

PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 07/10

Dynamic Database for Intentional

Development of Ubiquitous Systems

Milene Serrano

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 07/10 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena May, 2010

Dynamic Database for Intentional Development of
Ubiquitous Systems*

Milene Serrano
1
 and Carlos José Pereira de Lucena

1

1
Departamento de Informática – Potifícia Universidade Católica do Rio de Janeiro

milene@les.inf.puc-rio.br and lucena@inf.puc-rio.br

Abstract. In this paper, we present our Dynamic Database Building Block centered on
our Intentional Systematic Software Development for Ubiquitous Systems (ISSD for
UbSystems). This specific building block is composed of a Dynamic Database Architec-
ture and an agent-oriented Layer Structure. Our main goal is to store, search, recovery,
and protect the stakeholders’ information considering different ubiquitous profiles,
and special privacy policies through reusable standard solutions. Moreover, we use
this building block to dynamically allow the insertion of new devices’ features, net-
work specification, users’ preferences, and contract information. This dynamic me-
chanism is particularly important in ever-changing environments to improve the tradi-
tional database models, in which you must previously specify the entities and fields.
Furthermore, we evaluated our support in an extensive dental case study, and also
compared it with other related work.

Keywords: Agent-oriented Dynamic Database Architecture, Intentional Systematic
Software Development, Ubiquitous Computing, Multi-Agent Systems, Ubiquitous Is-
sues, Reusable Support.

Resumo. Esse artigo apresenta um bloco de construção de banco de dados dinâmico
centrado no desenvolvimento sistemático intentional para sistemas ubíquos. Esse
bloco de construção é composto de uma arquitetura específica e uma estrutura em
camadas orientada a agentes. Nosso principal objetivo é armazenar, buscar, recuperar
e proteger as informações dos usuários considerando diferentes perfis ubíquos e
políticas de privacidade através de soluções baseadas na reutilização. Além disso, nós
usamos esse bloco de construção para dinamicamente permitir a inserção de novas
características dos dispositivos, especificações de rede, preferências dos usuários, e
informações de contrato. Esse mecanismo dinâmico é particularmente importante em
ambientes marcados por constantes mudanças para melhorar os modelos de banco de
dados tradicionais, nos quais precisamos previamente especificar as entidades e os
campos. Adicionalmente, nós avaliamos o suporte proposto em um estudo de caso no
domínio odontológico, e também comparamos o mesmo com outros trabalhos
relacionados.

Palavras-chave: Arquitetura Dinâmica Orientada a Agents, Desenvolvimento de
Software Systemático e Intentional, Computação Ubíqua, Sistemas Multi-Agents,
Supporte baseado na Reutilização.

* This work has been sponsored by CAPES and CNPq, Brazil.

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br

 iii

Table of Contents

1 Introduction 1

2 Dynamic Database Architecture Overview 3

3 Scenario based on an Extensive Dental Case Study 7

4 Dynamic Ubiquitous Profiles 10

5 Dental Case Study Description 12

6 Dynamic Database Building Block 12

7 Related Work 15

7.1 Multi-Policy Access control considering Privacy in Ubiquitous Environment 16

7.2 A Privacy Agent in Context-Aware Ubiquitous Computing Environments 16

7.3 The Agent Layer Concept and Ubiquitous Concept Databases 17

8 Final Considerations 18

References 19

 1

1 Introduction

The Mark Weiser's vision (Weiser 1991) is technically becoming viable nowadays, by
augmenting the number of sensors, devices, actuators, and adequate technological
support. We can use, for example, the combination of Multi-Agent Systems (Shoham
and Leyton-Brown 2008), Goal-Orientation (Mylopoulos 2008), Distributed Intentional-
ity modeling (Yu 1997), and BDI model (Bratman 1999) to respectively support: (i) au-
tomation, controlling, and personalization using reasoning and learning techniques,
reducing the human intervention need; (ii) the Goal-Oriented Requirements Engineer-
ing focused on the stakeholders’ goals, perceived in ubiquitous contexts; (iii) the
stakeholders’ intentionality modeling based on their goals, softgoals, beliefs, resources,
and tasks; and (iv) the stakeholders’ interests implementation centered on their beliefs,
desires, and intentions.

In group, these emergent technologies can contribute to achieve some Ubiquitous
Computing principles, outlined by Mark Weiser (Weiser 1991): (i) Omnipresence – the
computer purpose is focused on helping the users in their daily activities by offering
services/contents anywhere and anytime; (ii) Complexity Invisibility – the computers
must offer support - as personal servants - to the users without disturbing them or
even distracting them; (iii) Intentionality – the computers should extend the users’ un-
conscious based on her/his intuitions, personal needs and privacy policies; (iv) Calm
Technology (Weiser and Brown 1995) – the computer must create calm to reduce the
"frenzy" of information and to allow the user selecting what kind of information is at
the center of her/his attention and what information is peripheral; and (v) User’s Satis-
faction and Context-Awareness – the ubiquitous systems must be de-
signed/implemented to be aware with the user’s preferences and the intelligent spaces
policies. Moreover, the wireless communication combined with the large bandwidth
and different mobile devices improve the information dissemination. Although it
represents a desired evolution and the possibility to achieve the content/services om-
nipresence, it also requires special privacy-issue-based mechanisms to deal with or-
ganization and users’ data; and a specific and suitable support to deal with the tech-
nological intrinsic evolution of ever-changing contexts. In this sense, the Ubiquitous
Computing poses some modern challenges, such as:

• Devices are heterogeneous in terms of the technologies they use and their physical features.

• Ubiquitous Scenario Example: the devices can be mobile, small, and just-
call-phone, or they can be a powerful smartphone. Ubiquitous systems
must deal with this heterogeneity – e.g. avoiding the limited device over-
load using content adaptability support (Serrano et al. 2008).

• Devices are in constant evolution.

• Ubiquitous Scenario Example: yesterday the devices have CD read-
er/writer; today they have DVD reader/writer; and tomorrow all of them
will have blue-ray reader/writer. Ubiquitous systems must store these new
devices’ features, by preferentially reducing the cost, spent time, and efforts
to perform changes on the database.

• Services and contents depend on the organization's policies that offer them.

• Ubiquitous Scenario Example: some services/contents are paid, some are
free, and some are shareware. These decisions (e.g. be paid, be free, or be

 2

shareware) can frequently change (e.g. every year, month, day, minute, or
second.) Ubiquitous systems must be flexible to deal with these new com-
mercial needs, by providing mechanisms to allow these organizations de-
ciding – at runtime – what kind of information is at the center of their atten-
tion and/or is peripheral.

• Devices, services, and contents constantly enter and leave different environments.

• Ubiquitous Scenario Example: devices perform their actions independent-
ly/autonomously by storing, sharing, searching, and recovering informa-
tion. Ubiquitous systems must provide resources to facilitate the communi-
cation between the environments and their embedded devices using, for
example, specific and pre-defined protocols/ontology, and autonomous
entities.

• Different organizations are involved in these communication processes.

• Ubiquitous Scenario Example: organizations have different ways to store,
access, and share information. Some of them allow sharing data; but others
prefer to ride their data. Ubiquitous systems must deal with different priva-
cy policies, needs, and interests in the persistence layer.

• End-users have different preferences and needs.

• Ubiquitous Scenario Example: sometimes the users want to offer personal
information – e.g. to be registered in an online store –, and sometimes they
do not want to share this information in order to protect themselves. Ubi-
quitous systems must deal with different users’ interests according to their
preferences and needs in the domain and persistence layers.

• Environments1 (e.g. home, and work space) are distributed and changeable.

• Ubiquitous Scenario Example: someone decides to use the printer in
her/his office using her/his cellphone; few minutes later, she/he accesses
her/his e-mails using her/his home desktop, and, she/he uses a smart-
phone to access the internet to pay an electric bill when she/he is waiting
her/his little son at school. Ubiquitous systems must deal with – using dy-
namic ubiquitous profiles – different contents, services, environments, and
devices, which are distributed and in constant evolution.

We are only mentioning some challenges of ubiquitous contexts. However, we
have other important ones (Weiser 1993), organized in: hardware components issues,
network issues, and privacy issues. Our focus is on offering a reusable technological
support to particularly attend to: (i) the stakeholders’ privacy issue; and (ii) the intrin-
sic and constant evolution of the information, services, contents, devices, and technol-
ogies in ubiquitous contexts. In our approach we are suggesting the use of a Dynamic
Database to aim the data storage and management, and to avoid conflicts among the
stakeholders’ requirements – their preferences, needs, security, and privacy. Our Dy-
namic Database combined with our intentional agent-oriented Layer Structure offer a
suitable building block to dynamically include (e.g. new entity/class, and new

1 We call these environments as smart-spaces in our approach.
A smart-space is basically composed of a physical space, different devices (mobile or fixed), sensors, and
actuators.
We believe that the Multi-Agent Systems paradigm can improve a lot the communication between two or
more different smart-spaces. We investigated the pertinence of this paradigm using various experimental
case studies.

 3

field/attribute); update; and exclude information (e.g. old record, and unusual data).
Our structure is divided in layers, which are organized to
store/access/share/recovery/search personal information based on the Software Engi-
neering domain, Ubiquitous Computing transversal domain, different cognitive domains (e.g.
e-health domain, and ecommerce domain), different cognitive sub-domains (e.g. dental
domain; and medical domain), and the ubiquitous application (e.g. ABCD Dental Clinic;
JJ Cancer Hospital, and WYZ Media Store). We also propose ways to respect the end-
user profile, and consequently her/his preferences, and personal data through the ap-
plication of cognitive agents and specific protocols/ontology/capabilities.

The rest of this paper is organized in sections: in Section 2, a briefly description of
our Dynamic Database Architecture; in Section 3, the Dynamic Database Architecture ap-
plied to a dental scenario; in Section 4, the Dynamic Database Architecture applied to dif-
ferent ubiquitous profiles; in Section 5, our dental case study description; in Section 6,
our Dynamic Database Building Block applied to our dental case study; in Section 7,
some related work; and in Section 8, the final considerations, including a comparative
evaluation and further work.

2 Dynamic Database Architecture Overview

As presented in the Introduction, it is particularly important to have a dynamic me-
chanism to store and recover contents in ever-changing contexts. In these contexts, it is
difficult (or even impossible) to previously define all the attributes that will be neces-
sary to describe/catalog a specific device or a specific service. Both, devices and ser-
vices, are frequently evolving, following the technological innovation. Moreover, it is
difficult to deal with the privacy policies centered on knowledge that the ubiquitous
systems have, desire to protect, and avoid sharing with the concurrent systems.

Centered on these concerns (quick technological innovation and different privacy
policies), we will first analyze how we normally deal with them in a fixed and tradi-
tional database. As the traditional database structure – its entities’ model – must be
previously defined, it is difficult to incorporate new and specific entities, properties,
and their types without modifying and reorganizing its structure in the design level.
These updates request/spend time, efforts, and money. Commonly, the software engi-
neers must suspend the offered service in order to adjust its database model. The re-
sources consumed in this process are not very important in unchangeable contexts.
However, we are talking about ubiquitous and pervasive contexts, in which these con-
stant updates are really difficult to be performed as they must be performed daily and
monthly. Imaging how difficult and expensive would be if for every new device, or
technological feature of a specific device, or even adjusts in an online-offered service, a
set of updates was necessary in the system database model.

In order to provide an adequate support in this sense, we are proposing a flexible
database, designed to be reused. Its model is combined with a flexible layer structure –
supported by smart agents – that allows data sharing considering different cognitive
domains, and protecting the system data/knowledge/business rules when it was re-
quested. Firstly, we will discuss about our Ubiquitous Dynamic Database proposal, by
presenting its general architecture, and its entities’ model. Our database model is cen-
tered on the TypeObject Pattern (Figure 1) and the TypeSquare Architecture. Both the pat-
tern and the architecture were proposed by Yoder (Yoder 2001).

 4

Figure 1: TypeObject Pattern – Adapted from [Yoder 2001]

The Entity-Type represents the classes and the Entity represents the classes’ in-
stances. As a simple example, we have the Entity-Type “Device” and the Entity “No-
kia95 Device”. “Nokia95 Device” is an instance of “Device.” Moreover, the Entity is
associated with a specific Entity-Type, and the Entity-Type can be associated with zero
or various Entities. Thus, the cardinality in the first way is one to one (1..1), and in the
opposite way is one to zero or more (1 to 0..*). We can have different devices – e.g.
“BlackBerryBold9700 Device,” “NokiaN86 Device,” “MotorolaWX390 Device,” and
“SonyEricssonXperia-X10 Device.” Each of them (Entity) is an instance of “Device”
(Entity-Type). Yoder proposed to apply the TypeObject Pattern to the entity level, and to
the property level as presented in Figure 2. For this structure, Yoder called TypeSquare
Architecture.

Figure 2: TypeSquare Architecture – Adapted from [Yoder 2001]

 5

The “Device” Entity-Type can have different Properties-Types, such as: “deviceMo-
del,” “deviceMemory,” “deviceScreenSize,” “deviceBattery,” “deviceMemoryCard,”
and “deviceOperatingSystem.” Centered on this idea, the architecture stores the prop-
erties’ values of a specific Entity (e.g. “Nokia95 Device”) as Properties. Thus, for the
“Nokia95 Device” Entity, the “deviceModel” is “Nokia95,” and the “deviceMemory” is
“160MB”. The architecture also specifies other important associations between:

- Property and Property-Type: one Property must be associated with only one Property-
Type – e.g. the “Nokia95” Property is only associated with the “deviceModel” Property-
Type.

- Property-Type and Property: one Property-Type can be associated with zero or more
Properties – e.g. the “deviceMemoryCard” Property-Type is associated with the “No-
kia95,” and “BlackBerry Bold 9700” Properties.

We designed and implemented our Dynamic Database by extending the Type-
Square Architecture as presented in Figure 3. The Entity-Property represents a new
class/table in our Dynamic Database model that is created based on the association
between Entity and Property, which cardinality is *..*. It means that an Entity can be
associated with zero or more (0..*) Property; and a Property can be associated with zero
or more (0..*) Entity.

One of our main purposes is to deal with contexts such as:

First Context: A specific device (Entity) is an instance of Device (Entity-Type). Thus, this
specific device (e.g. Nokia95 Device) contains the Device’s properties. Moreover, this same spe-
cific device (Entity) is an instance of Device with Camera (other Entity-Type). Thus, this spe-
cific device (e.g. Nokia95 Device) also contains the Device with Camera’s properties. However,
the Device with Camera is a Device! Thus, a Device with Camera inherits the Device’s proper-
ties.

Figure 3: Dynamic Database Architecture (First Example)

 6

We have the inheritance concept in the context presented before, and the Type-
Square Architecture does not directly deal with this kind of context. Our Dynamic Data-
base allows dynamically defining one or more levels of inheritance: a Specific Device
(an Entity) is an instance of Device with Camera (an Entity-Type), which is a Device (an
Entity-Type _ First-Level-Of-Inheritance.) Moreover, a Specific Device (an Entity) is an
instance of Wireless Device with Camera (an Entity-Type), which is a Device with
Camera (an Entity-Type _ Second-Level-Of-Inheritance.) Only to illustrate, consider the
example previously presented in Figure 3, and the explanation as follows:

• Instantiation: As the “Nokia95 Device” is an instance of Wireless Device with Cam-
era, it contains the “deviceConnectivity” Property, which value is “Bluetooth/Wi-
Fi/InfraRed.”

• First-Level-Of-Inheritance: As a Wireless Device with Camera is a Device with
Camera, it also inherits the Device with Camera Property-Types (e.g. “deviceCameraRe-
solution”.) We represent this relationship as a special Property-Type called “SUPER,”
which type is Device with Camera.

Thus, the “Nokia95 Device,” as an instance of Wireless Device with Camera, will
contain two Properties-Types (“super” and “deviceConnectivity”,) which values are re-
spectively an object of Device with Camera (in which the “deviceCameraResolution”
Property-Type is associated with the value “5.0 Megapixel”); and “Bluetooth/Wi-
Fi/InfraRed.”

• Second-Level-Of-Inheritance: As a Device with Camera is a Device, it also inherits
the Device Property-Types (e.g. “deviceModel” and “deviceMemory”.) We represent
this relationship as a special Property-Type called “SUPER,” which type is Device.
Thus, the object “SUPER” of the “Nokia95 Device” will contain two Properties-Types
(“super” and “deviceCameraResolution”,) which values are respectively an object of
Device (in which the “deviceModel” and “deviceMemory” Properties-Types are asso-
ciated with the values “Nokia95” and “160MB”); and “5.0 Megapixel.”

Second Context: A specific device (Entity) is an instance of Device (Entity-Type). Thus, this
specific device (e.g. Nokia95 Device) contains the Device’s properties (deviceModel, deviceMe-
mory, and deviceBattery). In this context, a Device (Entity-Type) has battery as Property-
Type. BUT Battery is an Entity-Type, which has batteryType and batteryCapacity as Proper-
ties-Types. It means that Device (Entity-Type) is associated with Battery (another Entity-
Type).

We have a classical association in the context presented before, and again the Type-
Square Architecture does not directly deal with this kind of context. Our Dynamic Data-
base proposes a various-to-various association between the Device Entity-Type and the
Battery Entity-Type, represented by the cardinality 0..* to 0..* and the new class/table
Entity-Property (see Figure 4.)

 7

Figure 4: Dynamic Database Architecture (Second Example)

For example:

• Instantiation: As the “Nokia95 Device” is an instance of Device, it contains the “de-
viceModel,” “deviceMemory,” and “deviceBattery” as its Properties, which values are
respectively “Nokia95,” “160MB,” and an object “BL-5F.”

• Association: the object “BL-5F” is a Battery. It is represented as an association be-
tween Battery and Device. Thus, the “Nokia95 Device” also contains “batteryType”
and “batteryCapacity” as its Properties, which values are respectively “lithium-ion,”
and “950mAh”.

In order to illustrate/emphasize the applicability of our Ubiquitous Dynamic Da-
tabase architectural model, we consider a ubiquitous scenario based on an extensive
dental case study developed in our Software Engineering Laboratories at PUC-Rio and
UofT.

3 Scenario based on an Extensive Dental Case Study

We describe the dental domain as an e-health domain with specific policies, contexts,
and needs. In this kind of context, it is necessary to deal with different dental forms at
runtime. These forms have different structures, number of questions, and other infor-
mation. Moreover, they must be dynamically adapted according to the devices’ pro-
files (e.g. deviceScreenSize, and deviceMemory.) Thus, it is necessary a flexible data-
base to deal with different forms' properties, allowing insertions, updates, and exclu-
sions at runtime supported by autonomous entities. In order to illustrate the Type-

 8

Square Architecture use, we defined a dynamic database to store the dental forms types
(see Figure 5): clinic’s rules and procedures dental form; clinic’s dental registration
form; clinic’s dental registration payment information form; and clinic’s dental regis-
tration payment confirmation form.

Figure 5: TypeSquare Architecture applied in a dental domain context

The “Mary’s Dental Registration Form” (an Entity) is an instance of “Clinic’s Den-
tal Registration Form” (an Entity-Type), which contains different Properties-Types: “Pa-
tient’s ID,” “Patient’s Name,” “Patient’s Address,” and “Patient’s Assignment.” Each
of them assumes the respective values (as Properties): “001,” “Mary Souza,” “ABCD
Street Number 000,” “Mary Souza.” Thus, we used the Entity, Entity-Type, Property-
Type, and Property to store the Mary’s dental registration data as specified on the Type-
Square Architecture.

Now, we can consider our Dynamic Database use in this same context – Dental Do-
main. Suppose that the “Clinic’s Orthodontic Registration Form” is a specialization of
the “Clinic’ Dental Registration Form” considering the orthodontic dental branch.
Thus, the “Mary’s Orthodontic Registration Form” is an instance of “Clinic’s Ortho-
dontic Registration Form,” which is a “Clinic’s Dental Registration Form.” Figure 6
shows how we represented this situation using our Dynamic Database Architecture.

 9

Figure 6: Dynamic Database Architecture applied in a dental domain context

We represented this relationship as Various-Various Association between the
“Mary’s Orthodontic Registration Form” Entity and the “Super” Property. “Super” is a
Property, which type is “Clinic’ Dental Registration Form.” Thus, the “Mary’s Ortho-
dontic Registration Form” Entity has two Properties: “Super” and “Mary's Orthodontic
Problem Description.” Each of them respectively assumes the values: an object (type:
“Clinic’ Dental Registration Form”,) and “no orthodontic problem”. The object “Clinic’
Dental Registration Form” has the Properties-Types: “Patient’s ID,” “Patient’s Name,”
“Patient’s Address,” and “Patient’s Assignment.” Each of them assumes the respective
values (as Properties): “001,” “Mary Souza,” “ABCD Street Number 000,” “Mary Souza.”
In this case, we used the Entity, Entity-Type, Property-Type, Property, and the Various-
Various Association to store the Mary’s orthodontic registration data as specified on our
Dynamic Database Architecture. All the activities involved into the described process are
dynamically performed by cognitive agents using our reusable support proposed in
this paper.

We had different ways to deal with inherence and to extend the TypeSquare Archi-
tecture. We preferred to use a Various-Various Association as it represents the most ge-
neric relationship, and we can avoid drastically changing the TypeSquare Architecture,
which contemplates other interesting resources that attend to ubiquitous systems de-
velopment. The Various-Various Association can represent an inherence (normally, 1..1),
and all kinds of associations (e.g. 0..1, 1..1, 0..*, 1..*, 2..*, and *..*.) In the inherence rela-
tionship, we also incorporated a Property “Super” to guarantee the access to the Proper-
ties (e.g. “Patient’s ID,” “Patient’s Name,” “Patient’s Address,” and “Patient’s Assign-

 10

ment”) specified on the super class (e.g. “Clinic’ Dental Registration Form”.) This spe-
cial Property “Super” is not necessary for all kinds of associations, only for inherence.

4 Dynamic Ubiquitous Profiles

In Figure 7 we present an overview about the dynamic database proposed in our In-
tentional Systematic Software Development for Ubiquitous Systems (ISSD for UbSys-
tems) based on the main ubiquitous profiles, such as: User Profile – to store the user’s
data; Device Profile – to store the device’s features; Network Profile – to store the net-
work’s specifications; Contract Profile – to store the user-service business rules; Content
Profile – to store the content’s information; Service Profile – to store the service’s infor-
mation; and Smart-Space Profile – to store the environment’s issues.

Figure 7: Dynamic Ubiquitous Profiles

We used our Dynamic Database Architecture to define the Entities-Types, Properties-
Types, Entities, and Properties for the ubiquitous profiles, as presented in Figure 8. Only
to exemplify, consider that the User Profile Entity-Type is composed of the Properties-
Types: “ID,” “userName,” “userAddress,” “userCellphone,” “userE-mail,” and “user-
Preferences.”

Figure 8: User profile and the Dynamic Database Architecture

 11

Suppose that we have the Mary’s Profile Entity as an instance of the User Profile
Entity-Type. Thus, the Properties-Types (“ID,” “userName,” “userAddress,” “userCell-
phone,” “userE-mail,” and “userPreferences”) respectively assume the values “001,”
“Mary Serrano,” “ABCD Street Number 000,” “12345678900,” mary@something.ca, “I
like contents in jpg and mp4,” as Properties.

Moreover, it is possible to dynamically create new Entities-Types, Properties-Types,
Entities, and Properties using the agent-driven Dynamic Database Architecture API. We
developed an API to be reused by ubiquitous systems in different cognitive domains.
This API is centered on our Dynamic Database Architecture, and potential interested de-
velopers can reuse this API to develop specific dynamic databases that better attend to
their ubiquitous system’s needs. The developers of a ubiquitous system in e-commerce
domain (Figure 9) can define, for example, a database extending our Device Profile
Entity-Type to address their specific devices’ Properties-Types: “ID,” “deviceModel,”
“isSmartphone,” and “hasUSB.” Thus, if the device has a new feature (e.g. webcam), it
is possible to dynamically create a new “webcamResolution” Property-Type (associated
with the Device Profile Entity) in the database model. The use of our API as a Building
Block based on the reuse principle is simple and intuitive. It can be added to the appli-
cation project as a jar file. Our Dynamic Database Architecture is really interesting in
contexts that are in constant evolution – e.g. ubiquitous and pervasive contexts – in
which the devices are aggregating more and more features, following the technological
innovation; the organizations’ policies are frequently changing; and the users want to
modify and to personalize their preferences for each daily activity anywhere and any-
time.

Figure 9: Dynamic Database Architecture API in an e-commerce context

 12

We also propose the use of Intentional MAS centered on the BDI Model to facilitate
the data creation, update, and exclusion at runtime, when it was necessary, and ac-
cording to the context analysis. We tested our Dynamic Database Architecture API in
the development of a complex and extensive ubiquitous system based on a dental clin-
ic, briefly presented in Section 5.

5 Dental Case Study Description

Our case study – developed on our Software Engineering Laboratories at PUC-Rio and
UofT – is based on an academic dental clinic, which belongs to a dental association in
the São Paulo State, Brazil. It members perform social activities, taking care of the
community; and contributes to the dentists' academic life by specializing them in dif-
ferent dental branches. Our dental system involved different smart-spaces, several
content servers, heterogeneous handle devices, various quality criteria (e.g. privacy,
mobility, flexibility, satisfaction, context-awareness, adaptability need, e-health and
academic issues) and different stakeholders’ preferences, and daily activities. In the
dental clinic environment, the main stakeholders were: Patient – user of the available
dental clinic services to take care of her/his dental problem; Dentist – active position at
the dental clinic that performs several tasks – e.g. triage process and patient’s treat-
ment; Professor – active position at the dental clinic that performs academic tasks – e.g.
dentist’s supervision and dentist’s evaluation; Attendant – active position at the dental
clinic that performs several tasks – e.g. patient’s registration and registration payment;
and President, 1o Vice-President, 2o Vice-President, Secretary, and Bursar as administra-
tive positions that manage/control the dental clinic way-of-working.

6 Dynamic Database Building Block

As previously mentioned, our Dynamic Database Building Block is composed of the
Dynamic Database Structure (see Sections 2, 3, and 4) and the Layer Structure. Our inten-
tion in this section is to present some details about the Layer Structure. The Layer Struc-
ture is basically composed of six layers: User Layer, Interface Layer, Domain Layer,
Application Layer, Service Layer, and Persistence Layer. A brief description about each
layer using the dental case study is presented below:

• The User Layer: This layer represents the users of the ubiquitous system. In the
modeling level, different users are modeling as different stakeholders. In the i* models,
for example, the most common used abstraction to represent the stakeholder is the ac-
tor abstraction. However, we can also use the position and the role i* abstractions to
improve the modeling. In our dental case study, we had patients, dentists, professors,
attendants, and other administrative positions in this layer.

• The Interface Layer: This layer represents the interface between the users and the
ubiquitous system. The responsible for the communication between the user and the
system is the Interface Agent. This agent runs inside the user’s device. Thus, it is a sim-
ple and “light” agent, which structure is based on behavior instead of intentionality.
We suggest a “light” agent as we must deal with simple devices, in which the
processing and memory capacities are limited. In this case, these devices cannot sup-
port complex agents, in which the rationale requests some special devices’ resources
(e.g. speed, processing, and memory). In our dental case study, we also used the execu-
tion modes (e.g. split and standalone modes) of the JADE-LEAP Platform (Caire 2003)
to facilitate the use/integration of limited devices in this layer. The standalone mode

 13

allows integrating the platform and the Personal Java devices, which are capable of
running the platform container as these devices are powerful and have adequate re-
sources (e.g. processing and memory capacities) that support the container and its in-
tentional and complex agents. The split mode allows integrating the platform and the
MIDP devices, which are limited. This mode allows the limited device sharing re-
sources with another computer that is more powerful. When the limited device con-
nects with the powerful machine that is running “Container-1”, through a wireless
network, it requests that a “heavy” part of the container, called “Back-End,” be main-
tained in that powerful machine. The other part, called “Front-End,” is lighter than the
first, and runs in the limited mobile device. For the user (e.g. patient and dentist,) this
sharing process is invisible and performed by the proper Interface Agent using the
JADE-LEAP Platform resources. Now, the limited device can run the container, inte-
ract with other agents, and use the services provided by the platform and the system,
including the dynamic database support previously described.

• The Domain Layer: This layer represents the domain layer, subdivided in Main Do-
main Layer, Transversal Domains Layer, and Cognitive Domains Layer. The Main Domain
Layer represents the Software Engineering as the master domain, in which different
transversal domains are associated. The Transversal Domains Layer represents all trans-
versal domains that impact in the ubiquitous systems in development – e.g. our dental
ubiquitous system, such as Pervasive Computing Domain, Mobile Computing Domain,
Ubiquitous Computing Domain, and Multi-Agent Systems Domain. The Cognitive Domains
Layer represents different cognitive domains that have specific policies, contexts, con-
tent, and services. Some of them are: Dental Domain, Medical Domain, and E-Commerce
Domain. It is also possible to define other cognitive domains categories in order to im-
prove the layer structure, such as: E-Health Domain, in which we have all cognitive
domains in health area (e.g. dental, medical, and medical biology.) We suggest the use of
one Domain Agent for each user – e.g. for each dental clinic’s patient. These agents dy-
namically react when it is necessary, when the users request something. Thus, they are
like Personal Agents in the domain level, prepared to help the user in the interaction
between her/him Interface Agent and the application layer. These agents are intention-
al, and have the knowledge centered on their cognitive domain. They are, for example,
the responsible for the controlling of the users’ personal information access in the do-
main level. If any other agent wants to access a specific user’s personal information,
this other agent must request the access to the Domain Agent. This last agent asks the
user (e.g. patient) about this request. The user can: decide at runtime (automatically
updating the database), or previously specify the preferences in her/his profile (e.g. as
mandatory or not; and as public or private). This mechanism tries to guarantee that the
final decision about the access depends on the user’s goals, beliefs, and intentions, by
respecting the user’s privacy policies, and avoiding third persons’ illegal invasion. This
issue is a serious concern in Ubiquitous Computing that we are trying to deal with and
to contemplate in our reuse-based approach.

• The Application Layer: This layer represents the application layer. In this layer we
have the applications’ specific privacy policies, and business rules. As well as the users
desire to decide what are their personal access policies, the organizations – associated
with the applications – sometimes desire to share information, and sometimes not. The
information can be shared with the Domain Layer and/or other applications in Appli-
cation Layer. In order to control the access, we use the concept of Capability2. Every
agent with access/permission in relation to a specific application (e.g. “Dental Clinic
A”) receives the Capability that allows the interaction between this agent and the Mul-

2 The quality and ability of being used and improved.

 14

ti-Agent System responsible for the application’s information, services, and contents.
Thus, the Domain Agent that represents the patient can only interact with the agents of

the Application Layer if it (the Domain Agent) has the application specific Capability. The
process is easy, and its complexity is invisible for the final user. The patient just selects
the domain she/he is interested (e.g. Dental Domain), and the Domain Agent finds all
applications in this domain (e.g. Dental Clinic A to Dental Clinic N), according to spe-
cific issues (e.g. user’s location.) The user can select herself/himself which of them
she/he wants or can delegate the selection for the Interface Agent and the Domain
Agent. This last agent requests the Capability to know how to interact with the applica-
tion’s Multi-Agent System. The application’s Multi-Agent System decides if the Domain
Agent will have the access. If they agree (according to the Dental Clinic A’s internal
policies and specification,) the Domain Agent receives the Capability and the communi-
cation starts. If they do not agree, the Domain Agent can automatically decide to select
another application (e.g. Dental Clinic N), or even it can ask the patient to select anoth-
er one, and the process will continue. Both, the application’s Multi-Agent System and
the Domain Agent, are intentional, and prepared to reason, learn, and react based on,
respectively, the dental clinic’s system and the patient’s beliefs, desires, and intentions.
These agents try achieving the system’s and the patient’s goals considering their ubi-
quitous profiles, preferences, privacy policies, and business rules. Moreover, the Capa-
bility support allows extending the agents knowledge and, consequently, obtaining a
higher degree of reusability. We use different application’s services (e.g. agents’ com-
munication protocols, services access, agents’ creation, agents’ registration and deregi-
stration) as different Capabilities. Thus, for each Capability that the agent has, it knows
how to perform special activities. For example, the agents’ communication protocols
capability, which belongs to the JADEX Plan-Lib, provides ready-to-use implementa-
tions of some common interaction protocols. In other words, the agent with this Capa-
bility has the ability of communicating with other platform agents. Another example,
as previously mentioned, is the Capability offered by our ISSD for UbSystems [Serrano
et al. 2008a] that provides support for the Domain Agent to use and to interact with the
application’s Multi-Agent System. The Domain Agent knows what services are offered
by the application; who are the responsible agents for each service; how to interact
with these agents, and how to use the services.

• The Service Layer: This layer contains the services offered by different ubiquitous
applications (e.g. patient’s registration, dental treatment payment), and others that are
available when the application extends a specific framework – e.g. JADEX Framework
that offers specific “capabilities”: the Directory Facilitator (DF Capability) or Yellow
Pages Service, the Agent Management System (AMS Capability) or White Pages Ser-
vice, and FIPA Protocols (FIPA Request Interaction Protocol - RP Protocol Capability.)
This layer is also coordinated by the applications’ Intentional Multi-Agents Systems.
Thus, the Domain Agent can only access the services if it has the permission. In other
words, if it has the Capability, which must be requested for and are provided by the
application’s Multi-Agents System.

• The Persistence Layer: This layer is subdivided in Domain Persistence Layer, and Ap-
plication Persistence Layer. The Domain Persistence Layer represents the domain informa-
tion, which is stored in dynamic ubiquitous profiles (e.g. user’s profile, and device’s
profile,) and can be only modified (e.g. database enquiries, database insertion, data-
base exclusion, and database update) by the Domain Agent, according to its cognitive
domain (e.g. dental) and the patient’s privacy policies. The application’s Multi-Agents
System can receive the domain persistence layer information if it requests and has the
agreement of the Domain Agent. Again, this mechanism tries to guarantee that the final

 15

decision about the information access depends on the patient’s desires and her/his
privacy policies. The Application Persistence Layer represents the application informa-
tion, which is stored in a dynamic database, and a priori can be only modified (e.g.

database enquiries, database insertion, database exclusion, and database update) by,
for example, the Dental Clinic A’s Multi-Agents System, according to the clinic’s priva-
cy policies and its business rules. This mechanism tries to avoid that important know-
ledge be shared without the Dental Clinic A’s permission/agreement. Most of the
time, the ubiquitous system is associated with an organization (e.g. Dental Clinic A)
that has important knowledge – centered on their clients (e.g. patients); offered servic-
es (e.g. novel dental treatments), and business strategies (e.g. qualified dentists and
adequate prices). Sometimes, a specific organization (e.g. Dental Clinic A) does not
want to share this knowledge with other competitors (e.g. Dental Clinic N). This deci-
sion depends on the organization’s interests and its "marketing strategy." Figure 10
illustrates an overview of our Layer Structure, applied to our dental case study.

Figure 10: Detailed Layer Structure

7 Related Work

Here we will present some related work, which contains interesting ideas for dealing
with stakeholders’ privacy, personalization, and data management concerns.

 16

7.1 Multi-Policy Access control considering Privacy in Ubiquitous
Environment

In (Kyu-il Kim et al 2006) the authors Kyu-il Kim et al propose a mechanism to con-
trols the accesses to users’ private information in ubiquitous environments. This me-
chanism is developed by extending the Context Roles from the current RBAC/MAC.
In other words, it automatically controls the accesses using specific policies centered
on the Role-Based Access Control (RBAC) and the Media Access Control (MAC) ad-
dress. These policies are based on different control permissions. The analysis of these
permissions is made in runtime in order to know if the access is allowed or not. The
main interesting point here is that the authors argue that the traditional techniques for
data accessing are based on static security policies, which are pre-defined and not suit-
able to support the constant changes that commonly occur in ubiquitous and pervasive
environments. They emphasize that in this kind of approach the dynamic location, for
example, is normally not considered. Thus, they suggest a context-aware access control
solution prepared to provide a flexible and suitable users’ information control access in
ubiquitous contexts. They also use subjects to allow specifying the authorizations’
structure. This structure is not only based on the user identity, but also on the user
characteristics. Thus, each user is associated with one or more credential.

We agree with the authors in relation to the necessity of a dynamic mechanism to deal with
the users’ information access. However, we particularly suggest another way to provide control
instead of using the RBAC/MAC architecture. We use an intentional personal agent. This per-
sonal agent can interact with other collaborative and intelligent agents centered on the beliefs,
desires, and intentions of the users. Upgrades in relation to the users’ beliefs, desires, and in-
tentions can be performed in runtime anywhere and anytime, increasing the users’ satisfaction.
If the user desires, some information, privacy policies, privileges, and security control can pre-
viously be specified as default values (mandatory or not). However, anywhere and anytime that
the user desires modifying them, they can do with the personal agent’s help. We can also con-
trol the location, being location-aware, by using this personal agent inside the user’s access de-
vice and some technological supports (e.g. JADEX resources (Braubach et al. 2004) – Yellow
Pages, and Containers.) This device can be limited or not, and mobile or not as this platform
can be combined with other lighter platform (e.g. JADE LEAP resources (Caire 2003) – Split
and Standalone Execution Modes) to deal with the devices’ heterogeneity and distribute smart-
spaces issues.

7.2 A Privacy Agent in Context-Aware Ubiquitous Computing
Environments

In (Zhang and Todd 2006) the authors Zhang and Todd present a personal context-
aware protection centered on a privacy agent, which helps the users by notifying them
about important information disclosure. In order to develop this special agent, they
use an ontological platform for Privacy Preferences Project (P3P) (Cranor et al 2005).
They also argue that the existing approaches focus on conventional support, which are
centered on pre-defined and simple privacy policies specification that is extremely in-
appropriate to deal with dynamic requirements in ubiquitous contexts. They present
that most of the time, these approaches suggest that the users/clients specify their pri-
vacy policies by “filling forms with pre-defined layouts and options.” This inflexible sup-
port is particularly not convenient in ubiquitous scenarios, in which the users/clients
information sharing depends on the time, the preferences, the location, the current ac-
tivities, and may change overtime. The information disclosure must be controlled in-
cluding getting notice, feedback, and explicit consent.

 17

We agree with the authors in relation to the necessity of a dynamic mechanism to deal with
the users’ information access. Moreover, we also agree on using agents to control the access of
the users’ information. In the authors’ proposal, this agent is called Privacy Agent, and in our
approach this agent is called Personal Agent. The first observation is that the authors do not
specify how they constructed their agent, based on behavior abstraction or based on intentional-
ity. In our case, we suggest the use of an intentional agent centered on BDI Model (Bratman
1999). The abstractions of the BDI Model are closer to the stakeholders’ goals representation.
The behavior abstraction is adequate to model pre-defined situation. However, in ubiquitous
contexts the situations change, and the stakeholders’ beliefs, desires, intentions, preferences,
goals, and interests are in constant evolution. This ever-changing scenario demands different
agent’s strategies. Thus, the agent based on the intentionality is capable of reasoning, learning,
solving problems, and taking decisions by considering the user’s goals and preferences. The
second observation and difference between us and the authors’ approach is that we suggest the
use of a dynamic database (see Sections 2, 3, 4, and 6) to improve, for example, the knowledge
storing; the privacy policies dynamic specification; and the users’ data security and integrity.
Furthermore, we also suggest a specific and detailed layer structure (see Section 6) to support
(among other things): the domain and the application privacy policies; the devices’ heterogenei-
ty, and the ubiquitous context evolution.

7.3 The Agent Layer Concept and Ubiquitous Concept Databases

In (Mitsubuchi 2003) the author proposes an infrastructure for developing ubiquitous
information society centered on a specific agent layer, called “Agent Layer Concept,”
and a database, called “Ubiquitous Concept Database.” The Agent Layer Concept is
modeled based on the information transfer mechanism of the human nervous system.
This concept also categorizes this information transfer, which is commonly presented
in our society, into five different layers: (i) Environment Layer represents the real
world, including the user; (ii) Device Layer represents the devices that allow the com-
munication between the real world and the electronic brain; (iii) Personal Layer
represents the server that performs processing when a response is necessary/required;
(iv) Agent Layer represents the center clustering that creates and controls the agents;
and (v) Database Layer represents the database in which the data is stored, modified,
and excluded. The Ubiquitous Concept Database allows the agents absorbing differ-
ences in different layers, and enabling users to send/receive information without nec-
essarily considering the other party existence. In this case, the decentralized control is
putting in practice over the agents and data. The author also describes the use of spe-
cific attributes (e.g. private, group, and public) in data in order to facilitate the man-
agement of them. The agents perform their actions in accordance with each specified
attributes.

We also use a special infrastructure centered on multi-agent systems, database, and layer
structure. Moreover, our infrastructure also respects the user’s privacy and preferences. Our
differences are in the way we developed our agent, the way we divided our layers, and the use of
a dynamic model to construct our database. Our agents are intentional, they reason and learn
centered on the users’ beliefs, desires, and intentions. We also improved the reasoning of our
agents by considering different softgoals, which are presented as fuzzy variables. We propose
different layers from the real world to the persistence level as presented in Section 6. Further-
more, this layer structure allows controlling different information according to the users’ pro-
files, the domain privacy policies, and the ubiquitous applications particular needs. The privacy
policies can be previously specified (as mandatory or not mandatory), and/or can be specified at
runtime, anywhere and anytime, in accordance with the term “UBIQUITOUS,” which means
(in Latin): “existing everywhere.” Defining the attributes (e.g. private, group, and public)
without considering the runtime situation, concerns, and needs can be insufficient or even in-

 18

adequate to deal with dynamic requirements presented in context-aware paradigms (e.g. Perva-
sive Computing and Ubiquitous Computing). Our database structure is dynamic, which allows
the storage, updates, and exclusion, providing a flexible and reusable mechanism to manager
data as presented in Sections 2, 3, 4, and 6.

8 Final Considerations

We presented some ideas about our Dynamic Database Building Block, as well as the
Dynamic Database Structure and the Layer Structure that compose it. We are particularly
focused on the concerns: (i) the stakeholders’ privacy; and (ii) the constant evolution
of ubiquitous contexts.

Our Dynamic Database Architecture is based on the TypeObject Pattern and the Type-
Square Architecture, both proposed by Yoder in (Yoder 2001). Our Layer Structure is or-
ganized into six layers, going from the real world level (User Layer) to the persistence
level (Persistence Layer.) In order to facilitate the reuse of our Dynamic Database Build-
ing Block support, we developed an API, which can be added for the application
project as a jar file. We tested our API – at PUC-Rio and UofT Software Engineering
Laboratories – in a complex dental case study. Among other tests, we evaluate the us-
ers’ satisfaction, agent’s performance, database’s response time, and developers’ spent
efforts and time. The results make us to believe that our structure is flexible and suita-
ble to deal with the concerns previously presented. Figure 11 shows the results for the
use’s satisfaction in terms of the system’s usability and dependability in two devel-
oped ubiquitous projects: Media Shop, without the Dynamic Database Building Block
support; and Smart Dental Project, with the support. For the first project, the usability
was evaluated by the users from good to excellent (Figure 11 – Part 1a), and the de-
pendability from regular to excellent (Figure 11 – Part 1b). For the second project, both
the usability (Figure 11 – Part 2a) and the dependability (Figure 11 – Part 2b) were eva-
luated from very good to excellent. In order to facilitate the comparison, we only con-
sidered the worst 16 evaluations for each issue and for each project. Moreover, the
usability is associated with the system’s invisibility issue and its ability to react accord-
ing to the contexts and users interests’ evolution. Both supported by the cognitive
software agents; and the dependability is associated with privacy and reliability issues.

Figure 11: Usability and Dependability Evaluation

 19

As further work we will combine this building block with our currently investi-
gated ontological support (Serrano and Lucena 2010) in order to improve the commu-
nication among the agents in different smart-spaces. The ontological support is com-
posed of different ontologies to standardize the knowledge representation, manipula-
tion, and management in different levels: interface elements – to dynamically construct
interfaces based on the ubiquitous profiles information; domain elements – to facilitate
the communication among domain agents, interface agents, and application agents
centered on users’ privacy policies; and application elements – to manage the applica-
tion data sharing and access, and to improve the communication among the applica-
tions’ multi-agent-systems centered on applications’ privacy policies and business
strategies.

Moreover, we intend to incorporate a dynamic reorganization algorithm [Sockut
and Iyer 2009], which can improve the database reorganization based on the agents’
intuition and centered on different metrics (e.g. user’s intentions, different priorities,
most accessed knowledge, and data deterioration rate).

References

Bratman, M. E. "Intention, Plans, and Practical Reason." Distributed by the University
of Chicago Press, ISBN: 1575861925, 208 pages, March 1999.

Braubach, L., Pokahr, A. and Lamersdorf, W. "Jadex: A Short Overview." In Net. Ob-
jectDays’04: AgentExpo, pp. 195-207, September 2004.

Caire, G. LEAP User Guide. TILAB, last update: December 2003.

Cranor, L.; Dobbs, B.; Egelman, S.; Hogben, G.; and Schunter, M. "The Platform for
Privacy Preferences 1.1 (P3P1.1) Specification." July 2005. (last update: November
2006).

Kyu-il Kim, Hyun-Sik Hwang, Hyuk-Jin Ko, Hae-Kyung Lee, and Ung-mo Kim. "Mul-
ti-Policy Access control considering Privacy in Ubiquitous Environment." International
Conference on Hybrid Information Technology (ICHIT'06), 0-7695-2674-8/06, pp. 216-
222, November 2006.

Mitsubuchi, Keiji. "The Agent Layer Concept and Ubiquitous Concept Databases."
January 2003. Available at www.nwco.com/jp/menu04/ucdb_e.html (Last Access:
February 2010)

Mylopoulos, J. "Goal-Oriented Requirements Engineering." XI Conferencia Iberoameri-
cana de Software Engineering (CIbSE'08), pp. 13-17, Pernambuco, Brasil, February
2008.

Serrano, Milene; Serrano, Maurício; Lucena, C. J. P. "Framework for Content Adapta-
tion in Ubiquitous Computing Centered on Agents Intentionality and Collaborative
MAS." Fourth Workshop on Software Engineering for Agent-oriented Systems (SEAS),
12 pages, 2008.

Serrano, Milene; Serrano, Maurício; Lucena, C. J. P. "Ubiquitous Software Develop-
ment Driven by Agents' Intentionality." 11th International Conference on Enterprise
Information Systems (ICEIS'09), vol. SAIC, pp. 25-34, Milan, Italy, May 2009.

Serrano, Milene; Lucena, C. J. P. "Applying FIPA Standards Ontological Support Inten-
tional-MAS-Oriented Ubiquitous System," 8 pages (to appear in the Proceedings of

 20

12th International Conference on Enterprise Information Systems (ICEIS'10), Funchal,
Madeira, Portugal, June 2010.

Shoham, Y.; Leyton-Brown, K. "Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations." Cambridge University Press, ISBN 9780521899437, 496 pages,
2008.

Sockut, G. H.; Iyer, B. R. "Online Reorganization of Databases." ACM Computing Sur-
veys, http://doi.acm.org/10.1145/1541880.1541881, Vol. 41, No. 3, Article 14, July
2009.

Weiser, M. "The Computer for the 21st Century." ISSN 0036-8733, Vol. 265, Number 3,
p. 94, Scientific American, New York, NY, September 1991.

Weiser, M. "Some computer science issues in ubiquitous computing." Communications
of the ACM, Computer augmented environments, Vol. 36, Issue 7, pp. 75-84, ISSN:
0001-0782, 1993.

Weiser, M.; Brown, J. S. "Designing Calm Technology." Xerox PARC, 1995.

Yoder, J. W.; Balaguer, F.; Johnson, R. "Architecture and Design of Adaptative Object
Models." Conference on Object Oriented Programming Systems, Vol. 36(12), pp. 50-60,
December 2001.

Yu, E. "Towards Modelling and Reasoning Support for Early-Phase Requirements En-
gineering." In Proceedings of the 3 rd International Symposium on RequirementsEngi-
neering (RE'97), pp. 226-235, Washington D.C., January 1997.

Zhang, N.; Todd, C. "A Privacy Agent in Context-Aware Ubiquitous Computing Envi-
ronments." IFIP International Federation for Information Processing, H. Leitold and E.
Markatos (Eds.): CMS 2006, LNCS 4237, pp. 196 – 205, 2006.

