintaining all the 

original properties such as linearity. In summary, the proposed approach 

introduces a parameter Γ% that takes values in the interval [0, |#%|] and determines 

the maximum number of coefficients in row & which will be allowed to vary from 

their respective nominal values '%�. The robust counterpart is initially formulated 

as: 

 

-&. ���  (1.12)  

/0�"1�2 23: 5 '%����
+ D%(�, Γ%) ≤ �% ∀& (1.13)  

 −6� ≤ �� ≤ 6� ∀" (1.14)  

 9 ≤ � ≤ 0  (1.15)  

 6 ≥ 0  (1.16)  

 

where: 

 

D(�, Γ%) = -'� 5 '+%�E��E>%��∈78
  (1.17)  

/0�"1�2 23: 5 >%��∈78
≤ Γ% ∀& (1.18)  

 0 ≤ >%� ≤ 1 ∀" ∈ #% (1.19)  

 

As shown in [15], this is equivalent to the linear formulation presented 

below: 

 

-&. ���  (1.20)  

/0�"1�2 23: 5 '%����
+ >%Γ% + 5 �%��∈78

≤ �% ∀& (1.21)  

 >% + �%� ≥ '+%�6� ∀&, " ∈ #% (1.22)  

 −6� ≤ �� ≤ 6� ∀" (1.23)  
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 9 ≤ � ≤ 0  (1.24)  

 6, >, � ≥ 0  (1.25)  

 

 

1.3 Stochastic programming 

The stochastic programming approach relies on the assumption – which is 

perfectly reasonable in various settings – that one might be able to know or 

estimate the probability distribution of the unknown parameters. Generally 

speaking, the objective of stochastic programming models is to determine a 

solution that is feasible for all possible data realizations (or for a given percentage 

of them) and that minimizes the expected value of a function of the decision and 

random variables.  

The objective of this Section is not to provide a comprehensive overview on 

the subject – which the interested reader may find in Birge and Loveaux (1997) 

[16], Kall and Wallace (1994) [40], Ruszczynski and Shapiro (2003) [52], 

Shapiro, Dentcheva and Ruszczynski (2009) [55] and Haneveld and van der Vlerk 

(2005) [33] – but to introduce the topic so that the reader may grasp the basic 

difference between standard stochastic programming models in the literature and 

the one studied in this work. In addition to the basic references just mentioned, the 

state-of-the-art in various applications may be found in Wallace and Fleten (2003) 

[67] (energy), Dupacova, Hurt and Stepan (2002) [21] (finance), Poojari, Lucas 

and Mitra (2006) [49] (supply chain and logistics) and Gaivoronski (2005) [26]  

(telecommunications). 

The majority of research and applications of stochastic programming is 

done on the so-called two-stage stochastic programming linear models, although 

multistage stochastic programs are also the subject of great interest – a graphical 

depiction of the conceptual difference between two-stage and multistage models is 

presented in Figure 1-1. In the former case, one usually seeks to determine a first 

stage decision which is then succeeded by the realization of a random event that 

affects the outcome of the action taken. Recourse actions may then be taken in the 

second stage so as to compensate for potential damages caused by the realization 

of the random variable(s). While in the second stage there might be a different set 

of corrective decisions for each scenario, according the possible outcomes of the 



 

random event, first stage decisions for all scenarios are required to be the same 

condition usually referred to as non

 

(A) 

Figure 1-1 – Two-stage (A) and multistage (B) 

stochastic programming models

 

The general formulation of a two

 

-&.
/0�"1�2

 

 

where F(�, G) is defined as the value of the optimal solution of the second stage 

problem:  

 

-&.
/0�"1�2

 

 

The actions to be taken before the random parameters

determined by the vector of first stage decision 

is defined by the set of constraints 
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random event, first stage decisions for all scenarios are required to be the same 

condition usually referred to as non-anticipativity. 

 

(B) 

stage (A) and multistage (B) scenario-tree structure of 

stochastic programming models 

The general formulation of a two-stage stochastic program is presented next:

-&. ��� �  H�F(�, G)$  

 23: �� � �  

� � I  

is defined as the value of the optimal solution of the second stage 

-&. J(G)�6  

 23: K(G)� � L(G)6 � M(G)  

6 � N  

taken before the random parameters are known are 

determined by the vector of first stage decision variables �, whose feasible region 

is defined by the set of constraints �� � � and by the set I – which may include 

ISSN: 0103–9741 

random event, first stage decisions for all scenarios are required to be the same – a 

 

structure of 

stage stochastic program is presented next:  

(1.26)  

(1.27)  

(1.28)  

is defined as the value of the optimal solution of the second stage 

(1.29)  

(1.30)  

(1.31)  

are known are 

, whose feasible region 

which may include 
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integrality constraints. The vector of second stage decision variables is denoted by 

6  and the the vector of coefficients of the objective function J , technology 

matrices K and L and the right-hand side vector M may all depend on the vector 

of random variables G. 

Difficulties in evaluating multi-dimensional integrals imply that the 

determination of a numerical solution to these problems usually require the 

enumeration of a finite number O  of possible outcomes for the vector G =
�GP, G=, … , GR}. Each one of these outcomes is called a scenario, to which there 

must also be an associated probability of occurrence � = {�P, �=, … , �R} . This 

discretization allows the expression for the expected value in equation (1.22) to be 

written as:  

 

H{F(�, G)} = 5 �S ∙ F(�, GS)
S∈R

 (1.32)  

 

Finally, problems (1.26) – (1.28) and (1.29) – (1.31) may now be jointly re-

written as follows: 

 

-&. ��� + ∑ �SJS6SS∈R    (1.33)  

/0�"1�2 23: �� ≤ �  (1.34)  

 KS� + LS6S ≤ ℎS ∀/ ∈ O (1.35)  

 � ∈ I, 6 ∈ N  (1.36)  

 

 

1.4 Motivation and related bibliography  

A common hypothesis concerning the two approaches discussed above is that 

the realization of the uncertain parameters is independent of the decision 

variables, a illustrated in . This conjecture is valid in a variety of applications, 

such as portfolio optimization, hydrothermal scheduling for electricity generation, 

communication network planning under demand uncertainty, etc. Not 

surprisingly, the vast majority of the body of work both in robust optimization and 

in stochastic programming deals with problems in which this hypothesis is 

satisfied and the uncertainty is said to be exogenous.  



 

 

Figure 1-2 – Stochastic programming model w

probabilities V�, V
 

On the other hand, the literature on problems where the 

probability of occurrence of random events depends on the decisions taken (i.e., 

when the uncertainty is said to be endogenous) is very limited. According to

and Grossmann (2006) 

Programming Bibliography 

[2], [39], [36], [30], [31] and 

(references [54] and [47] are

database).  

The work on stochasti

further sub-divided into two categories with respect to the particular way in which 

decisions affect the knowledge of the probability distributions. 

The first group involves problems where the probability dist

random variables is not directly affected but

resolved depending on actions performed by the decision

essentially related to the timing of information discovery and to an anticipation or 

delay of the moment at which more accurate information is revealed.

situation is pictured in Figure 

possible relaxation of non-

first-stage decisions. 
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Stochastic programming model with exogenous uncertainty 

VW, VX and VY are independent of decision 

On the other hand, the literature on problems where the knowledge of the 

probability of occurrence of random events depends on the decisions taken (i.e., 

en the uncertainty is said to be endogenous) is very limited. According to

 [31], out of the 4300+ works in the Stochastic 

Programming Bibliography compiled by van der Vlerk [65], only 8 (

and [61]) involve the case of endogenous uncertainty 

are other works on the subject, not yet included in the 

The work on stochastic programs with endogenous uncertainty may be 

divided into two categories with respect to the particular way in which 

decisions affect the knowledge of the probability distributions.  

involves problems where the probability distribution of the 

random variables is not directly affected but, rather, uncertainty may be partially 

actions performed by the decision-maker. This is 

the timing of information discovery and to an anticipation or 

delay of the moment at which more accurate information is revealed.

Figure 1-3 below, in which the dashed line represents a 

-anticipativity constraints between scenarios related to 

ISSN: 0103–9741 

ith exogenous uncertainty – 

are independent of decision Z 

knowledge of the 

probability of occurrence of random events depends on the decisions taken (i.e., 

en the uncertainty is said to be endogenous) is very limited. According to Goel 

, out of the 4300+ works in the Stochastic 

only 8 ([48], [66], 

) involve the case of endogenous uncertainty 

on the subject, not yet included in the 

c programs with endogenous uncertainty may be 

divided into two categories with respect to the particular way in which 

ribution of the 

uncertainty may be partially 

maker. This is 

the timing of information discovery and to an anticipation or 

delay of the moment at which more accurate information is revealed. Such 

below, in which the dashed line represents a 

anticipativity constraints between scenarios related to 



 

 

Figure 1-3 – Endogenous uncertainty related to the time of information 

 

This group includes the work of Jonsbraten (1998) 

Grossmann (2004, 2006) [30]

type of uncertainty dealt with in these works is exemplified by that stu

and [30] where an oil and gas exploration company must cho

testing and probing methods in order to try and find the size and quality of 

reserves – the installation of a facility does not change the likelihood of the 

company actually finding oil, but may provide evidence as to what are the most 

probable scenarios. Other examples 

and network interdiction.  

Finally, the second group of stochastic programs with endo

uncertainty refers to those in which 

distribution of the random parameters i.e., the actions performed at a given stage 

may change the probability 

illustrated in Figure 1-4. 

Pflug (1990) [48] was the first to 

application in stochastic queuing networks 

service rates of each element in the queue 

quasigradient algorithm which requires repeated simulations of the system’s 

functioning for each fixed first
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Endogenous uncertainty related to the time of information 

discovery 

This group includes the work of Jonsbraten (1998) [39], Goel and 

[30][31], Held (2003) [36] and Senay (2007) 

type of uncertainty dealt with in these works is exemplified by that studied in 

where an oil and gas exploration company must choose among different 

testing and probing methods in order to try and find the size and quality of 

installation of a facility does not change the likelihood of the 

company actually finding oil, but may provide evidence as to what are the most 

probable scenarios. Other examples lie in the areas of project management 

Finally, the second group of stochastic programs with endo

those in which decisions directly affect the probability 

distribution of the random parameters i.e., the actions performed at a given stage 

may change the probability of occurrence of future events – as conceptually 

was the first to address this issue by discussing an 

queuing networks – decisions affect the arrival and 

service rates of each element in the queue – and proposing a stochastic 

quasigradient algorithm which requires repeated simulations of the system’s 

functioning for each fixed first-stage solution. Talluri and Ryzin (2004) 

ISSN: 0103–9741 

Endogenous uncertainty related to the time of information 

, Goel and 

and Senay (2007) [54]. The 

died in [39] 

ose among different 

testing and probing methods in order to try and find the size and quality of 

installation of a facility does not change the likelihood of the 

company actually finding oil, but may provide evidence as to what are the most 

project management [54] 

Finally, the second group of stochastic programs with endogenous 

decisions directly affect the probability 

distribution of the random parameters i.e., the actions performed at a given stage 

as conceptually 

address this issue by discussing an 

decisions affect the arrival and 

and proposing a stochastic 

quasigradient algorithm which requires repeated simulations of the system’s 

(2004) [61] 



 

worked on a revenue management problem from the point of view of an airline 

who must choose which combination of fares to offer at each momen

preceding the departure of a flight.

behavior, they developed 

pricing policy which results in the maximum total expected revenue.

Ahmed [2] presented some examples related to network design, server selection 

and facility location. These problems were formulated under a hyperbolic 

programming framework and a 

application to the stochastic PERT

problem is developed by Plambeck et al. in 

conflicting objectives: a project’s cost and its completion time. A sample

algorithm is proposed and results are presented under the assumption of uniform

distributions with a fixed spread around the mean. 

studied the humanitarian logistics problem 

below and then again discussed in Chapter 2 in a more detailed fashion 

proposed an approximation to the objective function which allows the 

simplification of the problem down to an ordinary knapsack problem. 

 

Figure 1-4 – Endogenous uncertainty and decision

 

Given the diminished amount of research on the topic, it is expected that 

there should be many questions to be answered. In the next section

ISSN: 0103
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worked on a revenue management problem from the point of view of an airline 

who must choose which combination of fares to offer at each momen

preceding the departure of a flight. Under some assumptions regarding consumer 

 a dynamic programming algorithm to determine the 

policy which results in the maximum total expected revenue.

presented some examples related to network design, server selection 

. These problems were formulated under a hyperbolic 

programming framework and a specialized algorithm was developed.

application to the stochastic PERT (Program Evaluation and Review Technique)

problem is developed by Plambeck et al. in [47] where one seeks to minimize two 

conflicting objectives: a project’s cost and its completion time. A sample

algorithm is proposed and results are presented under the assumption of uniform

distributions with a fixed spread around the mean. Viswanath et al. (2004) 

studied the humanitarian logistics problem – briefly described in Section 1.5 

and then again discussed in Chapter 2 in a more detailed fashion 

proposed an approximation to the objective function which allows the 

simplification of the problem down to an ordinary knapsack problem.  

 

Endogenous uncertainty and decision-dependent 

probabilities 

Given the diminished amount of research on the topic, it is expected that 

there should be many questions to be answered. In the next section

ISSN: 0103–9741 

worked on a revenue management problem from the point of view of an airline 

who must choose which combination of fares to offer at each moment in time 

Under some assumptions regarding consumer 

a dynamic programming algorithm to determine the 

policy which results in the maximum total expected revenue. In 2000, 

presented some examples related to network design, server selection 

. These problems were formulated under a hyperbolic 

specialized algorithm was developed. An 

(Program Evaluation and Review Technique) 

where one seeks to minimize two 

conflicting objectives: a project’s cost and its completion time. A sample-path 

algorithm is proposed and results are presented under the assumption of uniform 

2004) [66] 

briefly described in Section 1.5 

and then again discussed in Chapter 2 in a more detailed fashion – and 

proposed an approximation to the objective function which allows the 

endent 

Given the diminished amount of research on the topic, it is expected that 

there should be many questions to be answered. In the next section a brief 
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description of the specific problem to be tackled is given, along with a 

characterization of a more general class of problems for which the results obtained 

in this work are also valid.  

 

1.5 Objective and contributions 

This work will focus on the second group of stochastic programs with 

endogenous uncertainty discussed above and, in this sense, the humanitarian 

logistics problem (as defined in Viswanath et al. [66]) will be used as the main 

motivating example.  

A detailed description of the problem is provided in Chapter 2 but, 

essentially, it refers to the problem of determining the optimal set of investments 

on the reinforcement of the links of a network which are subject to random 

failures – the decision to reinforce a link increases the probability that it will be 

available afterwards. 

The results presented here, although discussed in the context of the 

humanitarian logistics problem, should also hold for a more general class of 

problems, including some of those discussed above – namely the ones related to 

stochastic queuing networks, stochastic PERT and revenue management. The 

general formulation of such problem class is given by: 

 

-&. ��� �  H[{F(�, G(�))}  (1.37)  

/0�"1�2 23: �� ≤ �  (1.38)  

 � ∈ I  (1.39)  

 

where the function F(�, G(�))  is now defined as the optimal solution of the 

following second stage problem: 

 

-&. J(G(�))�6  (1.40)  

/0�"1�2 23: L(G(�))6 ≤ ℎ(G(�))  (1.41)  

 6 ∈ N  (1.42)  

 

It is important to observe that the coupling between the first and second 

stages is not given by the existence of the term K� as in the set of constraints 
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(1.35) of problem (1.33) – (1.36) but by the dependence of the probability 

distribution of the random variables with respect to first stage decision variables � 

– evidenced by the subscript � in the expression H[�F(�, G(�))}. 
The methodology proposed in this work will allow the determination of 

provably optimal solutions to instances of problems much larger than those 

currently solved in the literature. Specifically, the contributions are: 

 

1) Reformulation scheme which avoids the non-linearities due to products of 

first and second stage variables and due to the calculation of scenarios 

probabilities. 

 

2) Provably finite cut generation algorithm that overcomes a potential 

pitfall of the proposed linearization technique and allows the solution of 

moderately-sized instances for a given error tolerance level; 

 
3) Incorporation of importance sampling concepts into the stochastic 

programming framework. This overcomes the problem of not knowing the 

probability distribution of the random variables beforehand and allows the 

solution of large sample-based instances of the problem. 

 

1.6 Outline 

The remainder of this work is organized as follows: Chapter 2 describes the 

humanitarian logistics problem in detail, with a special emphasis on the 

difficulties that arise out of its formulation; Chapter 3 presents the re-formulation 

scheme which solves the obstacles related to existing non-linearities; Chapter 4 

introduces the approximation algorithm based on cut generation and Chapter 5 

extends this algorithm into a statistical framework in order to consider instances 

of the problem that are not amenable to complete scenario enumeration; Chapter 6 

presents computational results, Chapter 7 concludes and discusses future work 

alternatives and how the developments presented in the previous chapters may be 

extended to other contexts. 
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2 HUMANITARIAN LOGISTICS PROBLEM 

2.1 Introduction 

The impacts of natural or man-made disasters can be very significant in 

terms of death toll and damages to affected regions. Earthquakes, hurricanes and 

floods have recently proven their catastrophic potential and concerns over global 

warming and climate change worsen the perspective in years to come. Besides the 

immediate loss of lives and destruction of infra-structure, the effects of these 

calamities usually last long after the initial strike. When an earthquake strikes a 

city, for example, utility services such as water, electricity and gas may have to be 

interrupted for weeks before necessary repairs are carried out. On top of that, 

several roads and bridges are usually affected, rendering the transportation 

network severely impaired. It has been pointed out [64] that more casualties 

actually happen due to the isolation to which many residents are forcefully put to 

rather than by the event itself. This has also been the experience reported by 

humanitarian organizations in the aftermath of the recent earthquake in Haiti [28]. 

In face of that, regions that are prone to the occurrence of natural disasters 

must take preventive measures in order to mitigate potential damages, and devise 

emergency plans so that they are able to provide care for those affected by such 

events. It is clear that it is very important to assess the vulnerability of the 

transportation network and to take steps aimed at guaranteeing that it will be 

possible to either evacuate people to safe locations or to provide them with basic 

resources in post-disaster days. 

The objective of the humanitarian logistics problem is to determine the 

optimal set of investments on the seismic retrofit of the links of a transportation 

network so as to minimize the sum of (deterministic) investment costs and 

expected (probabilistic) costs incurred when transporting people and/or resources 

after a catastrophic event. Investment in bridges and tunnels, for example, may 

increase their resilience so that an earthquake is less likely to render them 

unusable – Cooper et al. (1994) [19]. Such investments usually involve very large 

sums of money and a limited budget must thus be optimally allocated. 
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2.2 Literature review 

The literature on the humanitarian logistics problem is very limited. To the 

best of our knowledge, there are only three papers that deal with the same (or a 

very similar) problem as the one studied in this work.   

Viswanath, Peeta and Salman (2004) [66] were the first to state the problem, 

motivated by the risks of an earthquake hitting Istambul, the capital of Turkey. 

They limit the scope of their model to the case where one is interested in 

maintaining connectivity between origin (O) and destination (D) pairs. Their 

approach relies on the enumeration of the paths O-D (which, for practical 

purposes and due to computational difficulties is limited to listing a pre-defined 

number of paths by using a k-shortest path algorithm). Next, they propose an 

approximation of the objective function based on the first order terms of its Taylor 

series expansion. As they recognize in their article, the disadvantage of this 

approach is that by ignoring higher order terms they neglect the potential 

synergies of simultaneously investing in more than one link. 

Liu, Fan and Ordonez (2006) [43] and Fan and Liu (2009) [24] also study 

the stochastic network protection problem. In the former, the problem follows the 

same outline as that described above [66] and they propose an extension of the L-

Shaped method of Van Slyke and Wets by using generalized Benders 

decomposition. In the latter, the second-stage problem involves the determination 

of a Nash equilibrium by solving an MPEC (mathematical program with 

equilibrium constraints) which results from the consideration that users may 

choose their own best-perceived routes along the network. Their solution method 

relies on the application of the Progressive Hedging algorithm of Rockafellar and 

Wets (1991).  

Both articles, however, make the explicit assumption that the decision to 

invest on the reinforcement of a link eliminates the probability that it might 

become unavailable after the disaster. They argue that it would be preferable and 

more realistic to maintain a probabilistic view on link failures but doing so would 

lead the problem to fall under the class of stochastic programming problems with 

decision-dependent uncertainties for which “mathematical analysis (…) is very 

sparse, and is only limited to convex problems of special structures” thus relying 
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“heavily on heuristic methods to solve problems with realistic sizes due to 

computational difficulties”. 

Although not dealing with the same problem, there are some related works 

on the investment in links of a stochastic network. Wollmer (1980) [69] focused 

on a generalized multicommodity network in which links have random capacities. 

He formulated the problem as a two-stage stochastic program – where first-stage 

decisions are the amounts to be invested on the increase of link capacities, and 

second-stage variables represent the flows of each commodity through the links – 

and proposed a cutting plane technique that exploits network structure. In 1987, 

Wallace [67] studied the problem of investing in new links in a network where 

existing link capacities are random. He also formulated it as a standard two-stage 

stochastic program and suggested decomposition strategies to solve it. Again in 

1991, Wollmer [70] worked on a problem in which one seeks to optimize the 

tradeoff between first-stage investment costs and second-stage expected 

maximum flow between a pair of nodes. The formulation follows the regular two-

stage stochastic programming framework and was solved using an algorithm 

based on cutting planes. 

Finally, there is also a significant body of work on the development of plans 

for disaster preparedness and response which adopt a different perspective from 

that of mathematical programming. Instead, these works usually take a somewhat 

heuristic view to determine critical links of a network based on a set of pre-

defined criteria. Sohn et al. (2003) [59] and Sohn (2006) [58] study the 

prioritization of links which may become unavailable due to earthquakes in the 

Midwest states in the US or due to floods in Maryland, US. Based on a disaster 

scenario, they analyze the potential disruptions and their consequences with 

respect to travel delays, reconstruction costs and accessibility to affected 

cities/counties. This is also in line with the approach of Basoz and Kiremidjian 

(1995) [6] and Bana e Costa, Oliveira and Vieira (2008) [7] who use Palo Alto, 

CA and Lisbon, respectively, as case studies for their methodologies which 

consider the physical characteristics of bridges and the social and economical 

aspects which may be adversely affected by disasters.  
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2.3 Mathematical formulation 

Mathematically, the problem is formulated by assuming we are given an 

undirected graph \ = (], ^) with node set ]and edge set ̂. Nodes represent 

locations where survivors and/or resources may be located, and arcs represent the 

roads, bridges and tunnels which comprise the transportation network. For ease of 

presentation, a deterministic supply or demand ℎ% is associated with each node &. 
Edges have non-negative transportation costs �_, capacity 0_ and are assumed to 

be available after the occurrence of the disastrous event with probabilities J_̀ . As 

also stated in related works [66], it is assumed that each edge fails independently 

of the others – although this is not a necessary assumption for the methods 

proposed in this work. The survival probability of an arc may be increased to J_a  if 

an amount b_ is invested in it. We associate the availability of an arc to the value 

of a random variable G_, which is equal to 1 if the edge 1 is operational and 0 

otherwise. 

Assuming that we are able to enumerate all the possible scenarios O  of 

network configuration, the problem may be formulated as follows:  

 

(c) -&. 
 

5 b_�__∈d
+ 5 �S e5 �_6_S + 5 f%>%S%∈g_∈d

h
S∈R

 (2.1)  

/0�"1�2 23: �� ≤ �  (2.2)  

 LS6S + >S ≤ ℎS ∀/ ∈ O (2.3)  

 �S = i(p_S` + (p_Sa − p_S` ) ∙ �_)
_∈d

 ∀/ ∈ O (2.4)  

 6_S ≤ 0_G_S ∀/ ∈ O, ∀1 ∈ ^ (2.5)  

 � ∈ {0,1}|d|;  6, > ∈ ℝl  (2.6)  

 

where: 

 G_S realization of random variable G_ in scenario / 

p_S`  probability of the availability status of edge 1 in scenario /, given 

that no investment is made on it (i.e., m(G_ = G_S|�_ = 0)  or, 

alternatively, J_̀ ∙ G_S � (1 − J_̀ ) ∙ (1 − G_S) 
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p_Sa  probability of the availability status of edge 1 in scenario /, given 

that a reinforcement investment is made on it (i.e., 

m(G_ = G_S|�_ = 1)  or, alternatively, J_a ∙ G_S � (1 − J_a ) ∙ (1 −
G_S) 

f% penalty cost for the non-fulfillment of demand of node & 
�S continuous variable equal to the probability of scenario / �_ binary variable which is equal to 1 if an investment is to be made 

on edge 1, 0 otherwise 

6S vector of continuous flow variables of scenario / >S vector of continuous slack variables for the demand and supply of 

each node in scenario / 

 

 

The objective function (2.1) to be minimized provides the sum of 

deterministic costs incurred in the first stage due to decisions of reinforcement 

investments and expected second-stage costs of routing commodities through the 

network and demand curtailment. Expressions (2.2) and (2.3) represent, 

respectively, the sets of first-stage constraints (such as budget limitations, 

minimum investment in each region, etc.) and second-stage constraints (such as 

mass-balance equations on the realized network configuration of each scenario). 

Expression (2.4) defines variables �S  as a function of investment decision 

variables �_ and constraint (2.5) determines the upper bound of the flow in edge 

1, according to the realization of the random variable G_ in scenario /. 

Problem (2.1) – (2.6) is a mixed-integer nonlinear program for which 

solution methods are usually not guaranteed to find a global optimal solution. In 

particular, there are three main difficulties associated with this formulation that 

prevent existing algorithms to obtain global optimal solutions. These obstacles are 

briefly described below; following that, Chapter 3 presents a reformulation 

scheme that overcomes the first two difficulties and Chapter 5 proposes a solution 

to the third. 

 

1) Non-linearity due to product of first and second stage variables. In 

standard stochastic programming problems the probability of a scenario is 

known and it thus usually becomes a coefficient of the objective function. 

In the case of the class of problems being studied in this work, the 
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expression for the expected value of second stage costs – 

∑ �S(∑ �_6_S � ∑ f%>%S%�g_�d )S�R  – involves the product of first stage 

variables �S  – since, as described earlier, first stage decisions affect the 

probability of occurrence of each possible outcome – and second stage 

variables 6_S and >%S.  

 

2) Non-linearity due to the expression for the scenarios’ probabilities. A 

second source of non-linearity arises from the expression that defines 

variables �S  themselves, which represent the probabity of occurrence of 

each possible network configuration after taking into account first stage 

investment decisions. In this case, the expression involves non-linear terms 

of order up to |^|  due to products of binary variables �_ :  
�S = ∏ (p_S` + (p_Sa − p_S` ) ∙ �_)_∈d . These non-linear terms arise from the 

product of the probability of occurrence of the outcome of each random 

variable that composes a scenario. 

 

3) Scenario generation. As previously mentioned, most stochastic 

programming models deal with random variables whose probability 

distribution is independent of the decision variables. This a priori 

knowledge of the joint probability distribution allows one to obtain 

scenarios for the realization of the random variables and their respective 

probabilities of occurrence – either by sampling from it in a Monte Carlo 

fashion or by constructing them based on a given criteria (e.g., moment 

matching such as in Kaut and Wallace (2007) [41] and Kaut, Wallace and 

Hoyland (2003) [42] or minimization of distances between probability 

measures – Romisch (2009) [50], Heitsch and Romisch (2005) [35] and 

Hochreiter and Pflug (2007) [37]) – which may then be used to numerically 

compute the expectation of second stage costs, as described in Chapter 1. 

Since the probability distribution of the random variables is not known 

beforehand in the class of problems being studied in this work (i.e., it can 

only be computed after first stage decisions are determined), one cannot 

rely on existing scenario generation methods.  
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3 REFORMULATION SCHEME 

In this Chapter, a reformulation scheme which overcomes the difficulties 

associated with the existence of non-linear terms in the problem formulation will 

be presented. Section 3.1 describes the argument which allows the elimination of 

the product between first and second stage variables while Section 3.2 proposes a 

linearization technique that eliminates the products among binary variables; 

Section 3.3 is dedicated to a discussion of the approximation error and of how it 

can be managed when solving a problem. 

 

3.1 Separability of second stage problems 

The product between variables �S and 6_S in the objective function may be 

removed by observing that the feasible regions of the second-stage problems – 

sets of constraints (2.3) and (2.5) – are decoupled from first-stage variables. The 

second-stage problem of each scenario may then be solved independently of the 

others: 

 

∀/ � O, oS = -&. 
 

5 �_6_S + 5 f%>%S%∈g_∈d
 (3.1)  

/0�"1�2 23: LS6S + >S ≤ ℎS  (3.2)  

 6_S ≤ 0_G_S ∀1 ∈ ^ (3.3)  

 6, > ∈ ℝl  (3.4)  

 

As shown above, we denote by oS  the value of the optimal solution of 

problem (3.1) – (3.4) for a given scenario /, which then allows us to re-write 

problem (2.1) – (2.6) as follows: 

 

(c�) -&. 
 

5 b_�__∈d
+ 5 �SoSS∈R

 (3.5)  

/0�"1�2 23: �� ≤ �  (3.6)  
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 �S = i(p_S` � (p_Sa − p_S` ) ∙ �_)
_�d

 ∀/ � O (3.7)  

 � � �0,1}|d|  (3.8)  

 

In the following we will assume that oS ≥ 0, ∀/ ∈ O . However, this 

hypothesis comes without loss of generality, as shown in Annex A. 

 

3.2 Polynomials in binary variables 

A remaining difficulty in solving problem (3.5) – (3.8) lies on the product of 

binary variables �_ in the definition of variables �S – each equation defined in the 

set of constraints (3.7) is a polynomial of order |^|.  
There has been a significant amount of research on the linearization of the 

product of binary variables. Following the initial article of Glover in 1975 [29], 

there have been related works focused on quadratic functions – Hansen and Meyer 

(2009) [34], Balas and Mazzola (1984) in [4] and [5], Gueye and Michelon (2005) 

[32] – but some authors have also considered the case of cubic and higher-degree 

polynomials – c.f., Adams and Forrester (2005) [1], Chang (2000) [17], Chang 

and Chang (2000) [18], Oral and Ketani (1990 and 1992) [44] and [45]. 

Essentially, the proposed techniques resort to the addition of auxiliary variables 

and constraints to linearize each non-linear term in the problem. Since the 

definition of each variable �S implies an exponential number of nonlinear terms 

(∑ p|^|q r|d|st=  or, equivalently, 2|d| − |^| − 1), these methods result impractical for 

the class of problems under consideration. The special structure of the 

polynomials defined in the set of constraints (3.7) – specifically, the fact that they 

may be written as the product of linear terms in the form ' ∙ � � �, where ' > 0 

and ' � � > 0 – allows for the straightforward application of the linearization 

technique proposed in this work, described below. 

 

3.2.1 Proposed linearization technique 

By relying on the fact that ' = � ∙ � → ' = exp(ln � � ln �) , each equation 

in (3.7) may be re-written as: 
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pS = exp e5 ln(p_S` � (p_Sa − p_S` ) ∙ �_)
_�d

h (3.9)  

 

Since � is a vector of binary variables, the expression within the summation 

operator may also be re-written in such a way that variables �_ are not part of the 

logarithmic expression. This is accomplished by observing that the argument of 

each logarithm is p_S`  if �_ is equal to 0 and p_Sa  otherwise, leading to: 

 

pS = exp e5�ln(p_S` ) � *ln(p_Sa ) − ln(p_S` ), ∙ �_$
_�d

h (3.10)  

 

A continuous variable may be defined as the logarithm of the probability of 

each scenario, thus being an affine function of variables �_ (this auxiliary variable 

is introduced for ease of presentation but it is not strictly necessary): 

 

xS = lnypS z = 5�ln(p_S` ) � *ln(p_Sa ) − ln(p_S` ), ∙ �_$
_�d

 (3.11)  

 

Having the value of the natural logarithm of the probability of a scenario 

given by expression (3.11), the actual value of its probability (i.e., the value of �S) 

may be obtained by a piecewise linear approximation of the exponential function. 

Since the optimization sense of the problem is to minimize and the exponential 

function is convex, this approximation may be represented by a set of linear 

constraints which can be incorporated into the problem. 

 

Example. Let there be a network connecting cities A, B and C composed of 

two links (AB and BC), as shown in the Figure below. Suppose the current (i.e., 

pre-investment) survival probability of each link is given by m{| = 50%  and 

m|` = 60% . If a reinforcement investment is made on each link, these 

probabilities increase to m{| = 70%  and m|` = 90% , respectively. There are 

obviously four possible scenarios of network configuration and we will use the 



 

one where both links are operational to illustrate the proposed 

technique. 

 

Figure 

The probability of the scenario in which both links survive (

following expression:  

 mS� = (50% � 20
 

The application of the logarithm to both sides of equation (3.12) results in:

 

lnymS�z � ln(50% �
 

The first term of the right

ln(50%) � *ln(70%) 	 ln
ln(50%) · (1 	 �{|) � ln(
applied to the second term of the right

 

lnymS�z � xS� � ln(50
ln(60%) �

 

The values of the logarithm of the probability of occurrence of scenario 

(i.e., the possible values of variable 

below for all possible values of the investment decision variables 

 

Z�� Z�� ��
0 0 ln
0 1 ln
1 0 ln
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one where both links are operational to illustrate the proposed linearization 

Figure 3-1 – Two-link network example 

The probability of the scenario in which both links survive (/P) is given by the 

20% · �{|) � (60% � 30% · �|`) 

The application of the logarithm to both sides of equation (3.12) results in:

� 20% · �{|) � ln(60% � 30% · �|`) 

The first term of the right-hand side of expression (3.13) is equivalent to 

ln(50%), · �{| (or, written in a slightly different form, 

(70%) · �{| ). An analogous transformation may be 

applied to the second term of the right-hand side of expression (3.13), resulting in:

(50%) � *ln(70%) 	 ln(50%), · �{| � 

) *ln(90%) 	 ln(60%), · �|` 

The values of the logarithm of the probability of occurrence of scenario 

(i.e., the possible values of variable xS� defined above) are given in the Table 

all possible values of the investment decision variables �{| and 

��(c��) ��(c��) ��(c��) 

ln(50%) ln(60%) ln(30%) �  	1
ln(50%) ln(90%) ln(45%) �  	0
ln(70%) ln(60%) ln(42%) �  	0
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linearization 

 

) is given by the 

(3.12)  

The application of the logarithm to both sides of equation (3.12) results in: 

(3.13)  

is equivalent to 

(or, written in a slightly different form, 

). An analogous transformation may be 

, resulting in:  

(3.14)  

The values of the logarithm of the probability of occurrence of scenario /P 

are given in the Table 

and �|`.  

1.204 

0.799 

0.868 



 

Z�� Z�� ��
1 1 ln

Table 3-1 – Probability of occurrence of 

 

The scenario’s actual probability of occurrence

may be obtained by adding to the problem 

first order terms of the Taylor series expansion of the exponential function around 

the possible values of variable 

segments depicted in the following 

 

�̂S� : 30%
�̂S� : 42%
�̂S� : 45%
�̂S� : 63%
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��(c��) ��(c��) ��(c��) 

ln(70%) ln(90%) ln(63%) �  	0

Probability of occurrence of scenario �� according to the 

investment decisions 

The scenario’s actual probability of occurrence, represented by variable 

adding to the problem the inequalities corresponding to the 

terms of the Taylor series expansion of the exponential function around 

possible values of variable xS� – specified below and represented by the 

following Figure: 

% � 30% · (xS� 	 ln(30%)) 

% � 42% · (xS� 	 ln(42%)) 

% � 45% · (xS� 	 ln(45%)) 

% � 63% · (xS� 	 ln(63%)) 
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0.462 

according to the 

, represented by variable �̂S�, 

corresponding to the 

terms of the Taylor series expansion of the exponential function around 

represented by the linear 

(3.15)  

(3.16)  

(3.17)  

(3.18)  
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Figure 3-2 – Inequalities that provide a piecewise linear approximation 

to the exponential function 

This would ensure that for every possible combination of the values of 

variables �{| and �|`, the value of �̂S� would be exactly equal to the probability 

of occurrence of scenario /P. 

 

3.2.2 Reformulation 

Following the linearization technique proposed in the previous Section, we 

re-write problem (3.5) – (3.8), eliminating the non-linearities: 

 

(cW) -&. 
 

5 b_�_
_�d

� 5 oS�̂S
S�R

 (3.19)  

/0�"1�2 23: �� ≤ �  (3.20)  

 xS = 5{ln(p_S` ) + [ln(p_Sa ) − ln(p_S` )] ∙ �_}
_∈d

 ∀/ ∈ O (3.21)  

 �̂S ≥ �s +  Ds ∙ xS ∀/ ∈ O, ∀q ∈ � (3.22)  

 �̂ ∈ ℝl, x ∈ ℝ   (3.23)  

 � ∈ {0,1}|d|  (3.24)  

 

where: 

 � set of linear constraints that approximate the exponential function 

�s, Ds coefficients of the k-th segment used to approximate the 

exponential function 

xS continuous variable equal to the natural logarithm of the 

probability of scenario / 

�̂S continuous variable equal to the approximation of the probability 

of scenario / 

 

 



 

Figure 3-3 – Piecewise linear approximation of the exponential 

 

Given an approximation 

in the form 6 ≥ exp(x�) �
approximation to the exponential function

feasible to enumerate and solve the second stage problems for all possible 

network configurations, one is able to 

commercially available solvers. 

number of additional constraints for an exact solution to the problem and the 

generation of constraints for a given 

 

3.2.3 Additional constraints

According to the set 

sum of the logarithm of the probability of the availability status of each edge 

scenario /. Each of these logarithms may 

depending on whether an 

consequently, variables xS 

to guarantee that the optimal solution to the 

the global optimum of the original problem, 

the exponential function centered 

equation defined in (3.21) requires the addition of 
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Piecewise linear approximation of the exponential 

Given an approximation to the exponential function (i.e., given a set of cuts 

� exp(x�) · (x 	 x�) that provide a piecewise

approximation to the exponential function) and assuming it is computationally 

erate and solve the second stage problems for all possible 

, one is able to solve problem (3.19) – (3.

commercially available solvers. The following sub-sections discuss the 

number of additional constraints for an exact solution to the problem and the 

for a given error tolerance level 
. 

Additional constraints  

According to the set of constraints (3.21), each variable xS is equal to the 

sum of the logarithm of the probability of the availability status of each edge 

hese logarithms may take one out of two possible values 

whether an investment is made on the corresponding 

 may potentially assume 2|d| different values. In order 

to guarantee that the optimal solution to the reformulated problem corresponds to 

the global optimum of the original problem, there must be a cut to approximate 

onential function centered on each one of these values and, therefore, each 

) requires the addition of 2|d| constraints to the problem.

ISSN: 0103–9741 

 

Piecewise linear approximation of the exponential function 

the exponential function (i.e., given a set of cuts 

that provide a piecewise linear 

and assuming it is computationally 

erate and solve the second stage problems for all possible 

3.24) using 

the necessary 

number of additional constraints for an exact solution to the problem and the 

is equal to the 

sum of the logarithm of the probability of the availability status of each edge 1 in 

two possible values 

the corresponding edge and, 

different values. In order 

problem corresponds to 

there must be a cut to approximate 

and, therefore, each 

constraints to the problem. 
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3.3 Approximation 

As described above, the exact representation of the nonlinear terms of the 

problem requires an exponential number of additional constraints and this may 

cause the problem to grow prohibitively large even for medium-sized instances. In 

this section we discuss an approximation to the problem which allows it to be 

solved for larger instances whilst maintaining the approximation error bounded.  

 

3.3.1 Generation of cuts for an error tolerance thr eshold � 

The solution of any two-stage stochastic program is essentially related to the 

determination of the optimal trade-off between deterministic first-stage costs and 

expected (probabilistic) second-stage costs. Therefore, the quality of the optimal 

solution of problem (3.19) – (3.24), which results from the application of the 

proposed linearization technique, relies on the quality of the piecewise linear 

approximation of the exponential function. Given a set � of linear constraints and 

a solution to the corresponding problem, the absolute error (i.e., the difference 

between the true value of the second-stage cost function and its approximation) is 

equal to:  

 

5 oS(exp(xS) − �̂S)
S�R

 (3.25)  

 

The percentage error is obtained by dividing the absolute error by the true 

value of the second-stage function at a solution: 

 

∑ oS ∙ (exp(xS) − �̂S)S�R∑ oS ∙ exp(xS)S�R  
(3.26)  

 

An approximation which guarantees the maximum percentage error to be 

below a given tolerance level 
  may be constructed based on the following 

proposition: 

Proposition 1.  Let �  be the set of elements �'% �%⁄ $%tPg  and 
�{� =
max��'% �%⁄ $, then 
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∑ '%g%tP∑ �%g%tP � 
�{� 
(3.27)  

 

Proof.  

 

∑ '%g%tP∑ �%g%tP � ∑ ��{��%g%tP∑ �%g%tP = ��{� ∙ ∑ �%g%tP∑ �%g%tP = 
�{� 
(3.28)  

■ 

 

This result ensures that provided (exp(xS) − �̂S) exp(xS)⁄ � 
, ∀/ ∈ O (i.e., 

the percentage error of the piecewise linear approximation is less or equal to 
 for 

each scenario) for all scenarios and possible values of xS, then the percentage 

error of the approximation to the second stage cost function is also not greater 

than 
.  

For a given set of cuts �  one can easily verify in �(|�|)  whether the 

condition is satisfied (since the largest error between two adjancent cuts occurs at 

the point where they intersect) which allows for various heuristic/iterative 

methods for generating a piecewise linear approximation that guarantees that a 

maximum percentage error threshold is not violated. In the next sub-section, the 

minimum number of cuts necessary for an 
-approximation of the second stage 

cost function along with a method for generating them will be shown. 

 

3.3.2 Minimum number of cuts 

The following proposition establishes the minimum number of cuts 

necessary for an approximation of the second stage cost function whose 

percentage error is not greater than 
.  

Proposition 2. Let J_̀ G_S � (1 − J_̀ ) ∙ (1 − G_S)  and  J_a G_S + (1 − J_a ) ∙
(1 − G_S) be the two possible values for the probability of the availability status of 

edge 1 in scenario / and LS = �ln(�S%)�%tP=|�|
 be the set of all possible values that the 

logarithm of the probability of scenario / may assume (given by all combinations 

of the product of the edges’ probabilities). Also, let �l and �� be, respectively, 
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the positive and negative roots of the equation 1 − exp(�) � � exp(�) = 
. Then, 

the minimum number of additional constraints necessary for an approximation 

which guarantees the percentage error to be less or equal to 
 is given by ∑ �SS�R , 

where �S is the optimal value of the following optimization problem:  

 

�S = -&. 
 

5 >�
=|�|

�tP
 (3.29)  

/0�"1�2 23: 6� ≥ -Py1 − >�z − -P>� ∀" = 1, … , 2|d| (3.30)  

 lny�S%z ≥ 6� − �l − -=(1 − �%�) ∀&, " � 1, … , 2|d| (3.31)  

 lny�S%z � 6� − �� � -�(1 − �%�) ∀&, " � 1, … , 2|d| (3.32)  

 �%� � >� ∀&, " � 1, … , 2|d| (3.33)  

 5 �%�
=|�|

�tP
≥ 1 ∀& = 1, … , 2|d| (3.34)  

 >, � ∈ {0, 1$  (3.35)  

 6 � ℝ   (3.36)  

 

Proof.  

The percentage error of the approximation provided by a cut centered at 

point x� is given by the following expression: 

 

exp(x) − (exp(x�) � exp(x�) ∙ (x − x�))exp (x)  (3.37)  

 

where exp(x) is the true value of the exponential function (i.e., the true value of 

the probability of occurrence of a scenario) and (exp(x�) + exp(x�) ∙ (x − x�)) 
is the approximation provided by a cut centered on x� as discussed in Section 

3.2.1.  

By rearranging the terms, this expression may be re-written as: 

 

1 − exp(x� − x) + (x� − x) ∙ exp(x� − x) (3.38)  
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which is a strictly concave function and analogous to the equation defined in the 

Proposition by defining � = x� − x. Observe that the percentage error depends 

not on specific values of x  or x�  individually, but solely on the difference 

between the point in question x  and the point at which the approximation is 

centered on, x� . Consequently, the percentage error within the interval �x� −
�l, x� 	 ��} resulting from an approximation centered on any given point x� is 

less or equal to 
. This is illustrated in the Figures 3.4 and 3.5.  

Regarding the optimization problem (3.29) – (3.36) corresponding to a 

given scenario /, binary variables >� indicate the addition of a cut centered on the 

value of continuous variable 6�; variables �%� indicate that a given point ln(�S%) is 

assigned to the cut centered on 6�, which – according to constraints (3.31) and 

(3.32) – can only occur if ln(�S%) is within the interval �6� − �l, 6� 	 ��} (i.e., if 

the approximation error at point ln(�S%) provided by the cut centered on 6� is less 

or equal to 
); -P, -= and -� are sufficiently large positive numbers. Objective 

function (3.29) represents the number of cuts which are effectively needed to 

ensure the approximation error for all elements of the set LS is no larger than 
. 

Contraint (3.30) ensures that a cut can only provide a useful approximation if the 

the corresponding variable >�  is properly set to 1; constraint (3.33)1 determines 

that a given point ln(�S%) may only be assigned to a valid cut and constraint (3.34) 

requires each element of the set LS to be assigned to at least one cut. 

The solution of such problem determines not only the number of necessary 

cuts that provide an approximation for which the error is not larger than 
 

(∑ >��tP,…,=|�| ) but also the exact points at which they should be centered on 

(�6�|>� � 1��tP
=|�|

).  

■ 

 

 

                                                 
1 Constraint (3.26) is actually redundant, given the set of constraints (3.23) to (3.25). 
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of the humanitarian logistics problem. This may cause the computational burden 

to be excessively large and ultimately render its solution to optimality very 

unlikely. Next, we discuss a relatively simpler approach to determining a set of 

cuts that provide an approximation that does not violate the bound on the 

maximum error and is much easier to compute since it does not require the full 

enumeration of the elements of the sets LS. 

 

3.3.3 An easier way to generate the cuts 

Since the condition of each edge (i.e., whether each edge is active or failed) 

is known for each scenario, the feasible interval for each variable xS is given by: 

 

�ln(i  _S
_�d

) , ln(i ¡_S
_�d

)¢ (3.39)  

 

where  _S = min  {J_̀ G_S + (1 − J_̀ ) ∙ (1 − G_S),  J_a G_S + (1 − J_a ) ∙ (1 − G_S)} 
and ¡_S = max  {J_̀ G_S + (1 − J_̀ ) ∙ (1 − G_S),  J_a G_S + (1 − J_a ) ∙ (1 − G_S)}. The 

interval defined in expression (3.32) thus contains all the possible values of a 

given variable xS and an approximation that ensures that the percentage error is 

not violated at any point within this range may be easily computed by adding the 

cuts corresponding to the first order Taylor’s expansion of the exponential 

function around the points {ln(∏  _S_∈d ) + �l + q ∙ (�l − ��)}st�£¤�P  (or, 

alternatively, {ln(∏ ¡_S_∈d ) + �� − q ∙ (�l − ��)}st�£¤�P ), where ¥S  is defined as 

follows: 

 

¥S = ¦(ln(∏ ¡_S_∈d ) − ln(∏  _S_∈d ))(�l − ��) § (3.40)  

 

For each scenario, this procedure results in a number of inequalities which 

is, obviously, an upper bound to the optimal solution of the optimization problem 

defined in Proposition 2 and in a total number of cuts equal to: 
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5 ¨¦(ln(∏ ¡_S_�d ) − ln(∏  _S_�d ))(�l − ��) §©
S�R

 
(3.41)  
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4 CUT GENERATION ALGORITHM 

4.1 Active cuts at the optimal solution 

Depending on the percentage error threshold (and on the minimum and 

maximum scenarios’ probabilities should the approximation cuts be determined as 

discussed at the end of Chapter 3) the number of necessary cuts may grow to be 

very large, leading to computational difficulties and slower performance of 

solution algorithms. 

However, the observation that only a small fraction of these cuts will be 

active at the optimal solution of problem (3.12) – (3.17) – only |O|  cuts 

represented in the set of constraints (3.15) will be actually binding – naturally 

points towards the design of an algorithm that dynamically generates the cuts to 

construct the piecewise linear approximation to the exponential function.  

Next, we follow the notation and terminology of Geoffrion (1972) [27]: the 

value of the objective function at the optimal solution of an optimization problem 

(∙) is denoted by ª(∙) and its set of feasible solutions by �(∙). Additionally, ∙∗ 

denotes the value of variable ∙ at the optimal solution. 

 

4.2 Solution properties  

The original problem (2.1) – (2.6) and its re-formulated linear counterpart 

(3.12) – (3.17) have exactly the same set of feasible solutions (or, more precisely, 

any feasible solution to one may be mapped into the feasible solution space of the 

other), which may be expressed by �(m) = �(m=). In addition, if we denote the 

true second-stage cost function by F(�, G(�))  and its piecewise linear 

approximation by F¬(�, G(�)) then, by construction, the following relation holds 

for all feasible �: 

 

F¬y�, G(�)z ≤ Fy�, G(�)z, (4.1)  
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Consequently, the value of the optimal solution of problem (2.1) – (2.6) will 

always be greater or equal to the optimal value of problem (3.12) – (3.17), i.e.: 

 

ª(m=) � ª(m) (4.2)  

 

4.3 Approximation of the second-stage cost function  

Based on the previous remarks, the following algorithm (ALG1) may be 

used in order to obtain a solution to the problem for which the percentage error of 

the approximation of the second-stage cost function is less or equal to 
: 

 

1 Initialize the set of cuts � = ∅, the lower bound ®¯ = −&.°, upper bound 

±¯ = �&.° and define the maximum percentage error 
 

2 While |(±¯ − ®¯) ±¯|⁄ > 
 

3 Solve problem m= defined by (3.12) – (3.17) with the currently defined 

set of cuts � 

4 Set ®¯ = ª(m=) − ∑ b_�_∗_∈d (= ∑ oS ∙ �̂S∗S∈R ) 

5 Set ±¯ = ∑ oS ∙ exp(xS∗)S∈R  

6 For each scenario / ∈ O  

7 Add the cut defined by �s = exp(xS∗) ∙ (1 − xS∗)  and Ds =
exp(xS∗) to the cut set � 

8 End For 

9 End While 

 

The algorithm works by gradually constructing a better approximation of 

the second stage cost function through the addition of cuts around the optimal 

values of variables xS∗  found at each iteration. Following the discussion in 

Chapter 3, the addition of a cut centered on a specific value xS∗  provides an 

approximation that may also be useful (i.e., for which the percentage 

approximation error is smaller than 
 ) for other possible values of the same 

variable which may be part of the optimal solution found in subsequent iterations.  
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4.3.1 Convergence analysis 

The following proposition determines the maximum number of iterations of 

the algorithm needed in order to obtain a solution for which the percentage error 

of the approximated second-stage cost function relative to the true function is no 

larger than 
. 

Proposition 3. Let �l,  S_ and ¡S_ be defined as in Chapter 3, then algorithm 

ALG1 converges to a solution of problem c for which the percentage gap of the 

approximated second-stage cost function relative to its exact counterpart is less or 

equal to 
 in a number of iterations not larger than: 

 

5 ¨¦(ln(∏ ¡_S_�d ) − ln(∏  _S_�d ))�l §©
S�R

 
(4.3)  

 

Proof. As per the result of Proposition 1, if the convergence criterium of the 

algorithm has not been met at a given iteration &, it means that there exists at least 

one / � O for which 
(²�³(´¤∗)�µ+¤∗)

²�³(´¤∗) > 
. Since it can be verified that |�l| < |��|, 
this implies the fact that there exists at least one variable xS (/ ∈ O)  which 

satisfies the relation: 

 

·xS∗(%) − xS∗(�)· > �l, ∀" < & (4.4)  

 

where xS∗(%) denotes the value of variable xS at the optimal solution of problem 

cW  solved at iteration &  (xS∗(�)  are thus the points around which the piecewise 

linear approximation to the exponential function has been built in previous 

iterations). 

Let / ∈ O be a scenario for which relation (4.4) holds and let ̧  be the total 

length of the region(s) within the feasible interval of variable xS for which the 

current approximation violates the maximum percentage error threshold. The 

addition of a cut around the value xS∗(%) reduces ̧ by at least �l (and, potentially, 

by �l − ��). As discussed in Chapter 3, and repeated here for convenience, the 
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condition of each edge is known for each scenario, thus allowing us to determine 

the feasible interval for each variable xS as: 

 

�ln(i  _S
_�d

) , ln(i ¡_S
_�d

)¢ (4.5)  

 

At different iterations, each variable xS (/ � O) may satisfy condition (4.4) 

at most ¹(ln(∏ ¡_S)_�d − ln(∏  _S_�d ))/�lº  times – since, after that, the 

approximation of the exponential function over all its feasible region will be so 

that the maximum percentage error is less or equal to 
 . The result on the 

maximum number of iterations of the algorithm follows naturally. 

■ 

 

4.4 An algorithm considering the gap to the global optimal solution 

The approximation of the second-stage cost function at the solution obtained 

by the algorithm presented in the previous Section is ensured to be within 
 

percentage points of the true function. However, the gap between the solution 

returned by the algorithm and the global optimal solution to the problem may be 

different since it depends on the first-stage cost function as well.  

A slight modification to the algorithm may be introduced in order to account 

for the percentage gap between the solution of the problem solved using the 

approximation to the second-stage cost function and the global optimum, as 

shown below (ALG2): 

 

1 Initialize the set of cuts � = ∅, the lower bound ®¯ = −&.°, upper bound 

±¯ = �&.° and define the maximum percentage error 
 

2 While |(±¯ − ®¯) ±¯|⁄ > 
 

3 Solve problem m= defined by (3.12) – (3.17) with the currently defined 

set of cuts � 

4 Set ®¯ = ª(m=) 

5 Set ± »̄¼[ = ∑ b_�_∗_∈d + ∑ oS ∙ exp(xS∗)S∈R  

6 If ± »̄¼[ < ±¯, set ±¯ = ± »̄¼[ 
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7 For each scenario / � O  

8 Add the cut defined by �s = exp(xS∗) ∙ (1 − xS∗)  and Ds =
exp(xS∗) to the cut set � 

9 End For 

10 End While 

 

The algorithm above works by (i) obtaining a series of feasible solutions for 

the original problem and (ii) progressively perfecting the approximation of the 

second stage cost function at each iteration, as in ALG1.  

On the one hand, the series of feasible solutions provide a monotonically 

decreasing sequence of upper bounds. On the other hand, the series of values of 

the objective function at the optimal solution of the approximated problem solved 

at each iteration constitutes a monotonically increasing sequence of lower bounds, 

since F¬%lPy�, G(�)z : F¬%y�, G(�)z for all feasible �  (where F¬%y�, G(�)z denotes 

the piecewise linear approximation of the second stage cost function at iteration 

&). 
In this case, a simple upper bound on the number of iterations until the 

convergence of the algorithm is given by |O| ∙ 2|d|, which would correspond to a 

complete enumeration of the linear constraints that provide an exact 

representation of the exponential function at all possible values of each variable 

xS. 
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5 SCENARIO GENERATION 

5.1 Difficulty in scenario generation 

While the number of possible network realizations is computationally 

tractable, the algorithm presented in Chapter 4 may be used in order to obtain a 

solution which is within a tolerance level 
  from the global optimum of the 

original problem. However, if one wants to be able to solve large-scale problems, 

it becomes imperative to have an estimate of the expected value of the second 

stage cost function which is not based on the complete enumeration of all possible 

network configurations.  

Standard two-stage stochastic programming models usually resort to 

scenario generation to allow for the evaluation of these multi-dimensional 

integrals. However, unlike the vast majority of problems studied in the literature, 

in the humanitarian logistics problem – and, more generally, in the class of 

problems presented in Section 1.5 – the probability distribution of the random 

variables is not known before first-stage decisions are determined.  

As already pointed out in Section 2.3, this makes it impossible to utilize 

traditional scenario generation methods such as Monte Carlo sampling, moment 

matching or minimization of distances between probability measures. In this 

work, we propose to overcome this obstacle by merging the concepts from 

importance sampling into a stochastic programming framework, as presented next. 

 

5.2 Importance sampling 

In statistics, importance sampling is a technique used to estimate the 

properties of a certain distribution while only having samples drawn from a 

different one. In the context of simulation studies, importance sampling is usually 

employed as a variance reduction technique used in conjunction with the Monte 

Carlo method. The basic idea is that certain values of the random variable may 

have a stronger effect upon the parameter being estimated than others, so it might 
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be interesting to sample these values more frequently than what would otherwise 

be expected based on the original probability distribution.  

As detailed in Rubinstein (1981) [51], the method relies on a simple 

observation to compute the expected value of a random variable I~�P(�) based 

on samples from another distribution �=(�): 

 

H¾���$ = ¿ �°P(�)f�[ = ¿ � °P(�)°=(�) °=(�)f�[ = H¾À Á� °P(�)°=(�)Â (5.1)  

 

For a given set of samples �%  (& = 1, … , ]) drawn according to a probability 

density function °=(I) , the importance sampling estimator of the mean of 

distribution °P(I) is then defined as: 

 

¡̂�aR = 1] 5 �% ∙ °P(�%)°=(�%)
g

%tP
 (5.2)  

 

Following expression (5.1), each sample is weighted differently based on 

the likelihood ratio, i.e. the ratio between the probability of occurrence of that 

sample under the distribution of interest and the one from which the samples were 

drawn.   

Again according to [51], this estimator is proved to be consistent – it 

converges to ¡�  with probability 1 as the sample size grows to infinity – and 

unbiased – its expected value is ¡�, whatever the sample size. In the next section, 

this technique is incorporated into the optimization problem so as to allow for the 

estimation of the second stage cost function based on scenarios. 

 

5.3 Reformulation 

Although the final (post-investment) probability distribution of the 

availability of the edges is not known a priori, the initial distribution (i.e., the one 

which does not consider any reinforcement investments) may be used to generate 

scenarios of network configuration, for which the probability of occurrence may 

be easily calculated. This is also the case of the more general class of stochastic 
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programming problems with endogenous uncertainty defined in Chapter 2: the 

initial probability distribution of the random variables is always known, even 

though it might change after first-stage decisions are determined. 

Additionally, since the linearization technique proposed in Chapter 3 makes 

it possible to compute the probability of occurrence of any scenario given the 

first-stage investment decisions (or, at least, an approximation to its value), we 

may join these pieces of information in order to compute the importance sampling 

estimator of the expected value of the second stage cost function.  

By examining expression (5.2) for the importance sampling estimator, we 

may identify the corresponding elements of the optimization problem being 

studied: °P(�) and °=(�) are, respectively, the final and initial probability density 

functions of the scenarios, ] is obviously the number of sampled scenarios and 

the samples �% represent the values of the scenario-specific second-stage problems 

which are solved separately, as discussed in Chapter 3. Once again, it is important 

to stress that the scenarios of network realization are to be sampled according to 

the initial probability distribution of the edges’ availabilities. 

This analogy allows us to reformulate problem (3.12) – (3.17) in a way 

which does not require the full enumeration of all possible network configurations 

but relies on a smaller subset of randomly generated scenarios, as shown below: 

 

(cX) -&. 
 

5 b_�_
_�d

� 1|O| 5 oS Ã �̂S�SagaÄ
S∈R

 (5.3)  

/0�"1�2 23: �� ≤ �  (5.4)  

 xS = 5{ln(p_S` ) + [ln(p_Sa ) − ln(p_S` )] ∙ �_}
_∈d

 ∀/ ∈ O (5.5)  

 �̂S ≥ �s +  Ds ∙ xS ∀/ ∈ O, ∀q ∈ � (5.6)  

 �̂ ∈ ℝl, x ∈ ℝ   (5.7)  

 � ∈ {0,1}|d|  (5.8)  

 

where: 

 �Saga probability of sampled scenario /, calculated based on the initial 

probability distribution of the availability of each edge, i.e. 

�Saga = ∏ �_S̀_∈d  
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Based on a set of scenarios of network realizations, sampled according to 

the initial probability distribution of the edges’ availabilities, a solution to 

problem (5.3) – (5.8) may be found using the algorithm outlined in Chapter 4. 

 

5.4 Solution robustness 

As with any two-stage stochastic program, the solution to these problems 

depends, essentially, on balancing the trade-off between deterministic first-stage 

costs and the expected value of probabilistic second-stage costs. It is thus 

imperative that we have a reasonable estimate of second stage costs in order to be 

able to have confidence in the quality of the solution obtained.  

On the one hand, the larger the set of sampled scenarios, the better the 

estimate of second-stage expected costs will be. On the other hand, having fewer 

scenarios makes the problem smaller and solution times are usually faster. 

Anyhow, once a solution is found for a given set of scenarios, a Monte Carlo 

simulation – in which the probability distribution of the edges’ availabilities takes 

into account the determined first-stage decisions – may then provide a confidence 

interval against which the estimate of the expected costs of the second-stage 

provided at the solution of the problem can be compared in order to assess the 

need for a larger number of samples. This is discussed in Annex B, where an 

algorithm for determining an adequate number of scenarios is described. 
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6 COMPUTATIONAL RESULTS 

Computational tests were perfomed to analyze the performance of the 

proposed reformulation schemes and solution algorithm. All testes were 

conducted on a computer with processor Pentium 4, 3.00 GHz and 2 GB of RAM. 

The models and algorithms were implemented using the modeling language 

MOSEL and solved by XPRESS 19.00.04. 

The first results are those obtained for the set of instances described in 

Viswanath et al. [66]. These are all small-size problems which served as a “proof 

of correctness” for the proposed methodology. Since no other work in the 

literature deals with the problem in its original form (remember that [43] 

dismisses the probabilistic nature of the problem by assuming that investment on 

an edge completely eliminates the probability of that edge failing afterwards), 

several other instances were created in order to assess the performance of the 

methodology for medium and large-size instances of the problem.  

The remainder of this Chapter is organized as follows: Section (6.1) 

presents the results for the instances provided in [66], Section (6.2) describes how 

the medium and large-size instances were generated and presents results for the 

former while Section (6.3) discusses the results for the latter. 

 

6.1 Instances from the literature 

All the instances solved in [66] refer to a graph which contains 4 nodes and 

5 edges, as depicted in Figure 6.1. There is a total of 28 instances which are 

detailed in Table 6.1: they differ from each other in the investment and 

transportation costs associated with each edge (columns InvCost and TranspCost, 

respectively), maximum budget (column Budget), penalty for not fulfilling the 

demand associated to a node (column Penalty) and initial and final survival 

probabilities (initial survival probability is equal to 70% for all edges in instances 

1 through 14 and equal to 60% in instances 15 through 28 and column 

SurvProbInv). Nodes O and D are the origin and destination for a unit commodity 

that must flow through the network. 
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Figure 6-1 – Graph corresponding to the instances solved in Viswanath 

et al. [66] 

 

For all these instances, there are 32 (25) scenarios of network configuration 

– given by all the possible combinations of the availability of the edges – and the 

first step of the proposed methodology determines that the minimum cost network 

flow problem corresponding to each one of these configurations must be solved 

independently. For this set of instances, total solution time of the network flow 

problems for all scenarios is minuscule.  

Once these optimal values are known, they are used as coefficients in the 

objective function of the main problem, which is then solved by the algorithm 

outlined in Chapter 4. All instances were solved to optimality in less than 1.0 

second and average solution time was 0.313 second. Details are provided in Table 

6.2 where the column Id indicates the instance identification, column OptVal 

presents the value of the optimal solution , column # Iter indicates the number of 

iterations of the algorithm until convergence was achieved and column TotalTime 

the time it took for the algorithm to complete. 

 

 

 

 

 



ISSN: 0103–9741 
 

50 

 

 

Id SurvProbInv InvCost Budget TranspCost Penalty 

1 / 15 {80%, 80%, 80%, 80%, 80%} {1, 1, 1, 1, 1} 2 {10, 10, 10, 10, 10} 31 

2 / 16 {80%, 80%, 80%, 80%, 80%} {1, 1, 1, 1, 1} 3 {10, 10, 10, 10, 10} 31 

3 / 17 {80%, 80%, 80%, 80%, 80%} {1, 1, 1, 1, 1} 3 {10, 10, 15, 30, 10} 41 

4 / 18 {80%, 80%, 90%, 80%, 80%} {1, 1, 1, 1, 1} 3 {10, 10, 15, 30, 10} 41 

5 / 19 {80%, 80%, 80%, 80%, 80%} {2, 1, 1, 1, 1} 3 {10, 10, 15, 30, 10} 41 

6 / 20 {80%, 80%, 80%, 80%, 80%} {1, 2, 1, 1, 1} 3 {10, 10, 15, 30, 10} 41 

7 / 21 {80%, 80%, 80%, 80%, 80%} {1, 1, 2, 1, 1} 3 {10, 10, 15, 30, 10} 41 

8 / 22 {80%, 80%, 80%, 80%, 80%} {1, 1, 1, 2, 1} 3 {10, 10, 15, 30, 10} 41 

9 / 23 {80%, 80%, 80%, 80%, 80%} {1, 1, 1, 1, 2} 3 {10, 10, 15, 30, 10} 41 

10 / 24 {80%, 80%, 80%, 80%, 80%} {2, 1, 1, 1, 1} 3 {10, 20, 10, 15, 10} 31 

11 / 25 {80%, 80%, 80%, 80%, 80%} {2, 1, 1, 1, 1} 3 {10, 20, 10, 15, 10} 43.9 

12 / 26 {80%, 80%, 80%, 80%, 80%} {2, 1, 1, 1, 1} 3 {10, 20, 10, 15, 10} 57.3 

13 / 27 {80%, 80%, 80%, 80%, 80%} {1, 1, 1, 1, 1} 3 {10, 15, 5, 15, 10} 26 

14 / 28 {80%, 80%, 80%, 80%, 80%} {1, 1, 1, 1, 1} 3 {10, 15, 1, 15, 10} 26 

 

Table 6-1 – Description of the instances provided in Viswanath et al. [66]
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Id OptVal # Iter TotalTime 

1 21.9961 3 0.137 

2 21.7155 2 0.082 

3 26.8835 3 0.123 

4 26.8494 4 0.225 

5 26.9087 3 0.120 

6 26.9681 3 0.106 

7 26.8835 3 0.136 

8 26.8835 3 0.122 

9 26.9681 3 0.129 

10 26.9601 4 0.257 

11 29.0251 3 0.144 

12 31.0963 3 0.297 

13 25.1315 5 1.000 

14 23.0995 3 0.359 

15 22.5114 3 0.302 

16 22.0285 2 0.187 

17 26.9725 3 0.359 

18 26.9638 3 0.531 

19 27.0157 3 0.359 

20 27.1194 3 0.375 

21 26.9725 3 0.360 

22 26.9725 3 0.421 

23 27.1194 3 0.359 

24 27.0074 3 0.422 

25 28.8943 3 0.421 

26 32.0447 3 0.375 

27 25.1565 3 0.625 

28 23.1405 2 0.235 

 

Table 6-2 – Results of the instances provided in Viswanath et al. [66] 
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6.2 Medium-size instances 

Given the lack of additional instances of the problem available in the 

literature, we developed an instance generator which was then used to test the 

proposed methodology.  

The instances were created by randomly selecting the location of a given 

number of nodes within a region defined by minimum and maximum values for 

the � and 6 coordinates. Next, a predefined number of edges connecting the nodes 

was created (the resulting graph was checked for connectedness in order to avoid 

trivial and meaningless solutions) and the Euclidean distance between the 

corresponding nodes was assigned as the transportation cost of each edge. Pre- 

and post-investment survival probabilities were assigned to each edge and, for the 

large instances presented in Section 6.3, scenarios of network configuration were 

generated based on the initial survival probability of each edge.  

Next, in Tables 6.3 and 6.4, we present the results for a total of 30 instances 

which were all solved by the algorithm designed in Chapter 4 (ALG2) with full 

scenario enumeration and tolerance level set to no more than 1%. The table 

provides the following information: column Id identifies the instance, columns  # 

Nodes and # Edges indicates, respectively,  the number of nodes and edges of the 

graph, column # Scen provides the number of scenarios of network configuration 

used in each problem; column UB reports the value of the best solution found 

while column LB indicates the value of the solution to the last approximated 

problem (i.e., the one which is solved by considering the set of cuts that 

approximate the exponential function), column % Gap presents the percentage 

gap between the upper and lower bounds and column ErrTol contains the 

maximum acceptable error, which is the stopping criterium for the algorithm; 

column # Iter indicates the number of iterations of the algorithm needed to reach 

the final solution, and column MainTime report the total time for the convergence 

of the algorithm (the time needed for the solution of the independent scenario-

specific network flow problems is not reported but they are usually orders of 

magnitude smaller than the time it takes for the algorithm to converge which thus 

represents the bottleneck of the methodology). 
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Id # Nodes # Edges # Scen UB LB % Gap ErrTol # Iter MainTime 

v5e6A 5 6 64 219.423 219.423 0.00% 0.1% 5 0.437 

v5e6B 5 6 64 50.6467 50.6467 0.00% 0.1% 3 0.140 

v5e6C 5 6 64 143.923 143.923 0.00% 0.1% 4 0.281 

v5e6D 5 6 64 107.918 107.918 0.00% 0.1% 4 0.250 

v5e6E 5 6 64 277.904 277.904 0.00% 0.1% 4 0.281 

v6e8A 6 8 256 361.265 361.265 0.00% 0.1% 6 1.796 

v6e8B 6 8 256 45.9159 45.9159 0.00% 0.1% 5 1.328 

v6e8C 6 8 256 350.268 350.268 0.00% 0.1% 5 1.594 

v6e8D 6 8 256 110.915 110.915 0.00% 0.1% 5 1.062 

v6e8E 6 8 256 65.4201 65.4201 0.00% 0.1% 3 0.328 

v7e10A 7 10 1024 122.857 122.851 0.0049% 0.1% 4 3.735 

v7e10B 7 10 1024 201.934 201.926 0.0040% 0.1% 5 4.468 

v7e10C 7 10 1024 104.863 104.857 0.0057% 0.1% 4 3.063 

v7e10D 7 10 1024 158.868 158.861 0.0044% 0.1% 5 4.063 

v7e10E 7 10 1024 75.5659 75.5619 0.0053% 0.1% 5 5.704 

 

Table 6-3 – Results for the medium-size instances 
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Id # Nodes # Edges # Scen UB LB % Gap ErrTol # Iter MainTime 

v7e11A 7 11 2048 306.692 306.672 0.0065% 0.1% 8 79.143 

v7e11B 7 11 2048 252.026 251.985 0.0163% 0.1% 6 39.344 

v7e11C 7 11 2048 66.7778 66.7561 0.0325% 0.1% 5 15.593 

v7e11D 7 11 2048 312.985 312.959 0.0083% 0.1% 6 38.875 

v7e11E 7 11 2048 58.0173 57.9977 0.0338% 0.1% 5 27.859 

v8e12A 8 12 4096 31.9086 31.5927 0.99% 1% 11 405.395 

v8e12B 8 12 4096 141.750 141.515 0.1658% 1% 6 242.878 

v8e12C 8 12 4096 97.1507 97.0042 0.1508% 1% 4 40.219 

v8e12D 8 12 4096 49.6668 49.4192 0.4985% 1% 7 286.253 

v8e12E 8 12 4096 155.492 155.381 0.0714% 1% 4 71.297 

v8e12b6A 8 12 4096 40.8165 40.6271 0.4640% 1% 6 247.645 

v8e12b6B 8 12 4096 28.5302 28.2736 0.8994% 1% 8 831.795 

v8e12b6C 8 12 4096 22.3931 22.1859 0.9253% 1% 7 449.365 

v8e12b6D 8 12 4096 66.6392 66.3808 0.3878% 1% 8 992.796 

v8e12b6E 8 12 4096 105.355 104.637 0.6815% 1% 5 113.814 

 

Table 6-4 – Results for the medium-size instances 
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6.3 Large-size instances 

The set of instances in Section 6.2 involved graphs with a maximum of 

twelve edges and 4096 possible scenarios of network configuration. The total time 

required to solve these problems clearly shows how the computational effort 

increased very rapidly with respect to the number of edges – just as an illustration 

of this fact, the average time needed to solve the instances with 11 edges was 40.2 

seconds, while the average time consumed by the algorithm in solving the 

instances with 12 edges was 368.1 seconds.  

A critical example is provided by an instance of the problem with 10 nodes 

and 15 edges (and, consequently, 32768 possible scenarios of network 

configuration) which was solved by full scenario enumeration. The Figure below 

presents the performance of the algorithm – data points represent the upper and 

lower bounds obtained at each iteration: 

 

 

Figure 6-2 – Algorithm perfomance on an 15-edge instance with full 

scenario enumeration 

 

While the previous instances converged to solutions with gaps not larger 

than 1% after no more than 17 minutes, in the case of the 15-edge instance it took 

a total of 25 hours for the algorithm to narrow the gap down to 2.57%. This 

clearly leads to the conclusion that full scenario enumeration is currently not a 
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viable option when one tries to solve large scale problems and a sample-based 

version of the problem – such as that suggested in Chapter 5 – becomes a 

necessity.  

In Table 6.5, we present results for 18 instances with the number of edges 

ranging from 15 to 40, also constructed according to the description given in the 

previous Section. All instances were solved to a maximum gap of 0.87%. 

Compared to Table 6.4, there is an additional column # TotScen where the number 

of possible scenarios of network configuration is reported – column # Scen 

indicates the number of scenarios actually used when solving the problem. 

The instances with 15 edges (v10e15_1, v10e15_2 and v10e15_3) all refer to 

the same graph of the example for which the convergence of the algorithm was 

shown in Figure 6.2. Each one of them was solved using a different set of 500 

scenarios (out of the 32768 possible network configurations), sampled according 

to the initial probability distribution of the edges’ availabilities. It is interesting to 

observe that even though the number of scenarios used in these instances is 

significantly smaller than the total number of possible scenarios, the solutions 

found for these problems in under 60 seconds have an objective function value 

which is close to that found after 25 hours in the case of full scenario 

enumeration. 

A significant increase in computational times was observed when solving 

the instances with 20 edges (v10e20_1 through v10e20_5) and 500 scenarios. All 

instances refer to the same graph and were solved using different sets of scenarios 

to a maximum gap of 0.868%, including one instance which was solved to 

optimality. The difference between the minimum and maximum optimal values 

obtained for all five problems was 5.49%, which seems like a reasonable 

compromise considering that the number of scenarios actually used to solve the 

problems represents a very small fraction (namely, 0.048%) of all possible 

network configurations.   

As the number of binary variables increase so does the computational effort 

required to solve the problems at each iteration, leading to a compromise between 

network size (which dictates the number of binary variables) and number of 

sampled scenarios. This was done when solving the instances with 25, 30 and 40 

edges: the number of scenarios utilized was reduced to 300 in the former and 200 

in the last two cases. 
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Id # Nodes # Edges # Scen # TotScen UB LB % Gap ErrTol # Iter MainTime 

v10e15_1 10 15 500 3.28E+4 44.5735 44.4068 0.374% 1% 6 41.032 

v10e15_2 10 15 500 3.28E+4 44.8405 44.8405 0% 1% 6 27.562 

v10e15_3 10 15 500 3.28E+4 47.0452 46.9256 0.254% 1% 6 27.578 

v10e20_1 10 20 500 1.05E+6 81.8326 81.7279 0.128% 1% 8 1169.703 

v10e20_2 10 20 500 1.05E+6 81.4761 80.7692 0.868% 1% 9 2725.251 

v10e20_3 10 20 500 1.05E+6 81.6981 81.3323 0.448% 1% 10 1713.125 

v10e20_4 10 20 500 1.05E+6 78.4703 78.1662 0.388% 1% 10 3164.391 

v10e20_5 10 20 500 1.05E+6 77.3371 77.3371 0% 1% 10 4028.000 

v12e25_A 12 25 300 3.36E+7 75.5378 74.9683 0.754% 1% 8 2528.266 

v12e25_B 12 25 300 3.36E+7 52.4450 52.1022 0.654% 1% 12 3133.67 

v12e25_C 12 25 300 3.36E+7 70.3214 70.1937 0.182% 1% 11 1882.297 

v12e25_D 12 25 300 3.36E+7 43.1088 42.931 0.412% 1% 8 810.234 

v13e30_1 13 30 200 1.07E+9 32.4429 32.3264 0.359% 1% 9 516.454 

v13e30_2 13 30 200 1.07E+9 38.8679 38.6852 0.470% 1% 11 6332.030 

v13e30_3 13 30 200 1.07E+9 32.4177 32.4131 0.014% 1% 7 1086.485 

v13e30_4 13 30 200 1.07E+9 33.1784 32.9004 0.838% 1% 9 1095.703 

v13e30_5 13 30 200 1.07E+9 34.4604 34.1707 0.841% 1% 9 3457.325 

v16e40_1 16 40 200 1.10E+12 19.5682 19.4753 0.475% 1% 7 4367.515 

 

Table 6-5 – Results for the large-size instances 
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7 CONCLUSIONS 

While there has been a huge amount of work on stochastic programs with 

exogenous uncertainty, the same is not true for the case where the underlying 

stochastic processes depend on the decisions taken. 

This works aims at contributing to fill this gap by studying a problem in the 

area of humanitarian logistics. The proposed re-formulation scheme overcomes 

the non-linearities that arise in the original formulation presented in the literature 

and the incorporation of the importance sampling concepts allows us to solve 

large instances of the problem – which would otherwise be untractable – by using 

sample scenarios even though the final probability distribution of the random 

variables is not known a priori. 

The proposed approach was able to solve all the instances available in the 

literature in very short time. Additionally, larger instances of the problem were 

created – and will be made publicly available – in order to assess the performance 

of the developed algorithms. Medium-size instances were solved within 

reasonable times (each one of them was solved in under 17 minutes) and solutions 

provably within 1% of the global optimal have been found. Large-size instances 

were solved using samples of scenarios of network configuration and solutions 

were also within 1% of the global optimal. Considering that the only article that 

deals with the exact same problem studied in this work used instances with only 5 

edges, an eight-fold improvement has been obtained. 

  

7.1 Future work and extensions 

Regarding improvements on the speficic problem discussed in this work, 

there are some issues that can probably be dealt with more efficiently: 

a) The problem solved at each iteration is very similar to that of the 

previous one – the only difference being the |S| cuts added to improve 

the approximation of the exponential function. Instead of solving each 

problem from scratch, the previously obtained solution may provide 
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useful information which may then be used to reduce computational 

times.  

b) Valid cuts and/or tailor-made heuristics may be identified/developed to 

decrease the computational effort related to the number of binary 

variables. 

A decrease in the computational time required to solve the problem of each 

iteration may allow for an increase in the number of scenario samples used to 

solve large-scale problems, thus providing better-quality solutions.  

Additionally, it would also be of interest to carry out both in-sample and 

out-of-sample (following the algorithm suggested in Annex B) analyses of the 

problem in order to empirically determine the adequate number of sample 

scenarios in each case. In this sense, the incorporation of the importance sampling 

concepts could be further explored by using scenario samples drawn from 

probability distributions other than the original ones and adapting the problem 

accordingly. 

Five main future(/current) work alternatives lie ahead:  

a) Extend the methodology to consider the coupling between first and 

second stage variables to be given not only by the probability of 

occurrence of scenarios but also by the feasible region of second stage 

problems. 

b) Adapt the methodology to consider the existence of a correlation 

structure between the random variables. 

c) Incorporation of risk measures and probabilistic constraints (as in the 

context of chance-constrained programming). 

d) Explore the proposed linearization technique in the context of the 

unconstrained quadratic 0–1 minimization problem. 

e) Study the applicability and performance of the proposed methodology 

to other problems of the same nature, such as those described in 

Chapter 1: stochastic queuing networks, stochastic PERT and revenue 

management. 
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ANNEX A: Generalization with respect to second-stag e 

problems 

An essential part of the methodology proposed in this work – namely the 

linearization of the product of binary variables using the properties of the 

logarithm – lies on the piecewise linear approximation of the exponential function 

which may be represented in the optimization problem as linear constraints. 

However, if the objective function value of the optimal solution of a second stage 

problem is negative, the first stage problem clearly becomes unbounded and this 

would represent a limitation to the applicability of the concepts discussed 

afterwards.  

This Annex describes how to address this situation so that the methodology 

remains valid, regardless of the values of the optimal solutions of the second-stage 

problems. In summary, the next two sections discuss that a constant term may be 

added to the value of the optimal solution of all second stage problems without 

affecting the solution of the original problem. 

 

A.1 Problems solved with full scenario enumeration 

In the case where one is able to enumerate all the possible scenarios of 

network configuration, the objective function (3.12) may be re-written as follows: 

 

5 b_�_
_�d

� 5 oÅS�̂S
S�R

− oÅ (9.1)  

 

where  oÅS = oS � oÅ and oÅ is such that oÅS > 0, ∀/ ∈ O. Expression (9.1) is clearly 

equivalent to: 

 

5 b_�_
_∈d

� 5 oS�̂S
S∈R

� 5 oÅ ∙ �̂S
S�R

− oÅ (9.2)  
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On the one hand, the algebraic sum of the third and fourth terms of 

expression (9.2) will always amount to zero since ∑ �̂SS�R = 1. On the other hand, 

the sum of the first and second terms above is the exact expression of the original 

objective function. The alternate objective function (9.1) assumes the exact same 

values as the original one (3.12) for all feasible values of the decision variables 

and, consequently, problem (3.12) – (3.17) is equivalent to problem (9.1) – (3.13) 

– (3.17). 

 

A.2 Problems solved with a sample of scenarios 

Following the proposed methodology, large-scale problems are solved using 

the formulation (5.3) – (5.8). Using the same rationale as above, the objective 

function (5.3) may be re-written as: 

 

5 b_�_
_�d

� 1|O| 5 oÅS Ã �̂S�SagaÄ
S∈R

− oÅ (9.3)  

 

which is equivalent to: 

 

5 b_�__∈d
+ 1|O| 5 oS Ã �̂S�SagaÄ

S∈R
+ 1|O| 5 oÅ Ã �̂S�SagaÄ

S∈R
− oÅ (9.4)  

 

If we denote by Æ the set of distinct scenarios in the sample and by .Ç the 

number of occurrences of each one of them, the third term may be written as: 

 

oÅ 5 .Ç|O| ¨ �̂Ç�Çaga©
Ç∈È

 (9.5)  

 

As |O| → ∞, 
ÊË|R| → �Çaga and expression (9.5) converges to oÅ ∙ ∑ �̂ÇÇ∈È . Since 

∑ �̂ÇÇ∈È → 1, the result is analogous to that obtained in the previous Section.  
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ANNEX B: Solution robustness 

The solution of two-stage stochastic programs depends, essentially, on 

balancing the trade-off between deterministic first-stage costs and the expected 

value of probabilistic second-stage costs. It is thus imperative that we have a 

reasonable estimate of second stage costs in order to be able to have confidence in 

the quality of the solution obtained.  

On the one hand, the larger the set of sampled scenarios, the better the 

estimate of second stage costs will be. On the other hand, having fewer scenarios 

makes the problem smaller and solution times are usually faster. Anyhow, once a 

solution is found for a given set of scenarios, a Monte Carlo simulation – in which 

the probability distribution of the edges’ availabilities takes into account the 

determined first-stage decisions – may then provide a confidence interval against 

which the estimate of the expected costs of the second-stage can be compared in 

order to assess the need for a larger number of samples. This suggests the 

following algorithm, detailed below: 

  

1 Initialize the set of cuts � = ∅, define the maximum percentage error 
 and 

the confidence level for the estimator of the mean second stage costs 

(expressed in terms of the number of standard deviations Ì) 

2 Initialize the lower bound ®¯ = −&.°, upper bound ±¯ = �&.° 

3 While ¡̂R ∉ �¡̂� − Ì ∙ ÎÏÐÑ , ¡̂� � Ì ∙ ÎÏÐÑ$ 
 Generate a new sample O»¼[ of network configuration scenarios based 

on the initial probability distribution of the edges’ availabilities 

 For each scenario / � O»¼[ 

 Solve problem (3.1) – (3.4) and obtain the corresponding value oS 

 End For 

4 Set O = O ∪ O»¼[ 

5 While |(±¯ − ®¯) ±¯|⁄ > 
 

6 Solve problem m�  defined by (5.3) – (5.18) with the currently 

defined set of cuts � and scenario sample set O 
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7 Set ®¯ = ª(m�) 

8 Set ± »̄¼[ = ∑ b_�_∗_�d � P|R| ∑ oS p²�³(´¤∗)µ¤ÓÔÓ rS∈R  

9 If ± »̄¼[ < ±¯, set ±¯ = ± »̄¼[ 

10 For each scenario / ∈ O  

11 Add the cut defined by �s = exp(xS∗) ∙ (1 − xS∗)  and 

Ds = exp(xS∗) to the cut set � 

12 End For 

13 End While 

14 Compute ¡̂R = P|R| ∑ oS p²�³(´¤∗)µ¤ÓÔÓ rS∈R  

15 Generate a sample - (|-| ≫ |O|) of network configuration scenarios 

based on the probability distribution of the edges’ availabilities which 

results from the determined first stage decisions 

16 For each scenario Ö ∈ - 

17 Solve problem (3.1) – (3.4) and obtain the corresponding value o× 

18 End For 

19 Obtain the estimator of the mean of second stage costs and its standard 

deviation: ¡̂� and ÎÏÐÑ, respectively 

20 End While 
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