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Abstract. In this work we study a class of stochastic prograng problems with
endogenous uncertainty — i.e., those in which ttodaility distribution of the
random parameters is decision-dependent — whidieriaulated as a MINLP.
Although discussed in the context of the humaratariogistics problem, the
proposed methodology and obtained results arevalgb for a more general class
of problems which comprehends a variety of appgbecet In particular, we
propose (i) a convexification technique for polynals of binary variables, (ii) an
efficient cut-generation algorithm and (iii) thecorporation of importance
sampling concepts into the stochastic programnragméwork so as to allow the
solution of large instances of the problem.

Keywords. Stochastic programming; Endogenous uncertaintynv€xification;
Importance sampling; Humanitarian logistics.

Resumo. Neste trabalho estudamos uma classe de problemastimizacao
estocastica com incertezas endogenas — i.e., aqaeleque a distribuicdo de
probabilidade dos parametros aleatérios dependalel@isdes tomadas — que é
formulado como um MINLP. Apesar de discutido demtoocontexto do problema
de logistica humanitaria, a metodologia propostaseresutados obtidos sé&o
validos para uma classe geral de problemas quegaguena variedade de
aplicacbes. Em particular, propde-se (i) uma técnie convexificacdo de
polindbmios de variaveis binarias, (ii) um algoritde geracdo de cortes e (iii) a
incorporacdo dos conceitos de importance sampliegtral do contexto de
otimizacdo estocastica de modo a permitir a solwgEagrandes instancias do
problema.

Palavras-chave.Otimizacdo estocastica; Incertezas enddgenas; edivacao;
Logistica Humanitaria

§ Corresponding author: brunoflach@gmail.com



In charge of publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentacéo e Informacéao
PUC-Rio Departamento de Informética

Rua Marqués de Séo Vicente, 225 - Gavea

22451-900 Rio de Janeiro RJ Brasil

Tel. +55 21 3527-1516 Fax: +55 21 3527-1530

E-mail: bib-di@inf.puc-rio.br

Web site:http://bib-di.inf.puc-rio.br/techreports/




Table of Contents

1.1
1.2
1.3
1.4
15
1.6

2.1
2.2
2.3

3.1
3.2
3.3

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4

INTRODUCTION

Decision under uncertainty

Robust Optimization

Stochastic programming
Motivation and related bibliography
Objective and contributions

Outline

HUMANITARIAN LOGISTICS PROBLEM
Introduction
Literature review

Mathematical formulation

REFORMULATION SCHEME
Separability of second stage problems
Polynomials in binary variables

Approximation

CUT GENERATION ALGORITHM

Active cuts at the optimal solution

Solution properties

Approximation of the second-stage cost function

An algorithm considering the gap to the global optimal solution

SCENARIO GENERATION
Difficulty in scenario generation
Importance sampling
Reformulation

Solution robustness

11
13
17
18

19
19
20
22

25
25
26
32

39
39
39
40
42

44
44
44
45
47



6 COMPUTATIONAL RESULTS
6.1 Instances from the literature
6.2 Medium-size instances

6.3 Large-size instances

7 CONCLUSIONS

7.1 Future work and extensions

ANNEX A: Generalization with respect to second-stage problems
A.1 Problems solved with full scenario enumeration

A.2 Problems solved with a sample of scenarios

ANNEX B: Solution robustness

REFERENCES

48
48
52
55

58
58

60
60
61

62

64



List of Figures

Figure 1-1 — Two-stage (A) and multistage (B) scientree structure of
stochastic programming MOeIlS ...........ooiiiiiiiiiiiiiiiiee e 12

Figure 1-2 — Stochastic programming model with exmgs uncertainty —
probabilitiesp1, p2, p3 andp4 are independent of decisian................... 14

Figure 1-3 — Endogenous uncertainty related tdithe of information discovery

Figure 1-4 — Endogenous uncertainty and decisiqeiagent probabilities........ 16
Figure 3-1 — Two-link network example....... .., 28.
Figure 3-2 — Inequalities that provide a piecewlisear approximation to the
exponential fUNCLION ................uuvuuees e e e e e e e e e e e e e eeeeeeeeean e 30
Figure 3-3 — Piecewise linear approximation ofékponential function............ 31
Figure 3-4 — Linear approximation to the exponéritiaction provided by a cut

centered 0N IN(45%0).........oeeueuueiiii i s e e e e e e e e aeeeeeeeaaeees 36
Figure 3-5 — Percentage error provided by a lirsggsroximation centered on
In(45%) and illustration off + andn — fore = 10% ...cccoeveeeeeeeiieeeieeeeiiiins 36

Figure 6-1 — Graph corresponding to the instanob&d in Viswanath et al. [66]

Figure 6-2 — Algorithm perfomance on an 15-edgeaimse with full scenario

ENUMETALION e ee e ettt e e e e e e e e e 55



List of Tables

Table 3-1 — Probability of occurrence of scenadaaccording to the investment

(0 [=Tot IS o] 1 1SS PP PP TP PP P PP 29
Table 6-1 — Description of the instances provideWiswanath et al. [66] ......... 50
Table 6-2 — Results of the instances provided swdnath et al. [66] ................ 51
Table 6-3 — Results for the medium-size instances...........cccevvvvviiiiiiiiienneenn. 53
Table 6-4 — Results for the medium-Size INStANCES.........uvvveiiiiiiiiieeeieeiis 54

Table 6-5 — Results for the large-size iNStances..............ovvvvciciiiiiieeeeeeennn, 51.



ISSN: 0103-9741

1 INTRODUCTION

1.1 Decision under uncertainty

In a vast range of practical applications, the tngata necessary for the
solution of mathematical programs cannot be prgcetermined beforehand. In
general, that may happen either because data eeintty random or due to
inevitable errors in measurement. In 1955, Dan{2@] and Beale [6] first
recognized that even a relatively small deviatioonf the values used as input
data could compromise the quality of the optimdlson to a problem. Since
then, two main methodologies have been develop#dtive aim of incorporating
— into the modeling and solution procedures — theettainties which are part of a

diverse set of problems: robust optimization alodlsistic programming.

1.2 Robust Optimization

The field of robust optimization was founded in 39y Soyster’'s seminal
work [54] which proposed the solution to a problemilar to that in standard
form (mingey cTx | Ax < b) with the additional requirement that the optimal
solution should be feasible for all elements of et A = {4;,Vj €]} of
technology matrices.

Following the notation of Bertsimas and Sim (20(5], let/; denote the
set of coefficients in row of matrixA which are subject to uncertainty and each
elementa;;, (j € J;) be modeled as a symmetric and bounded randombleria
with supporta;; — @;;, a;; + @;;]. The formulation proposed by Soyster may be

written as:

Min cTx (1.1)
subject to: Z ayx; + Z aijy; < b; vi (1.2)
j JeJi

—YVj S Xj <Y vj (1.3)
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[<x<u (1.4)
y=0 (1.5)

wherel andu are vectors of appropriate dimension which repregespectively,

lower and upper bounds on variahigs

Such an approach is shown by Soyster to be equivébea worst-case
scenario analysis. This extreme conservativenesss lthe value of the objective
function at the optimal solution to be usually sigantly worse than that of the
original (or nominal-value) problem and motivatede tsearch for different
approaches which could provide a balance betwessibiéity and optimality.

A quarter of a century after Soyster’'s work, Ben-diad Nemirovksi ([9],
[10], [11] and [12]) and EI-Ghaoui et al. ([22] afB]) proposed an alternative
way to model the uncertainty by defining “ellipsaidregions of uncertainty”
around the nominal values of the coefficients,daswhich one admits that the
realization of the unknown parameters will be. pPheposed approach results in a
modification of the original constraints of the plem which turns it into a second
order conic program, thus requiring specific satprocedures (which are, in

general, not guaranteed to find the global optins@htion to a problem):

Min cTx (1.6)
subject to: Z aix; + Z aiyi
j J€Ji
Vi (@w7)
JEJi
(1.8)
—Yij < Xj — Zjj < Vij Vj (19)
I<x<u (2.10)
30 (1.11)

where(); is a user-defined parameter related to the préitabf violation of each
constraint — the authors prove that the probabiityeach constraint being

violated is less or equal taxp(—Q7%/2).



ISSN: 0103-9741

Robust optimization was again boosted in 2003 #ighpublication of [13],
[14] and [15] by Bertsimas and Sim. The novel applbassumes a polyhedral
uncertainty set and its major advantage is the tlaat the formulation of the
robust counterpart of a problem does not modifysitacture, maintaining all the
original properties such as linearity. In summatke proposed approach
introduces a parametBrthat takes values in the inter8l |/;|] and determines
the maximum number of coefficients in réwhich will be allowed to vary from

their respective nominal valueg;. The robust counterpart is initially formulated

as:
Min cTx (1.12)
subject to: z a;x; + Bi(x, I) < b; Vi (1.13)
j
—y <% <y vji  (114)
[<x<u (1.15)
y=0 (1.16)
where:
B(x,T;) = Max Z a2 (1.17)
JEJi
subject to:
! PRI vi (1.18)
JEJ;
0< Zij <1 Vj E]i (119)
As shown in [15], this is equivalent to the lindarmulation presented
below:

Min cTx (1.20)

subject to: Z ayx; + 2T, + Z py<b (.20
J J€Ji

zi + pij 2 4;5Y; Vi,jEJ]; (1.22)

—y; < x; <y Vj (1.23)

10
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I<x<u (1.24)
y,zZ,p =0 (1.25)

1.3 Stochastic programming

The stochastic programming approach relies on $seraption — which is
perfectly reasonable in various settings — that omnght be able to know or
estimate the probability distribution of the unknmovwparameters. Generally
speaking, the objective of stochastic programmingdets is to determine a
solution that is feasible for all possible datdizagions (or for a given percentage
of them) and that minimizes the expected value fafingtion of the decision and
random variables.

The objective of this Section is not to provideomprehensive overview on
the subject — which the interested reader may ifinBirge and Loveaux (1997)
[16], Kall and Wallace (1994) [40], Ruszczynski afdhapiro (2003) [52],
Shapiro, Dentcheva and Ruszczynski (2009) [55]radeveld and van der Vierk
(2005) [33] — but to introduce the topic so thad tleader may grasp the basic
difference between standard stochastic programmiadels in the literature and
the one studied in this work. In addition to theibaeferences just mentioned, the
state-of-the-art in various applications may benfbin Wallace and Fleten (2003)
[67] (energy), Dupacova, Hurt and Stepan (2002] [#hance), Poojari, Lucas
and Mitra (2006) [49] (supply chain and logisties)d Gaivoronski (2005) [26]
(telecommunications).

The majority of research and applications of stethaprogramming is
done on the so-called two-stage stochastic progragitmear models, although
multistage stochastic programs are also the subjegteat interest — a graphical
depiction of the conceptual difference between stage and multistage models is
presented in Figure 1-1. In the former case, on@llysseeks to determine a first
stage decision which is then succeeded by thezegimin of a random event that
affects the outcome of the action taken. Recowrsers may then be taken in the
second stage so as to compensate for potentialggsntaused by the realization
of the random variable(s). While in the second estidigre might be a different set

of corrective decisions for each scenario, accgrde possible outcomes of the

11
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random event, first stage decisions for all scesaare required to be the sa— a

condition usually referred to as r-anticipativity.

(A) (B)

Figure 1-1 — Twostage (A) and multistage (Bscenario-treestructure of

stochastic programming model

The general formulation of a t-stage stochastic program is presented

Min cTx + E{Q(x, &)} (1.26)
subject to: Ax <b (2.27)
x€X (1.28)

whereQ (x, §) is defined as the value of the optimal solutiorthed second stag

problem:
Min q(&Ty (1.29)
subject to: T(E)x+W(&)y < h(§) (2.30)
yEeY (1.32)

The actions to bdaken before the random parame are known ar
determined by the vector of first stage decisvariablesx, whose feasible regic
is defined by the set of constraiidx < b and by the seX —which may include

12
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integrality constraints. The vector of second stagesion variables is denoted by
y and the the vector of coefficients of the objestifunctiong, technology
matricesI’ andW and the right-hand side vectomay all depend on the vector
of random variables.

Difficulties in evaluating multi-dimensional integs imply that the
determination of a numerical solution to these [@ols usually require the
enumeration of a finite numbet of possible outcomes for the vectpr=
{¢1, &5, ..., ¢és}. Each one of these outcomes is called a scenariawhich there
must also be an associated probability of occuaene {p;,p,, ..., ps}. This
discretization allows the expression for the expa@stalue in equation (1.22) to be

written as:

E(QC6 ) = ) py-Q(x &) (1.32)

SES

Finally, problems (1.26) — (1.28) and (1.29) — (3.61ay now be jointly re-

written as follows:

Min c"x + XsesPsqsYs (1.33)
subject to: Ax <b (1.34)
Tsx + Wsys < hg Vs€ES (1.35)

XxXEX,yeEY (1.36)

1.4 Motivation and related bibliography

A common hypothesis concerning the two approacisesisked above is that
the realization of the uncertain parameters is peddent of the decision
variables, a illustrated in . This conjecture ididran a variety of applications,
such as portfolio optimization, hydrothermal scHedufor electricity generation,
communication network planning under demand unieya etc. Not
surprisingly, the vast majority of the body of wdrtth in robust optimization and
in stochastic programming deals with problems inicwhthis hypothesis is

satisfied and the uncertainty is said to be exogeno

13
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Figure 1-2 —Stochastic programming model vith exogenous uncertainty—

probabilities p4, p2, p3 and p, are independent of decisiotx

On the other hand, the literature on problems wilieedknowledge of the
probability of occurrence of random events depemtshe decisions taken (i.
when the uncertainty is said to be endogenous) s liraited. According tt Goel
and Grossmann (2006)31], out of the 4300+ works in the Stocha:
Programming Bibliograph.compiled by van der Vlerk [65bnly 8 (48], [66],
[2], [39], [36], [30], [31] and [61]) involve the case of endogenous uncerts
(references [54] and [4@re other workson the subject, not yet included in 1
database).

The work on stochac programs with endogenous uncertainty may
further subdivided into two categories with respect to thetipatar way in whick
decisions affect the knowledge of the probabilistributions.

The first groupinvolves problems where the probability ribution of the
random variables is not directly affected, rather,uncertainty may be partial
resolved depending oractions performed by the decis-maker. This it
essentially related tthe timing of information discovery and to an aipi@tion or
delay of the moment at which more accurate infoionais revealec Such
situation is pictured irFigure 1-3 below, in which the dashed line represen
possible relaxation of neanticipativity constraints between scenarios reldte

first-stage decisions.

14
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Figure 1-3 —Endogenous uncertainty related to the time of infomation

discovery

This group includes the work of Jonsbraten (19(39], Goel anc
Grossmann (2004, 200630][31], Held (2003) [36]and Senay (200754]. The
type of uncertainty dealt with in these works iem@plified by that sidied in[39]
and [30]where an oil and gas exploration company musose among differer
testing and probing methods in order to try andl fthe size and quality «
reserves — thenstallation of a facility does not change the lilkeod of the
company actually finding oil, but may provide ewide as to what are the mu
probable scenarios. Other examglie in the areas oproject managemei[54]
and network interdiction.

Finally, the second group of stochastic programgh wend@enous
uncertainty refers tdhose in whichdecisions directly affect the probabil
distribution of the random parameters i.e., théoastperformed at a given sta
may change the probabilitof occurrence of future events as conceptuall
illustrated in Figure 1-4.

Pflug (1990) [48]was the first toaddress this issue by discussing
application in stochastiqueuing networks— decisions affect the arrival al
service rates of each element in the qu~ and proposing a stochas
guasigradient algorithm which requires repeatedukitions of the system
functioning for each fixed fir-stage solution. Talluri and Ryzi(2004) [61]

15
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worked on a revenue management problem from thet pbiview of an airline
who must choose which combination of fares to offereach mome in time
preceding the departure of a flic Under some assumptions regarding const
behavior, they developed dynamic programming algorithm to determine
pricing policy which results in the maximum total expectedenue In 2000,
Ahmed [2] presented some examples related to network deseywer selectio
and facility location These problems were formulated under a hyper
programming framework and ispecialized algorithm was develogr An
application to the stochastic PE (Program Evaluation and Review Technic
problem is developed by Plambeck et al[47] where one seeks to minimize t
conflicting objectives: a project's cost and itsmgaetion time. A samp-path
algorithm is proposed and results are presentedruhé assumption of unifol
distributions with a fixed spread around the meViswanath et al. Z004) [66]
studied the humanitarian logistics proble briefly described in Section 1
below and then again discussed in Chapter 2 in a moslettfashion— and
proposed an approximation to the objective functiamich allows the

simplification of the problem down to an ordinanyapsack problen

Figure 1-4 —Endogenous uncertainty and decisic-dependent

probabilities

Given the diminished amount of research on thectapiis expected th:
there should be many questions to be answeredhdnnéext sectic a brief

16
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description of the specific problem to be tackled given, along with a
characterization of a more general class of problEmwhich the results obtained

in this work are also valid.

1.5 Objective and contributions

This work will focus on the second group of stoditaprograms with
endogenous uncertainty discussed above and, instnse, the humanitarian
logistics problem (as defined in Viswanath et 86]) will be used as the main
motivating example.

A detailed description of the problem is providad Chapter 2 but,
essentially, it refers to the problem of determinithe optimal set of investments
on the reinforcement of the links of a network wWhiare subject to random
failures — the decision to reinforce a link incremshe probability that it will be
available afterwards.

The results presented here, although discussedhencontext of the
humanitarian logistics problem, should also hold ® more general class of
problems, including some of those discussed abowarely the ones related to
stochastic queuing networks, stochastic PERT anédntee management. The

general formulation of such problem class is gilbgn

Min cTx + E{Q(x,&(x))} (1.37)
subject to: Ax <b (1.38)
xXeEX (2.39)

where the functiorQ(x,£(x)) is now defined as the optimal solution of the

following second stage problem:

Min q(())Ty (1.40)
subject to: W(&(x))y < h(é(x)) (1.41)
yEeY (1.42)

It is important to observe that the coupling betveélee first and second

stages is not given by the existence of the Bxnas in the set of constraints

17
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(1.35) of problem (1.33) — (1.36) but by the depmerm of the probability
distribution of the random variables with respectitst stage decision variables
— evidenced by the subscripin the expressiofi, {Q(x, £(x))}.

The methodology proposed in this work will allowetlletermination of
provably optimal solutions to instances of problemsch larger than those

currently solved in the literature. Specificallgetcontributions are:

1) Reformulation schemewnhich avoids the non-linearities due to produdts o
first and second stage variables and due to theulesibn of scenarios

probabilities.

2) Provably finite cut generation algorithm that overcomes a potential
pitfall of the proposed linearization technique atbws the solution of

moderately-sized instances for a given error tolegdevel,

3) Incorporation of importance sampling conceptsinto the stochastic
programming framework. This overcomes the problémad knowing the
probability distribution of the random variablesdrehand and allows the

solution of large sample-based instances of thbleno.

1.6 Outline

The remainder of this work is organized as follo®@kapter 2 describes the
humanitarian logistics problem in detail, with aes@ emphasis on the
difficulties that arise out of its formulation; Qbtar 3 presents the re-formulation
scheme which solves the obstacles related to egiston-linearities; Chapter 4
introduces the approximation algorithm based ongareration and Chapter 5
extends this algorithm into a statistical frameworkorder to consider instances
of the problem that are not amenable to completaa® enumeration; Chapter 6
presents computational results, Chapter 7 conclasesdiscusses future work
alternatives and how the developments presentétkiprevious chapters may be
extended to other contexts.

18
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2 HUMANITARIAN LOGISTICS PROBLEM

2.1 Introduction

The impacts of natural or man-made disasters camebg significant in
terms of death toll and damages to affected regiBaghquakes, hurricanes and
floods have recently proven their catastrophic ke and concerns over global
warming and climate change worsen the perspedatiyears to come. Besides the
immediate loss of lives and destruction of infrassture, the effects of these
calamities usually last long after the initial k&ri When an earthquake strikes a
city, for example, utility services such as wagdectricity and gas may have to be
interrupted for weeks before necessary repairscarged out. On top of that,
several roads and bridges are usually affectedderamy the transportation
network severely impaired. It has been pointed [64] that more casualties
actually happen due to the isolation to which meesydents are forcefully put to
rather than by the event itself. This has also bibenexperience reported by
humanitarian organizations in the aftermath ofréeent earthquake in Haiti [28].

In face of that, regions that are prone to the metice of natural disasters
must take preventive measures in order to mitigatential damages, and devise
emergency plans so that they are able to provide foa those affected by such
events. It is clear that it is very important tosess the vulnerability of the
transportation network and to take steps aimeduaramteeing that it will be
possible to either evacuate people to safe locatiwrio provide them with basic
resources in post-disaster days.

The objective of the humanitarian logistics problénto determine the
optimal set of investments on the seismic retraffithe links of a transportation
network so as to minimize the sum of (determinjstitvestment costs and
expected (probabilistic) costs incurred when transpg people and/or resources
after a catastrophic event. Investment in bridgesd tnnels, for example, may
increase their resilience so that an earthquakiess likely to render them
unusable — Cooper et al. (1994) [19]. Such investmasually involve very large

sums of money and a limited budget must thus benafly allocated.

19
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2.2 Literature review

The literature on the humanitarian logistics prable very limited. To the
best of our knowledge, there are only three paffesdeal with the same (or a
very similar) problem as the one studied in thigkwvo

Viswanath, Peeta and Salman (2004) [66] were tBetb state the problem,
motivated by the risks of an earthquake hittingrgbul, the capital of Turkey.
They limit the scope of their model to the case nehene is interested in
maintaining connectivity between origin (O) and tdegion (D) pairs. Their
approach relies on the enumeration of the paths Qvbich, for practical
purposes and due to computational difficultiesinsted to listing a pre-defined
number of paths by using lkashortest path algorithm). Next, they propose an
approximation of the objective function based omfilst order terms of its Taylor
series expansion. As they recognize in their a&tithe disadvantage of this
approach is that by ignoring higher order termsytmeglect the potential
synergies of simultaneously investing in more tbaa link.

Liu, Fan and Ordonez (2006) [43] and Fan and LR0O@ [24] also study
the stochastic network protection problem. In thenier, the problem follows the
same outline as that described above [66] andghgyose an extension of the L-
Shaped method of Van Slyke and Wets by using gkpeda Benders
decomposition. In the latter, the second-stagelpnolnvolves the determination
of a Nash equilibrium by solving an MPEC (mathewslti program with
equilibrium constraints) which results from the swmleration that users may
choose their own best-perceived routes along th&ank. Their solution method
relies on the application of the Progressive Heglgilgorithm of Rockafellar and
Wets (1991).

Both articles, however, make the explicit assunmptieat the decision to
invest on the reinforcement of a link eliminateg throbability that it might
become unavailable after the disaster. They argaieitt would be preferable and
more realistic to maintain a probabilistic view lork failures but doing so would
lead the problem to fall under the class of stotbgsogramming problems with
decision-dependent uncertainties for which “matheabanalysis (...) is very

sparse, and is only limited to convex problemspefcgal structures” thus relying

20
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“heavily on heuristic methods to solve problemshwiealistic sizes due to
computational difficulties”.

Although not dealing with the same problem, thewe some related works
on the investment in links of a stochastic netwdkalimer (1980) [69] focused
on a generalized multicommodity network in whiahkk have random capacities.
He formulated the problem as a two-stage stochastigram — where first-stage
decisions are the amounts to be invested on thedse of link capacities, and
second-stage variables represent the flows of eaetmodity through the links —
and proposed a cutting plane technique that esptwtwork structure. In 1987,
Wallace [67] studied the problem of investing invknks in a network where
existing link capacities are random. He also foated it as a standard two-stage
stochastic program and suggested decompositiotegitea to solve it. Again in
1991, Wollmer [70] worked on a problem in which oseeks to optimize the
tradeoff between first-stage investment costs amdorsd-stage expected
maximum flow between a pair of nodes. The formalafiollows the regular two-
stage stochastic programming framework and wasedolysing an algorithm
based on cutting planes.

Finally, there is also a significant body of wonk the development of plans
for disaster preparedness and response which addifterent perspective from
that of mathematical programming. Instead, theseksvasually take a somewhat
heuristic view to determine critical links of a wetk based on a set of pre-
defined criteria. Sohn et al. (2003) [59] and So@2®06) [58] study the
prioritization of links which may become unavailaldue to earthquakes in the
Midwest states in the US or due to floods in ManglaUS. Based on a disaster
scenario, they analyze the potential disruptiond #reir consequences with
respect to travel delays, reconstruction costs andessibility to affected
cities/counties. This is also in line with the aggeh of Basoz and Kiremidjian
(1995) [6] and Bana e Costa, Oliveira and Vieir@0@ [7] who use Palo Alto,
CA and Lisbon, respectively, as case studies feir tmethodologies which
consider the physical characteristics of bridged #re social and economical
aspects which may be adversely affected by disaster

21



ISSN: 0103-9741

2.3 Mathematical formulation

Mathematically, the problem is formulated by asaugnive are given an
undirected grapltz = (N, E) with node sefvand edge sef. Nodes represent
locations where survivors and/or resources maybateéd, and arcs represent the
roads, bridges and tunnels which comprise the piatetion network. For ease of
presentation, a deterministic supply or demanid associated with each noide
Edges have non-negative transportation cgstsapacityu, and are assumed to
be available after the occurrence of the disastement with probabilitieg$. As
also stated in related works [66], it is assumed #ach edge fails independently
of the others — although this is not a necessasyragtion for the methods
proposed in this work. The survival probabilityaf arc may be increasedgbif
an amount, is invested in it. We associate the availabilityan arc to the value
of a random variablé,, which is equal to 1 if the edges operational and 0
otherwise.

Assuming that we are able to enumerate all theilplesscenarioss of

network configuration, the problem may be formuliaas follows:

@ win Y+ YooY+ Y d) 21

ecE SES ecE iEN
subjectto: Ax <b (2.2)
Wsys + 25 < hy Vs€ES (2.3)
ps = H(pgs + (pIes - pgs) : xe) Vs €S (2.4)
eeE
Ves < Ueées VseS,Ve€E (25)
x € {0,1}Fl; y,z € R* (2.6)
where:
€es realization of random variabk in scenaric
pSs probability of the availability status of edgen scenaria, given

that no investment is made on it (i.2(¢, = &.5|x., = 0) or,

alternativelng : fes + (1 - qg) : (1 - fes)
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pks probability of the availability status of edgen scenaria, given
that a reinforcement investment is made on it ,(i.e.

P(&, = &,|lx, = 1) or, alternatively, g% - &, + (1 —ql) - (1 -

fes)

d; penalty cost for the non-fulfillment of demand aidei

Ds continuous variable equal to the probability ofrereo s

Xe binary variable which is equal to 1 if an investinento be made
on edgee, 0 otherwise

Vs vector of continuous flow variables of scenario

Z vector of continuous slack variables for the demand supply of

each node in scenarso

The objective function (2.1) to be minimized proesd the sum of
deterministic costs incurred in the first stage doelecisions of reinforcement
investments and expected second-stage costs afigaxdmmodities through the
network and demand curtailment. Expressions (2.8) 42.3) represent,
respectively, the sets of first-stage constrairgacli as budget limitations,
minimum investment in each region, etc.) and seatadge constraints (such as
mass-balance equations on the realized networkgeoation of each scenario).
Expression (2.4) defines variablps as a function of investment decision
variablesx, and constraint (2.5) determines the upper bountheflow in edge
e, according to the realization of the random vdegp in scenaric.

Problem (2.1) — (2.6) is a mixed-integer nonlingmogram for which
solution methods are usually not guaranteed to dirglobal optimal solution. In
particular, there are three main difficulties asstmd with this formulation that
prevent existing algorithms to obtain global opti®@utions. These obstacles are
briefly described below; following that, Chapter @Besents a reformulation
scheme that overcomes the first two difficultied &hapter 5 proposes a solution
to the third.

1)  Non-linearity due to product of first and second sige variables.In
standard stochastic programming problems the pilityatf a scenario is
known and it thus usually becomes a coefficienthef objective function.
In the case of the class of problems being studiedhis work, the
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expression for the expected value of second stagstsc —
YsesPs Qeer CeVes + 2ien dizis) — Involves the product of first stage
variablesps — since, as described earlier, first stage deuwssiaffect the
probability of occurrence of each possible outcomand second stage

variablesy,, andz;.

Non-linearity due to the expression for the scenaos’ probabilities. A
second source of non-linearity arises from the esgon that defines
variablesp, themselves, which represent the probabity of oecwe of
each possible network configuration after takintpiaccount first stage
investment decisions. In this case, the expressmrives non-linear terms
of order up to|E| due to products of binary variables, :

ps = [eer(PSs + (pLs — pSs) - x.) . These non-linear terms arise from the
product of the probability of occurrence of the couhe of each random

variable that composes a scenario.

Scenario generation. As previously mentioned, most stochastic
programming models deal with random variables whasebability
distribution is independent of the decision vamabl This a priori
knowledge of the joint probability distribution alls one to obtain
scenarios for the realization of the random vaesldnd their respective
probabilities of occurrence — either by samplingririt in a Monte Carlo
fashion or by constructing them based on a givéera (e.g., moment
matching such as in Kaut and Wallace (2007) [44 Kaut, Wallace and
Hoyland (2003) [42] or minimization of distancestween probability
measures — Romisch (2009) [50], Heitsch and Rom{205) [35] and
Hochreiter and Pflug (2007) [37]) — which may thenused to numerically
compute the expectation of second stage costsessibled in Chapter 1.
Since the probability distribution of the randonrighles is not known
beforehand in the class of problems being studietthis work (i.e., it can
only be computed after first stage decisions aterdened), one cannot

rely on existing scenario generation methods.
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3 REFORMULATION SCHEME

In this Chapter, a reformulation scheme which oweres the difficulties
associated with the existence of non-linear teimihieé problem formulation will
be presented. Section 3.1 describes the argumeah \ahows the elimination of
the product between first and second stage vadabihéle Section 3.2 proposes a
linearization technique that eliminates the proguatmong binary variables;
Section 3.3 is dedicated to a discussion of thecequmation error and of how it

can be managed when solving a problem.

3.1 Separability of second stage problems

The product between variablpsandy,, in the objective function may be
removed by observing that the feasible regionshef gecond-stage problems —
sets of constraints (2.3) and (2.5) — are decoufpted first-stage variables. The

second-stage problem of each scenario may thewlbedsindependently of the

others:
Vs€S,g; = Min Z CeYes t Z d;z;s (3.1)
eEE iEN
subject to: Wgys + zg < hy (3.2)
Yes = UeSes Ve€eE (33)
.z €R* (3.4)

As shown above, we denote py the value of the optimal solution of
problem (3.1) — (3.4) for a given scenasiowhich then allows us to re-write

problem (2.1) — (2.6) as follows:

(Py)  Min Z TeXe T Z PsJs (3.5)
€eEE SES
subject to: Ax <b (3.6)
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ps = n(p(e:s + (pIes - pgs) " Xe) Vs ES (3.7)

eEE

x € {0,1}IF! (3.8)

In the following we will assume thag; > 0,vs € S. However, this

hypothesis comes without loss of generality, asvshia Annex A.

3.2 Polynomials in binary variables

A remaining difficulty in solving problem (3.5) 3.8) lies on the product of
binary variables, in the definition of variableg; — each equation defined in the
set of constraints (3.7) is a polynomial of or{fey.

There has been a significant amount of researcth@tinearization of the
product of binary variables. Following the initiatticle of Glover in 1975 [29],
there have been related works focused on quadusitions — Hansen and Meyer
(2009) [34], Balas and Mazzola (1984) in [4] an{] [(Sueye and Michelon (2005)
[32] — but some authors have also considered the chcubic and higher-degree
polynomials — c.f., Adams and Forrester (2005) [hang (2000) [17], Chang
and Chang (2000) [18], Oral and Ketani (1990 an®2)9[44] and [45].
Essentially, the proposed techniques resort toattthtion of auxiliary variables
and constraints to linearize each non-linear termthie problem. Since the
definition of each variablg; implies an exponential number of nonlinear terms

(Z',f;'2 (Iil) or, equivalently2/f! — |E| — 1), these methods result impractical for

the class of problems under consideration. The iapestructure of the
polynomials defined in the set of constraints (3:8pecifically, the fact that they
may be written as the product of linear terms i fibrma - x + b, wherea > 0
anda + b > 0 — allows for the straightforward application ofethinearization

technique proposed in this work, described below.

3.2.1 Proposed linearization technique

By relying on the fact that = b - ¢ - a = exp(Inb + Inc) , each equation

in (3.7) may be re-written as:
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Ps = exp <Z In(pgs + (pés — Pés) - xe)) (3.9)

eEE

Sincex is a vector of binary variables, the expressiothiwithe summation
operator may also be re-written in such a way vaatblesx, are not part of the
logarithmic expression. This is accomplished byeolisg that the argument of

each logarithm ig¢; if x, is equal to 0 and’, otherwise, leading to:

ps = €xp <Z{ln(pgs) + [ln(ples) - ln(pgs)] ) xe}) (3.10)

eEeE

A continuous variable may be defined as the logariof the probability of
each scenario, thus being an affine function oiabéesx, (this auxiliary variable

is introduced for ease of presentation but it isstactly necessary):

wy =1n(p; ) = ) {(In(pk) + [In(pke) ~ In(pE)] - xc) (3.11)

eEE

Having the value of the natural logarithm of thelmbility of a scenario
given by expression (3.11), the actual value oprtsbability (i.e., the value qi)
may be obtained by a piecewise linear approximatiohe exponential function.
Since the optimization sense of the problem is timze and the exponential
function is convex, this approximation may be reprded by a set of linear

constraints which can be incorporated into the lerob

Example. Let there be a network connecting cities A, B @domposed of
two links (AB and BC), as shown in the Figure bel@&uppose the current (i.e.,
pre-investment) survival probability of each link given byP,; = 50% and
Pgc = 60% . If a reinforcement investment is made on eaclk, lithese
probabilities increase 8,5 = 70% and Pz = 90%, respectively. There are

obviously four possible scenarios of network comfagion and we will use the
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one where both links are operational to illustréte proposeclinearization

O—E0—©

Figure 3-1 — Two-link network example

technique.

The probability of the scenario in which both lirdevive s,) is given by the
following expression:

Psl = (50% + 20% - xAB) X (60% + 30% - ch) (312)
The application of the logarithm to both sides q@éi@ion (3.12) results i
In(P;,) = In(50% + 20% - x45) + In(60% + 30% - x¢) (3.13)

The first term of the rigl-hand side of expression (3.1i3) equivalent tc
In(50%) + [In(70%) — In(50%)] - x4 (or, written in a slightly different forrr
In(50%) - (1 — x45) +In(70%) - x45 ). An analogous transformation may
applied to the second term of the r-hand side of expression (3.18psulting in

In(P;,) = ws, = In(50%) + [In(70%) — In(50%)] - x5 +

3.14

In(60%) + [In(90%) — In(60%)] - x5 (3.14)
The values of the logarithm of the probability afcarrence of scenars;

(i.e., the possible values of varialw, defined abovejre given in the Tabl

below forall possible values of the investment decisionaldésx,; andxg,.

XAB XBc In(P4p) In(Ppc) In(Py,)

0 0 In(50%) In(60%)  In(30%) = —1.204
0 1 In(50%)  In(90%)  In(45%) = —0.799
1 0 In(70%) In(60%) In(42%) = —0.868
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XaAB Xpc In(Pyp) In(Pgc) In(Py,)
1 1 In(70%) In(90%) In(63%) = —0.462

Table 3-1 —Probability of occurrence ofscenarios; according to the

investment decisions

The scenario’s actual probability of occurre, represented by variakp,,

may be obtained bgdding to the problerthe inequalitiesorresponding to th
first orderterms of the Taylor series expansion of the expbaleiunction arounc

the possible values of variabwg, — specified below andgepresented by ttlinear

segments depicted in thalowing Figure:

Ps, = 30% + 30% - (wy, — In(30%)) (3.15)

Ds, = 42% + 42% - (ws, — In(42%)) (3.16)

Ps, = 45% + 45% - (w5, — In(45%)) (3.17)

Ps, = 63% + 63% - (wy, — In(63%)) (3.18)

. 80%
=
o ] 0,
o c35 70%
g O
3 - 60%
ks
g 45% - 50%
@ = 42%
= é o - 40%
o 30%
qg o . 30%
=
= - 20%
o)
2
5 - 10%
[a '
0%
-1.6 -1.35 -1.1 -0.85 -0.6 -0.35 -0.1
In(Psl) = Ws1
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Figure 3-2 — Inequalities that provide a piecewisknear approximation
to the exponential function

This would ensure that for every possible combomatof the values of

variablesx,p andxgc, the value op; would be exactly equal to the probability

of occurrence of scenarig.

3.2.2 Reformulation

Following the linearization technique proposedhe previous Section, we

re-write problem (3.5) — (3.8), eliminating the AloTearities:

(Py) Min Z TeXe T z 9sPs (3.19)
€eEE SES
subject to: Ax <b (3.20)

Wy = ) {In(pE) + In(ok) ~ N %} vses (g

e€eE

Ds = ap + By - wy VSES,VkEK (3.22)
p €ER*,w € R (3.23)
x € {0,1}/#! (3.24)
where:
K set of linear constraints that approximate the agptial function
Ak, Br coefficients of the k-th segment used to approximate the

exponential function

Wq continuous variable equal to the natural logarittoh the
probability of scenaria

Ds continuous variable equal to the approximationhaf probability

of scenarics
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Figure 3-3 —Piecewise linear approximation of the exponentigfunction

Given an approximatioto the exponential function (i.e., given a set of «
in the formy > exp(wy) + exp(wy) - (W — wy) that provide a piecewi linear
approximation to the exponential funct) and assuming it is computationa
feasible to enuerate and solve the second stage problems for cabilple
network configurationsone is able tcsolve problem (3.19) —3(@24) using
commercially available solverThe following sub-sections discu®e necessary
number of additional constraints for an exact sotuto the problem and tt

generation of constrainter a givenerror tolerance level.

3.2.3 Additional constraints

According to the seof constraints (3.21), each variabbgis equal to the
sum of the logarithm of the probability of the dahility status of each ede in
scenarios. Each of hese logarithms matake one out otwo possible value
depending orwhether aninvestment is made othe correspondinedge and,
consequently, variables, may potentially assum2?! different values. In orde
to guarantee that the optimal solution to reformulatedproblem corresponds
the global optimum of the original probleithere must be a cut to approxim
the expnential function centereon each one of these valuamsd, therefore, eac

equation defined in (3.32Tequires the addition !?! constraints to the proble
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3.3 Approximation

As described above, the exact representation ohtiminear terms of the
problem requires an exponential number of additi@aastraints and this may
cause the problem to grow prohibitively large ef@mmedium-sized instances. In
this section we discuss an approximation to thélpra which allows it to be

solved for larger instances whilst maintaining ap@roximation error bounded.

3.3.1 Generation of cuts for an error tolerance thr eshold ¢

The solution of any two-stage stochastic prograesgentially related to the
determination of the optimal trade-off between duataistic first-stage costs and
expected (probabilistic) second-stage costs. Toerethe quality of the optimal
solution of problem (3.19) — (3.24), which resuitsm the application of the
proposed linearization technique, relies on thelityuaf the piecewise linear
approximation of the exponential function. GivesedK of linear constraints and
a solution to the corresponding problem, the alisoduror (i.e., the difference
between the true value of the second-stage costifunand its approximation) is

equal to:

Z gs(exp(wg) — bs) (3.25)

SES

The percentage error is obtained by dividing theollie error by the true

value of the second-stage function at a solution:

ZSES s (exp(ws) - p’\s) (326)
ZSES s - eXp(Ws)

An approximation which guarantees the maximum peege error to be
below a given tolerance levelmay be constructed based on the following
proposition:

Proposition 1. Let F be the set of elemenfs;/b;}), and e"4X =
max;{a;/b;}, then
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>N a (3.27)

< gMAx
b
Proof.
ZIiV=1 a; ?]=1 EMAXbi — MAX , Il'V=1 bi — EMAX (328)
Z?’=1bi B Z?’=1bi Zﬁvzl bi
[ ]

This result ensures that providéskp(ws) — ps)/exp(w,) < €, Vs € S (i.e.,
the percentage error of the piecewise linear appration is less or equal tofor
each scenario) for all scenarios and possible sabiev;, then the percentage
error of the approximation to the second stage figsttion is also not greater
thane.

For a given set of cutk one can easily verify i@ (|K|) whether the
condition is satisfied (since the largest erromigetin two adjancent cuts occurs at
the point where they intersect) which allows forriwas heuristic/iterative
methods for generating a piecewise linear approtkémathat guarantees that a
maximum percentage error threshold is not violabkedhe next sub-section, the
minimum number of cuts necessary foreaapproximation of the second stage

cost function along with a method for generatingnthwill be shown.

3.3.2 Minimum number of cuts

The following proposition establishes the minimunumber of cuts
necessary for an approximation of the second stm® function whose
percentage error is not greater tlzan

Proposition 2. Let qéé.s + (1 —q¢) - (1 — &) and qéées + (1 —qe) -
(1 —&,,) be the two possible values for the probabilityhaf availability status of

L 2lEl
edgee in scenari andW, = {ln(;o;)}iz=1 be the set of all possible values that the

logarithm of the probability of scenarsomay assume (given by all combinations

of the product of the edges’ probabilities). Alsetn* andn~ be, respectively,
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the positive and negative roots of the equatienexp(n) + nexp(n) = €. Then,
the minimum number of additional constraints neapsdor an approximation
which guarantees the percentage error to be lesgual toe is given by} s @q,

whereg;, is the optimal value of the following optimizatipnoblem:

2lE|

ps = Min sz (3.29)
j=1

subject to: y; > M1(1 — zj) — M, z; vj=1,..,2F (3.30)

In(p}) =y, —n* —M,(1—x;;) Vi,j=1,..,2E (3.31)
In(pi) <y;—n" +M;(1—x;) Vij=1,..,2F (332

Xij < 7 Vi,j=1,..,2E (3.33)
2lE|
le-j > 1 vi=1,..,2E (339
=1
z,x € {0,1} (3.35)
yER (3.36)

Proof.
The percentage error of the approximation providgda cut centered at

pointw, is given by the following expression:

exp(w) — (exp(wo) + exp(wo) - (W = wy))
exp (w)

(3.37)

whereexp(w) is the true value of the exponential function.(itee true value of
the probability of occurrence of a scenario) é&exp(w,) + exp(wy) - (W — wy))
is the approximation provided by a cut centeredvgras discussed in Section
3.2.1.

By rearranging the terms, this expression may bheritten as:

1—exp(wyg —w) + (wy —w) - exp(wyg — w) (3.38)
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which is a strictly concave function and analogtushe equation defined in the
Proposition by defining = w, — w. Observe that the percentage error depends
not on specific values ab or w, individually, but solely on the difference
between the point in questiom and the point at which the approximation is
centered onw,. Consequently, the percentage error within thervat {w, —
n*,wo —n~} resulting from an approximation centered on amnegipointw, is

less or equal te. This is illustrated in the Figures 3.4 and 3.5.

Regarding the optimization problem (3.29) — (3.88)responding to a
given scenaris, binary variableg; indicate the addition of a cut centered on the
value of continuous variablg; variablesy;; indicate that a given poilt(pl) is
assigned to the cut centered ygn which — according to constraints (3.31) and
(3.32) — can only occur lh(pl) is within the intervaly; —n*,y; —n~} (i.e., if
the approximation error at poiht(p}) provided by the cut centered onis less
or equal tce); M;, M, andM; are sufficiently large positive numbers. Objective
function (3.29) represents the number of cuts wtich effectively needed to
ensure the approximation error for all elementshef seil; is no larger thas.
Contraint (3.30) ensures that a cut can only pmwadiseful approximation if the

the corresponding variabkg is properly set to 1; constraint (3.33)etermines

that a given poinin(pl) may only be assigned to a valid cut and const(8i34)
requires each element of the Hétto be assigned to at least one cut.

The solution of such problem determines not oné/iamber of necessary
cuts that provide an approximation for which theoeris not larger tham

(Xj=1,.21E12;) but also the exact points at which they shouldcbetered on

2lE|

({yjlz; = 1}._).

j=1

! Constraint (3.26) is actually redundant, givengkeof constraints (3.23) to (3.25).
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1 90%
Exponential function
1 80%
——Linear approximation to the exponential function centered on In(45%) (~-0.8)
1 70%
1 60%
41 50%
1 40%

1 30%

1 20%

Probability of occurrence of a scenario

1 10%

T T T 0%
-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0
In(Ws) [Natural logarithm of the probability of a scenario]

Figure 3-4 —Linear approximation to the exponential function provided by a

cut centered on In(45%)
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In(Ws) [Natural logarithm of the probability of a scenario]

Figure 3-5 —Percentage rror provided by a linear approximation centered

on In(45%) and illustration of ™ andn~ for € = 10%

The size of each optimization problem defined i@ pievious Propositi,
including the number of binary variabl grows exponentially with the number
edges of the graph corresponding to the transpamtattwork of a given instant
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of the humanitarian logistics problem. This mayssathe computational burden
to be excessively large and ultimately render afutgon to optimality very

unlikely. Next, we discuss a relatively simpler egarh to determining a set of
cuts that provide an approximation that does naiateé the bound on the
maximum error and is much easier to compute sihdees not require the full

enumeration of the elements of the $€is

3.3.3 An easier way to generate the cuts

Since the condition of each edge (i.e., whetheh egige is active or failed)

is known for each scenario, the feasible intergakfach variablev, is given by:

{ln(ﬂ 22).n(] | u@} (3.39)

e€eE e€eE

where A7 = min {gg&es + (1 —q¢) - (1 — &), qides + (1 —ql) - (1 = &e5)}
andug = max {q¢é.s + (1 —qs) - (1 — &eo), qedes + (1 —q2) - (1 = &e)}. The
interval defined in expression (3.32) thus contaatisthe possible values of a
given variablev; and an approximation that ensures that the pexgengrror is
not violated at any point within this range maydasily computed by adding the
cuts corresponding to the first order Taylor's exgian of the exponential
function around the points{in([ToegA3) +nt +k-(n* — n‘)}ifol (or,
alternatively, {In([Teez 1) + 1~ — k- (* =17}, ), wheret, is defined as

follows:

_ |(n(Teee pe) — In(Tleer 42))
TS - —_
m*t—n)

(3.40)

For each scenario, this procedure results in a purobinequalities which
is, obviously, an upper bound to the optimal solutof the optimization problem
defined in Proposition 2 and in a total numberwtequal to:
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Z ( (In(Tleer 1) — In(I1eek ﬂZ))D (3.41)
m*—n")

SES
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4 CUT GENERATION ALGORITHM

4.1 Active cuts at the optimal solution

Depending on the percentage error threshold (andhenminimum and
maximum scenarios’ probabilities should the appration cuts be determined as
discussed at the end of Chapter 3) the number adssary cuts may grow to be
very large, leading to computational difficultiesda slower performance of
solution algorithms.

However, the observation that only a small fractainthese cuts will be
active at the optimal solution of problem (3.12)(3:17) — only|S| cuts
represented in the set of constraints (3.15) welldetually binding — naturally
points towards the design of an algorithm that dyically generates the cuts to
construct the piecewise linear approximation toetkggonential function.

Next, we follow the notation and terminology of Geon (1972) [27]: the
value of the objective function at the optimal $@n of an optimization problem
(+) is denoted by(-) and its set of feasible solutions By-). Additionally, -*

denotes the value of variablat the optimal solution.

4.2 Solution properties

The original problem (2.1) — (2.6) and its re-fotatad linear counterpart
(3.12) — (3.17) have exactly the same set of féasiblutions (or, more precisely,
any feasible solution to one may be mapped intdahsible solution space of the
other), which may be expressed B§P) = F(P,). In addition, if we denote the
true second-stage cost function W(x,&(x)) and its piecewise linear
approximation by) (x, £(x)) then, by construction, the following relation held

for all feasiblex:

Q(x,¢() < Q(x,¢(), (4.1)
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Consequently, the value of the optimal solutiopmblem (2.1) — (2.6) will
always be greater or equal to the optimal valugroblem (3.12) — (3.17), i.e.:

v(P,) < v(P) (4.2)

4.3 Approximation of the second-stage cost function

Based on the previous remarks, the following atbari (ALG1) may be
used in order to obtain a solution to the problemwhich the percentage error of

the approximation of the second-stage cost funeidess or equal te:

1 Initialize the set of cutk = @, the lower boundB = —inf, upper boung
UB = +inf and define the maximum percentage egror

2 While |(UB — LB)/UB| > ¢

Solve problenP, defined by (3.12) — (3.17) with the currently def

set of cuts(

SetLB = v(P;) — Yeer TeXe (= Xses Js * Ps)

SetUB = Yses gs - exp(Ws)

w

For each scenarioe S
Add the cut defined by, =exp(ws):-(1—ws) and By =

~N oo o b~

exp(wy) to the cut sek
End For
End While

o]

The algorithm works by gradually constructing até&egpproximation of
the second stage cost function through the addiifoouts around the optimal
values of variablesy; found at each iteration. Following the discussion
Chapter 3, the addition of a cut centered on aiBpe@lue w; provides an
approximation that may also be useful (i.e., forickh the percentage
approximation error is smaller thar) for other possible values of the same

variable which may be part of the optimal solutionnd in subsequent iterations.
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4.3.1 Convergence analysis

The following proposition determines the maximunmyoer of iterations of
the algorithm needed in order to obtain a solufmmwhich the percentage error
of the approximated second-stage cost functiortivel#o the true function is no
larger thare.

Proposition 3. Letn™, 2¢ andué be defined as in Chapter 3, then algorithm
ALG1 converges to a solution of probldfor which the percentage gap of the
approximated second-stage cost function relativiestexact counterpart is less or

equal toe in a number of iterations not larger than:

([(ln(neeE pe) = In(Ileeg A2 ))D (4.3)
SES

Proof. As per the result of Proposition 1, if the converge criterium of the

algorithm has not been met at a given iteratidhmeans that there exists at least

ones € S for Whlchww > ¢. Since it can be verified thig*| < |n7],
this implies the fact that there exists at leasé mariablew; (s € §) which

satisfies the relation:

Ws*(i) (J) >ntvj<i (4.4)

wherew*(i) denotes the value of variable at the optimal solution of problem

P, solved at iteratiori (w ) are thus the points around which the piecewise
linear approximation to the exponential functions Haeen built in previous
iterations).

Lets € S be a scenario for which relation (4.4) holds astd Ibe the total
length of the region(s) within the feasible intdred variablew, for which the

current approximation violates the maximum perogatarror threshold. The

addition of a cut around the valué(i) reduces’ by at leasy™ (and, potentially,

byn* —n~). As discussed in Chapter 3, and repeated herediovenience, the
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condition of each edge is known for each scenémigs allowing us to determine

the feasible interval for each varialie as:

{ln(l_[ 23), ln(l_[ MS)} (4.5)

e€eE e€eE

At different iterations, each variabhke (s € S) may satisfy condition (4.4)
at most [(In([Teeg 13) — In(T1eer 45))/n*] times - since, after that, the
approximation of the exponential function over itdl feasible region will be so
that the maximum percentage error is less or etal. The result on the

maximum number of iterations of the algorithm falonaturally.

4.4 An algorithm considering the gap to the global optimal solution

The approximation of the second-stage cost funcitahe solution obtained
by the algorithm presented in the previous Seci®orensured to be withia
percentage points of the true function. Howevee, gap between the solution
returned by the algorithm and the global optimdlison to the problem may be
different since it depends on the first-stage twsttion as well.

A slight modification to the algorithm may be intiteced in order to account
for the percentage gap between the solution ofpttedblem solved using the
approximation to the second-stage cost function #oed global optimum, as
shown below (ALG2):

1 Initialize the set of cutk = @, the lower boundB = —inf, upper boung
UB = +inf and define the maximum percentage etror

2 While |(UB — LB)/UB| > ¢

3 Solve problenP, defined by (3.12) — (3.17) with the currently def
set of cuts

4 SetLB = v(P,)
SetUBuux = Xeer TeXe + Lses gs - €xp(ws)

6 If UByy, < UB, setUB = UBg,,
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7 For each scenarioe S

8 Add the cut defined by, =exp(ws):-(1—ws) and By =
exp(wy) to the cut sek

9 End For

10 End While

The algorithm above works by) (btaining a series of feasible solutions for
the original problem andif progressively perfecting the approximation of the
second stage cost function at each iteration, A4 (&1.

On the one hand, the series of feasible solutionsige a monotonically
decreasing sequence of upper bounds. On the o#met, the series of values of
the objective function at the optimal solution lo¢ tapproximated problem solved
at each iteration constitutes a monotonically iasheg sequence of lower bounds,
sinceQ;41(x, £(x)) = Qi(x,€(x)) for all feasiblex (whereQ;(x, (x)) denotes
the piecewise linear approximation of the secomgestcost function at iteration
).

In this case, a simple upper bound on the numbeateddtions until the
convergence of the algorithm is given 8y 2!Z!, which would correspond to a
complete enumeration of the linear constraints tlpmovide an exact
representation of the exponential function at akégible values of each variable

W.
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5 SCENARIO GENERATION

5.1 Difficulty in scenario generation

While the number of possible network realizatioss computationally
tractable, the algorithm presented in Chapter 4 beysed in order to obtain a
solution which is within a tolerance levelfrom the global optimum of the
original problem. However, if one wants to be aolesolve large-scale problems,
it becomes imperative to have an estimate of thpeeted value of the second
stage cost function which is not based on the ceta@numeration of all possible
network configurations.

Standard two-stage stochastic programming modelsallys resort to
scenario generation to allow for the evaluation tbése multi-dimensional
integrals. However, unlike the vast majority of plems studied in the literature,
in the humanitarian logistics problem — and, moemegally, in the class of
problems presented in Section 1.5 — the probabdisyribution of the random
variables is not known before first-stage decisiamsdetermined.

As already pointed out in Section 2.3, this makeisnpossible to utilize
traditional scenario generation methods such astd@arlo sampling, moment
matching or minimization of distances between pbiiig measures. In this
work, we propose to overcome this obstacle by merghe concepts from

importance sampling into a stochastic programmiaméwork, as presented next.

5.2 Importance sampling

In statistics, importance sampling is a technigqeeduto estimate the
properties of a certain distribution while only hmy samples drawn from a
different one. In the context of simulation studigsportance sampling is usually
employed as a variance reduction technique usednjunction with the Monte
Carlo method. The basic idea is that certain vabfethe random variable may

have a stronger effect upon the parameter beingasd than others, so it might
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be interesting to sample these values more fretyudran what would otherwise
be expected based on the original probability ithgtron.

As detailed in Rubinstein (1981) [51], the methadiess on a simple
observation to compute the expected value of aomandariableX~F; (x) based

on samples from another distributiBs(x):

xf1(x)dx=f x% fl(x)}

f2(x)dx = Eg, {x 00

i) = |

X

(5.1)

For a given set of samples(i = 1, ..., N) drawn according to a probability
density functionf,(X), the importance sampling estimator of the mean of
distributionf; (X) is then defined as:

NP C f1(x;)
Hx = N; Xi m (5.2)

Following expression (5.1), each sample is weigldéfirently based on
the likelihood ratio, i.e. the ratio between thehmbility of occurrence of that
sample under the distribution of interest and the foom which the samples were
drawn.

Again according to [51], this estimator is provem e consistent — it
converges tquy with probability 1 as the sample size grows tanity — and
unbiased — its expected valueuis whatever the sample size. In the next section,
this technique is incorporated into the optimizatgroblem so as to allow for the

estimation of the second stage cost function basestenarios.

5.3 Reformulation

Although the final post-investment) probability distribution of the
availability of the edges is not knovarpriori, the initial distribution (i.e., the one
which does not consider any reinforcement investg)anay be used to generate
scenarios of network configuration, for which thelpability of occurrence may
be easily calculated. This is also the case ofmbes general class of stochastic
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programming problems with endogenous uncertainfyne@ in Chapter 2: the
initial probability distribution of the random vables is always known, even
though it might change after first-stage decisiaresdetermined.

Additionally, since the linearization technique posed in Chapter 3 makes
it possible to compute the probability of occurreraf any scenario given the
first-stage investment decisions (or, at leastapproximation to its value), we
may join these pieces of information in order tonpoite the importance sampling
estimator of the expected value of the second stagiefunction.

By examining expression (5.2) for the importance@giéng estimator, we
may identify the corresponding elements of the ropation problem being
studied:f; (x) andf,(x) are, respectively, the final and initial probaildensity
functions of the scenario¥, is obviously the number of sampled scenarios and
the sampleg; represent the values of the scenario-specificrakstage problems
which are solved separately, as discussed in Chap@nce again, it is important
to stress that the scenarios of network realizati@nto be sampled according to
the initial probability distribution of the edgesvailabilities.

This analogy allows us to reformulate problem (3.£2(3.17) in a way
which does not require the full enumeration ofpalésible network configurations

but relies on a smaller subset of randomly gendratenarios, as shown below:

, 1 Ds
(P3) Min TeXe +m s pINI (5.3)
SES

eEeE

subjectto: Ax <b (5.4)

Wy = D (In(pg) + (o) ~GE)]- %} wses (ss)

e€eE

ﬁ52ak+ Bk'WS VSES,VkEK (56)
p ERT,weER (5.7)
x € {0,1}/*! (5.8)
where:
pINI probability of sampled scenar#g calculated based on the initial

probability distribution of the availability of elacedge, i.e.

INI _ C
Ds - HeeE Pes
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Based on a set of scenarios of network realizatisaspled according to
the initial probability distribution of the edgesivailabilities, a solution to
problem (5.3) — (5.8) may be found using the atpamioutlined in Chapter 4.

5.4 Solution robustness

As with any two-stage stochastic program, the smiuto these problems
depends, essentially, on balancing the trade-dffiéen deterministic first-stage
costs and the expected value of probabilistic s&@bage costs. It is thus
imperative that we have a reasonable estimatecoinsestage costs in order to be
able to have confidence in the quality of the solubbtained.

On the one hand, the larger the set of sampledasosn the better the
estimate of second-stage expected costs will beth®mwther hand, having fewer
scenarios makes the problem smaller and solutioresti are usually faster.
Anyhow, once a solution is found for a given setsoénarios, a Monte Carlo
simulation — in which the probability distributiarf the edges’ availabilities takes
into account the determined first-stage decisionsay then provide a confidence
interval against which the estimate of the expedatests of the second-stage
provided at the solution of the problem can be camag in order to assess the
need for a larger number of samples. This is dssdisn Annex B, where an

algorithm for determining an adequate number ofaies is described.
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6 COMPUTATIONAL RESULTS

Computational tests were perfomed to analyze th#omeance of the
proposed reformulation schemes and solution alyorit All testes were
conducted on a computer with processor Pentium0®, GHz and 2 GB of RAM.
The models and algorithms were implemented usirg rttodeling language
MOSEL and solved by XPRESS 19.00.04.

The first results are those obtained for the seinefances described in
Viswanath et al. [66]. These are all small-sizebpgms which served as a “proof
of correctness” for the proposed methodology. Sinceother work in the
literature deals with the problem in its originarh (remember that [43]
dismisses the probabilistic nature of the problgnassuming that investment on
an edge completely eliminates the probability aittbdge failing afterwards),
several other instances were created in order sesasthe performance of the
methodology for medium and large-size instancab@problem.

The remainder of this Chapter is organized as vidlo Section (6.1)
presents the results for the instances provid¢@a6p Section (6.2) describes how
the medium and large-size instances were geneeatggresents results for the

former while Section (6.3) discusses the resulitstfe latter.

6.1 Instances from the literature

All the instances solved in [66] refer to a graphiek contains 4 nodes and
5 edges, as depicted in Figure 6.1. There is & tt@8 instances which are
detailed in Table 6.1. they differ from each othar the investment and
transportation costs associated with each edgertowinvCost and TranspCost,
respectively), maximum budget (colunBudget), penalty for not fulfilling the
demand associated to a node (coluRemalty) and initial and final survival
probabilities (initial survival probability is equtn 70% for all edges in instances
1 through 14 and equal to 60% in instances 15 girod8 and column
SurvProbinv). NodesO andD are the origin and destination for a unit commpdit

that must flow through the network.
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Figure 6-1 — Graph corresponding to the instancesfved in Viswanath
et al. [66]

For all these instances, there are 32 ¢§2enarios of network configuration
— given by all the possible combinations of theilabdity of the edges — and the
first step of the proposed methodology determihas the minimum cost network
flow problem corresponding to each one of thesdigorations must be solved
independently. For this set of instances, totalitewh time of the network flow
problems for all scenarios is minuscule.

Once these optimal values are known, they are asecbefficients in the
objective function of the main problem, which igthsolved by the algorithm
outlined in Chapter 4. All instances were solvedoptimality in less than 1.0
second and average solution time was 0.313 se@mwidils are provided in Table
6.2 where the columid indicates the instance identification, colur@ptVal
presents the value of the optimal solution , coldhiter indicates the number of
iterations of the algorithm until convergence weakieved and colummotal Time

the time it took for the algorithm to complete.
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Id SurvProblnv InvCost Budget TranspCost Penalty
1/15 {80%, 80%, 80%, 80%, 80%}  {1,1,1, 1,1} 2 {10, 10, 10, 10, 10} 31
2116 {80%, 80%, 80%, 80%, 80%}  {1,1,1,1, 1} 3 {10, 10, 10, 10, 10} 31
3/17 {80%, 80%, 80%, 80%, 80%}  {1,1,1,1, 1} 3 {10, 10, 15, 30, 10} 41
4/18 {80%, 80%, 90%, 80%, 80%}  {1,1,1, 1,1} 3 {10, 10, 15, 30, 10} 41
5/19 {80%, 80%, 80%, 80%, 80%} {2,1,1,1,1} 3 {10, 10, 15, 30, 10} 41
6/20 {80%, 80%, 80%, 80%, 80%}  {1,2,1,1, 1} 3 {10, 10, 15, 30, 10} 41
7121 {80%, 80%, 80%, 80%, 80%} {1, 1,2, 1, 1} 3 {10, 10, 15, 30, 10} 41
8/22 {80%, 80%, 80%, 80%, 80%}  {1,1,1, 2,1} 3 {10, 10, 15, 30, 10} 41
9/23 {80%, 80%, 80%, 80%, 80%} {1,1,1,1,2} 3 {10, 10, 15, 30, 10} 41
10/ 24 {80%, 80%, 80%, 80%, 80%}  {2,1,1,1, 1} 3 {10, 20, 10, 15, 10} 31
11/25 {80%, 80%, 80%, 80%, 80%} {2,1,1,1, 1} 3 {10, 20, 10, 15, 10} 43.9
12/26 {80%, 80%, 80%, 80%, 80%} {2,1,1,1,1} 3 {10, 20, 10, 15, 10} 57.3
13/27 {80%, 80%, 80%, 80%, 80%} {1,1,1,1,1} 3 {10, 15, 5, 15, 10} 26
14/ 28 {80%, 80%, 80%, 80%, 80%}  {1,1,1,1, 1} 3 {10, 15, 1, 15, 10} 26

Table 6-1 — Description of the instances providedhiViswanath et al. [66]
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Id OptVval #lter TotalTime
1 21.9961 3 0.137
2 21.7155 2 0.082
3 26.8835 3 0.123
4 26.8494 4 0.225
5 26.9087 3 0.120
6 26.9681 3 0.106
7 26.8835 3 0.136
8 26.8835 3 0.122
9 26.9681 3 0.129
10 26.9601 4 0.257
11 29.0251 3 0.144
12 31.0963 3 0.297
13 25.1315 5 1.000
14 23.0995 3 0.359
15 22.5114 3 0.302
16 22.0285 2 0.187
17 26.9725 3 0.359
18 26.9638 3 0.531
19 27.0157 3 0.359
20 27.1194 3 0.375
21 26.9725 3 0.360
22 26.9725 3 0.421
23 27.1194 3 0.359
24 27.0074 3 0.422
25 28.8943 3 0.421
26 32.0447 3 0.375
27 25.1565 3 0.625
28 23.1405 2 0.235

Table 6-2 — Results of the instances provided in $vanath et al. [66]
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6.2 Medium-size instances

Given the lack of additional instances of the peaoblavailable in the
literature, we developed an instance generator lwhias then used to test the
proposed methodology.

The instances were created by randomly selectiagdbation of a given
number of nodes within a region defined by minimand maximum values for
thex andy coordinates. Next, a predefined number of edgesaxing the nodes
was created (the resulting graph was checked fonexxtedness in order to avoid
trivial and meaningless solutions) and the Eucldefistance between the
corresponding nodes was assigned as the transportaist of each edge. Pre-
and post-investment survival probabilities weragresd to each edge and, for the
large instances presented in Section 6.3, scenafinstwork configuration were
generated based on the initial survival probabditgach edge.

Next, in Tables 6.3 and 6.4, we present the refuita total of 30 instances
which were all solved by the algorithm designedCimapter 4 (ALG2) with full
scenario enumeration and tolerance level set tanoce than 1%. The table
provides the following information: columiul identifies the instance, columns
Nodes and# Edges indicates, respectively, the number of nodeseaigks of the
graph, column# Scen provides the number of scenarios of network camégon
used in each problem; colunWB reports the value of the best solution found
while columnLB indicates the value of the solution to the lagprapimated
problem (i.e., the one which is solved by consmgrihe set of cuts that
approximate the exponential function), coluftGap presents the percentage
gap between the upper and lower bounds and col&miol contains the
maximum acceptable error, which is the stoppingeum for the algorithm;
column# Iter indicates the number of iterations of the algonitheeded to reach
the final solution, and columMainTime report the total time for the convergence
of the algorithm (the time needed for the solutadnthe independent scenario-
specific network flow problems is not reported ley are usually orders of
magnitude smaller than the time it takes for tlypadhm to converge which thus

represents the bottleneck of the methodology).
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Id

#Nodes #Edges # Scen

uB

LB % Gap ErrTol #lter MainTime
v5e6A 5 6 64 219.423  219.423 0.00% 0.1% 5 0.437
v5e6B 5 6 64 50.6467  50.6467 0.00% 0.1% 3 0.140
v5e6C 5 6 64 143.923  143.923 0.00% 0.1% 4 0.281
v5e6D 5 6 64 107.918 107.918 0.00% 0.1% 4 0.250
v5e6E 5 6 64 277.904  277.904 0.00% 0.1% 4 0.281
v6e8A 6 8 256 361.265  361.265 0.00% 0.1% 6 1.796
v6e8B 6 8 256 45.9159  45.9159 0.00% 0.1% 5 1.328
v6e8C 6 8 256 350.268  350.268 0.00% 0.1% 5 1.594
v6e8D 6 8 256 110915 110.915 0.00% 0.1% 5 1.062
v6e8E 6 8 256 65.4201  65.4201 0.00% 0.1% 3 0.328
v7el0A 7 10 1024 122.857 122.851 0.0049% 0.1% 4 353.7
v7el0OB 7 10 1024 201.934 201.926 0.0040% 0.1% 5 684.4
v7el0C 7 10 1024 104.863  104.857 0.0057% 0.1% 4 633.0
v7e10D 7 10 1024 158.868  158.861 0.0044% 0.1% 5 634.0
v7elOE 7 10 1024 75.5659  75.5619 0.0053% 0.1% 5 045.7

Table 6-3 — Results for the medium-size instances
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# Scen UB LB % Gap ErrTol #lter MainTime
v7ellA 7 11 2048 306.692  306.672  0.0065% 0.1% 8 1420.
v7ellB 7 11 2048 252.026  251.985 0.0163% 0.1% 6 3439.
v7ellC 7 11 2048 66.7778 66.7561 0.0325% 0.1% 5 5935.
v7ellD 7 11 2048 312985 312.959 0.0083% 0.1% 6 8738.
v7ellE 7 11 2048 58.0173  57.9977 0.0338% 0.1% 5 85927.
v8el2A 8 12 4096 31.9086  31.5927 0.99% 1% 11 485.39
v8el2B 8 12 4096 141.750 141.515 0.1658% 1% 6 282.8
v8el2C 8 12 4096 97.1507  97.0042 0.1508% 1% 4 90.21
v8el2D 8 12 4096 49.6668  49.4192 0.4985% 1% 7 886.2
v8el2E 8 12 4096 155.492  155.381 0.0714% 1% 4 71.29
v8el2b6A 8 12 4096 40.8165 40.6271 0.4640% 1% 6 .6257
v8el12b6B 8 12 4096 28.5302 28.2736  0.8994% 1% 8 7881
v8el12h6C 8 12 4096 22.3931  22.1859 0.9253% 1% 7 .3689
v8e12b6D 8 12 4096 66.6392  66.3808 0.3878% 1% 8 .7982
v8el2b6E 8 12 4096 105.355 104.637 0.6815% 1% 5 .8143

Table 6-4 — Results for the medium-size instances
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6.3 Large-size instances

The set of instances in Section 6.2 involved graplith a maximum of
twelve edges and 4096 possible scenarios of neteariguration. The total time
required to solve these problems clearly shows Hioev computational effort
increased very rapidly with respect to the numbiexdges — just as an illustration
of this fact, the average time needed to solvartsiances with 11 edges was 40.2
seconds, while the average time consumed by theritdgn in solving the
instances with 12 edges was 368.1 seconds.

A critical example is provided by an instance & groblem with 10 nodes
and 15 edges (and, consequently, 32768 possibleascs of network
configuration) which was solved by full scenariausreration. The Figure below
presents the performance of the algorithm — datatgoepresent the upper and

lower bounds obtained at each iteration:

80

-0-UPPER BOUND
70 870.3
~0-LOWER BOUND
60 -
w
2
g 50 - l 47.8 47.8 46.0 46.0
> il a
9 a4
G 40 44.8
> 42.2
z 37.3
W 30 -
o
3} 244
w
2 20 |
o
10 |
0600 ‘ ‘ ‘ ‘ !
0 5 10 15 20 25

TIME (HOURS)

Figure 6-2 — Algorithm perfomance on an 15-edge itsnce with full

scenario enumeration

While the previous instances converged to solutmite gaps not larger
than 1% after no more than 17 minutes, in the chtlee 15-edge instance it took
a total of 25 hours for the algorithm to narrow thep down to 2.57%. This

clearly leads to the conclusion that full scenamumeration is currently not a
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viable option when one tries to solve large scalsblems and a sample-based
version of the problem — such as that suggeste@€hapter 5 — becomes a
necessity.

In Table 6.5, we present results for 18 instancis thie number of edges
ranging from 15 to 40, also constructed accordmthe description given in the
previous Section. All instances were solved to aximam gap of 0.87%.
Compared to Table 6.4, there is an additional calémotScen where the number
of possible scenarios of network configuration éparted — columr# Scen
indicates the number of scenarios actually usedwgbéring the problem.

The instances with 15 edgad@el5 1, vi0el5 2 andv10el5 3) all refer to
the same graph of the example for which the corererg of the algorithm was
shown in Figure 6.2. Each one of them was solvedgua different set of 500
scenarios (out of the 32768 possible network caméijons), sampled according
to the initial probability distribution of the edgjeavailabilities. It is interesting to
observe that even though the number of scenaried us these instances is
significantly smaller than the total number of pbks scenarios, the solutions
found for these problems in under 60 seconds havebgective function value
which is close to that found after 25 hours in ttese of full scenario
enumeration.

A significant increase in computational times wasarved when solving
the instances with 20 edged @e20 1 throughv10e20 5) and 500 scenarios. All
instances refer to the same graph and were sobiad different sets of scenarios
to a maximum gap of 0.868%, including one instamg¢ech was solved to
optimality. The difference between the minimum amdximum optimal values
obtained for all five problems was 5.49%, which rsselike a reasonable
compromise considering that the number of scenaabsally used to solve the
problems represents a very small fraction (nameélp48%) of all possible
network configurations.

As the number of binary variables increase so doegomputational effort
required to solve the problems at each iteratieaclihg to a compromise between
network size (which dictates the number of binaariables) and number of
sampled scenarios. This was done when solvingnigtances with 25, 30 and 40
edges: the number of scenarios utilized was redte8@0 in the former and 200

in the last two cases.
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Id #Nodes #Edges #Scen  #TotScen UB LB % Gap ErrTol #lter  MainTime
v10el5 1 10 15 500 3.28E+4 445735 44.4068 0.374% % 1 6 41.032
v10el5 2 10 15 500 3.28E+4  44.8405  44.8405 0% 1% 6 27.562
v10el5 3 10 15 500 3.28E+4  47.0452 46.9256 0.254% % 1 6 27.578
v10e20_1 10 20 500 1.05E+6  81.8326  81.7279 0.128% % 1 1169.703
v10e20_2 10 20 500 1.05E+6  81.4761 80.7692 0.868% % 1 9 2725.251
v10e20_3 10 20 500 1.05E+6  81.6981 81.3323 0.448% % 1 10 1713.125
v10e20 4 10 20 500 1.05E+6  78.4703 78.1662 0.388% % 1 10 3164.391
v10e20_5 10 20 500 1.05e+6  77.3371  77.3371 0% 1% 104028.000
vl2e25 A 12 25 300 3.36E+7 755378 74.9683 0.754% % 1 8 2528.266
vl2e25 B 12 25 300 3.36E+7  52.4450 52.1022 0.654% % 1 12 3133.67
vl2e25 C 12 25 300 3.36E+7  70.3214 70.1937 0.182% % 1 11 1882.297
v12e25 D 12 25 300 3.36E+7  43.1088 42.931 0.412% 1% 8 810.234
v13e30_1 13 30 200 1.07E+9  32.4429 32.3264 0.359% % 1 9 516.454
v13e30_2 13 30 200 1.07E+9  38.8679 38.6852 0.470% % 1 11 6332.030
v13e30_3 13 30 200 1.07E+9  32.4177 324131 0.014% % 1 7 1086.485
v13e30_4 13 30 200 1.07E+9  33.1784 329004 0.838% % 1 9 1095.703
v13e30_5 13 30 200 1.07E+9  34.4604 34.1707 0.841% % 1 9 3457.325
v16e40_1 16 40 200 1.10E+12 19.5682 19.4753  0.475% 1% 7 4367.515

Table 6-5 — Results for the large-size instances
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7 CONCLUSIONS

While there has been a huge amount of work on astithprograms with
exogenous uncertainty, the same is not true forcdse where the underlying
stochastic processes depend on the decisions taken.

This works aims at contributing to fill this gap byudying a problem in the
area of humanitarian logistics. The proposed rexdation scheme overcomes
the non-linearities that arise in the original fotation presented in the literature
and the incorporation of the importance samplingcepts allows us to solve
large instances of the problem — which would otl&gvibe untractable — by using
sample scenarios even though the final probabdistribution of the random
variables is not knowa priori.

The proposed approach was able to solve all thannss available in the
literature in very short time. Additionally, largerstances of the problem were
created — and will be made publicly available -eider to assess the performance
of the developed algorithms. Medium-size instansesre solved within
reasonable times (each one of them was solveddaruty minutes) and solutions
provably within 1% of the global optimal have bdennd. Large-size instances
were solved using samples of scenarios of networKiguration and solutions
were also within 1% of the global optimal. Considgrthat the only article that
deals with the exact same problem studied in tlmskwsed instances with only 5
edges, an eight-fold improvement has been obtained.

7.1 Future work and extensions

Regarding improvements on the speficic problemudised in this work,

there are some issues that can probably be ddhliware efficiently:

a) The problem solved at each iteration is very simita that of the
previous one — the only difference being the |8 added to improve
the approximation of the exponential function. &ast of solving each
problem from scratch, the previously obtained sotutmay provide
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useful information which may then be used to redcamputational
times.

Valid cuts and/or tailor-made heuristics may benided/developed to
decrease the computational effort related to thenbmr of binary

variables.

A decrease in the computational time required teesthe problem of each

iteration may allow for an increase in the numbkse@enario samples used to

solve large-scale problems, thus providing betteatity solutions.

Additionally, it would also be of interest to carout both in-sample and

out-of-sample (following the algorithm suggestedAinnex B) analyses of the

problem in order to empirically determine the ad#qunumber of sample

scenarios in each case. In this sense, the inadrporof the importance sampling

concepts could be further explored by using scenaamples drawn from

probability distributions other than the originates and adapting the problem

accordingly.

Five main future(/current) work alternatives liesal:

a)

b)

Extend the methodology to consider the couplingvben first and
second stage variables to be given not only by grobability of
occurrence of scenarios but also by the feasilg@mmeof second stage
problems.

Adapt the methodology to consider the existencea oforrelation
structure between the random variables.

Incorporation of risk measures and probabilistiostmaints (as in the
context of chance-constrained programming).

Explore the proposed linearization technique in tomtext of the
unconstrained quadratic 0—1 minimization problem.

Study the applicability and performance of the jsgal methodology
to other problems of the same nature, such as theseribed in
Chapter 1: stochastic queuing networks, stoch&ERT and revenue

management.
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ANNEX A: Generalization with respect to second-stag e

problems

An essential part of the methodology proposed is Work — namely the
linearization of the product of binary variablesings the properties of the
logarithm — lies on the piecewise linear approxiorabf the exponential function
which may be represented in the optimization pmoblas linear constraints.
However, if the objective function value of the iomdl solution of a second stage
problem is negative, the first stage problem clebdcomes unbounded and this
would represent a limitation to the applicability the concepts discussed
afterwards.

This Annex describes how to address this situamithat the methodology
remains valid, regardless of the values of thenogitsolutions of the second-stage
problems. In summary, the next two sections disth@sa constant term may be
added to the value of the optimal solution of at@nd stage problems without

affecting the solution of the original problem.

A.1 Problems solved with full scenario enumeration

In the case where one is able to enumerate alptissible scenarios of

network configuration, the objective function (3)I2ay be re-written as follows:

Z TeXe + Z gsﬁs - g (9'1)

e€eE SES

where g, = g; + g andg is such thag, > 0,Vs € S. Expression (9.1) is clearly

equivalent to:

Zrexe-}'zgsp’\s-}'zg'ﬁs_g (92)
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On the one hand, the algebraic sum of the third fndth terms of
expression (9.2) will always amount to zero siiges ps = 1. On the other hand,
the sum of the first and second terms above i€xlaet expression of the original
objective function. The alternate objective funoti®.1) assumes the exact same
values as the original one (3.12) for all feasiddues of the decision variables
and, consequently, problem (3.12) — (3.17) is eajemt to problem (9.1) — (3.13)
- (3.17).

A.2 Problems solved with a sample of scenarios

Following the proposed methodology, large-scaldlems are solved using
the formulation (5.3) — (5.8). Using the same raile as above, the objective

function (5.3) may be re-written as:

Erexe |S|Z (zm) (9.3)

eEE SES

which is equivalent to:

D reve + |5|Z (“VI) 1514 <’”’) O

eEeE

If we denote byD the set of distinct scenarios in the sample and jothe

number of occurrences of each one of them, thd teim may be written as:

gz |S| ( I?I?II) (9.5)

deD

As |S| - oo, ISI £ - pIN and expression (9.5) convergegjtoY. ;cp Pq. Since

Y.aep Pa — 1, the result is analogous to that obtained in tie@ipus Section.
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ANNEX B: Solution robustness

The solution of two-stage stochastic programs deperssentially, on
balancing the trade-off between deterministic fatsige costs and the expected
value of probabilistic second-stage costs. It isstimperative that we have a
reasonable estimate of second stage costs in wrdber able to have confidence in
the quality of the solution obtained.

On the one hand, the larger the set of sampledasosn the better the
estimate of second stage costs will be. On ther dthed, having fewer scenarios
makes the problem smaller and solution times avallysfaster. Anyhow, once a
solution is found for a given set of scenarios, @ké Carlo simulation — in which
the probability distribution of the edges’ availé@s takes into account the
determined first-stage decisions — may then progidenfidence interval against
which the estimate of the expected costs of therskstage can be compared in
order to assess the need for a larger number oplsamThis suggests the

following algorithm, detailed below:

1 Initialize the set of cutk = @, define the maximum percentage exr@nd
the confidence level for the estimator of the mesmeond stage costs
(expressed in terms of the number of standard tien&d)

2 Initialize the lower boundB = —inf, upper bound/B = +inf

3  Whilejs & {fiy — 0 - o,,, iy + 0 - 7,,}

Generate a new samfdg,, of network configuration scenarios based
on the initial probability distribution of the edgjeavailabilities
For each scenario€ S,

Solve problem (3.1) — (3.4) and obtain the corresiptg valueg,

End For
4 SetS = S U Squx
While |(UB — LB)/UB| > ¢
6 Solve problemP; defined by (5.3) — (5.18) with the currently

defined set of cut& and scenario sample set
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10
11

12
13
14

15

16
17
18
19

20

End While

SetLB = v(P;)
exp(ws*))

INI
Ds

SetUBgyx = Yeer TeXe + l—;Zses s (
If UB4yux < UB, S€tUB = UBgyyy
For each scenario€ S
Add the cut defined bya; =exp(ws)-(1—-w;) and
= exp(wy) to the cut sek
End For

End While

" 1 exp(ws)
Computeis = EZSES Is (Xpé_NM;)

Generate a sampM (|[M| >» |S|) of network configuration scenarig
based on the probability distribution of the edgagilabilities which
results from the determined first stage decisions
For each scenarim € M

Solve problem (3.1) — (3.4) and obtain the correslpy valueg,,
End For
Obtain the estimator of the mean of second stagts and its standa

deviation:fi,, andoy,,, respectively

DS

d
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