

PUC

ISSN 0103-9741

Monografia em Ciência da Computação

n 10/10

W-Ray: A Strategy to Publish Deep Web

Geographic Data

Helena Piccinini, Melissa Lemos,

Marco A. Casanova, Antonio L. Furtado

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO

Monografias em Ciência da Computação, No. 10/10 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Jun, 2010

W-Ray: A Strategy to Publish Deep Web Geographic

Data

Helena Piccinini
1, 2

, Melissa Lemos
1
, Marco A. Casanova

1
, Antonio L. Furtado

1

1
Department of Informatics – PUC-Rio – Rio de Janeiro, RJ – Brazil

{hpiccinini, melissa, casanova, furtado}@inf.puc-rio.br

2
Diretoria de Informática – IBGE – Rio de Janeiro, RJ – Brazil

helena.piccinini@ibge.gov.br

Abstract. This work introduces an approach to address the problem of accessing geo-
graphic data from the Deep Web. The approach relies on describing the relevant data
through well-structured sentences, and on publishing the sentences as Web pages, fol-
lowing the W3C and the Google recommendations. For conventional data, the sen-
tences are generated with the help of database views. For vector data, the topological
relationships between the objects represented are first generated, and then sentences
are synthesized to describe the objects and their topological relationships. Lastly, for
raster data, the geographic objects overlapping the bounding box of the data are first
identified with the help of a gazetteer, and then sentences describing such objects are
synthesized. The Web pages thus generated are easily indexed by traditional search
engines, but they also facilitate the task of more sophisticated engines that support se-
mantic search based on natural language features.

Keywords: Deep Web, Geographic Data, Natural Language Processing.

Resumo. Este trabalho apresenta uma abordagem para o problema de acesso a dados
convencionais e geográficos da Deep Web. A abordagem é baseada nas descrições dos
dados relevantes através de sentenças bem estruturadas e na publicação destas senten-
ças em páginas Web. Seguindo recomendações do W3C e da Google. Para os dados
convencionais, sentenças são geradas com a ajuda de visões do Banco de Dados. Para
os dados vetoriais, primeiramente são geradas relacionamentos topológicos entre os
objetos representados e então as sentenças são sintetizadas para descrever os objetos e
seus relacionamentos topológicos. Por último, para os dados raster, os objetos geográ-
ficos contidos dentro de uma caixa delimitadora são identificados com a ajuda de um
gazetteer e as sentenças que descrevem tais objetos são geradas. As páginas Web ge-
radas são facilmente indexadas por mecanismos de busca tradicionais e também facili-
tam as tarefas de mecanismos de busca mais sofisticados, ou seja, os que suportam
pesquisas semânticas baseadas em linguagem natural.

Palavras-chave: Web profunda, dados geográficos, processamento de linguagem natu-
ral.

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

mailto:bib-di@inf.puc-rio.br

 iii

Summary

1 Introduction 4

2 The W-Ray approach for conventional geographic data 5

2.1 Motivation and overview of the approach 5

2.2 Guidelines for view design 5

2.3 Translating materialized view data to natural language sentences 7

2.3.1 Overview 7

2.3.2 Choice of the external vocabulary 8

2.3.3 Free template definition 10

2.3.4 Default template definition 11

2.3.5 Modifiable default template definition 11

2.4 Guidelines for publishing the sentences as static Web pages 12

3 W-Ray for geographical data in vector format 13

4 W-Ray for raster data 17

5 Conclusions 18

6 References 19

Annex 21

4

1 Introduction

Unlike the Surface Web of static pages, the Deep Web [2] comprises data stored in data-
bases, dynamic pages, scripted pages and multimedia data, among other types of objects.
Estimates suggest that the size of the Deep Web greatly exceeds that of the Surface Web –
with nearly 92,000 terabytes of data on the Deep Web versus only 167 terabytes on the
Surface Web, as early as 2003. A July 2000 survey [4] estimated 96,000 search sites and 550
billion Web pages in the Deep Web, whereas an April 2004 study [7] estimated 330,000
Deep Web sources with over 1.2 million query forms, reflecting a 3-7 times increase in 4
years. However, Deep Web databases are typically under-represented in search engines
due to the technical challenges of locating, accessing, and indexing the databases. Indeed,
since Deep Web data is not available as static Web pages, traditional search engines can-
not discover data stored in the databases through the traversal of hyperlinks, but rather
they have to interact with (potentially) complex query interfaces.

Two basic approaches to access Deep Web data have been proposed. The first approach,
called surfacing or Deep Web Crawl [20], tries to automatically fill HTML forms to query
the databases. Queries are executed offline and the results are translated to static Web
pages, which are then indexed [19, 20]. The second approach, called federated search or
virtual integration [6, 22], suggests using domain-specific mediators to facilitate access to
the databases. Hybrid strategies, which extend the previous approaches, have also been
proposed [26].

Despite recent progress, accessing Deep Web data is still a challenge, for two basic rea-
sons [25]. First, there is the question of scalability. Since the Deep Web is orders of magni-
tude larger than the Surface Web, it may not be feasible to completely index the Deep
Web. Second, databases typically offer interfaces designed for human users, which com-
plicates the development of software agents to interact with them.

This paper proposes a different approach, which we call W-Ray by analogy with medical
X-Ray technology, to publish geographic data, in conventional, vector or raster formats,
stored in the Deep Web. The basic idea consists of creating a set of natural language sen-
tences, with a simple structure, to describe Deep Web data, and publishing the sentences
as static Web pages, which are then indexed as usual. The use of natural language sen-
tences is convenient for three reasons. First, they lead to Web pages that are acceptable to
Web crawlers that consider words randomly distributed in a page as an attempt to mani-
pulate page rank. Second, they facilitate the task of more sophisticated engines that sup-
port semantic search based on natural language features [8, 29]. Lastly, the descriptions
thus generated are minimally acceptable to human users. The Web pages are generated
following the W3C guidelines [5] and the recommendations published by Google to op-
timize Web site indexing [14].

This paper is organized as follows. Section 2 describes how to publish conventional geo-
graphic data. Section 3 discusses how to describe geographic data in vector format. Sec-
tion 4 extends the discussion to geographic data in raster format. Section 5 lists the con-
clusions. The annex contains the Prolog code that implements a tool developed to support
the design and publication processes.

5

2 The W-Ray approach for conventional geographic data

2.1 Motivation and overview of the approach

The W-Ray approach to publishing conventional geographic data as Web pages proceeds
in two stages. In the first stage, the designer manually defines a set of database views that
capture which data should be published, and specifies templates that indicate how sen-
tences should be generated. The second stage is automatic and consists of materializing
the views, translating the materialized data to natural language sentences, with the help
of the templates, and finally publishing the sentences as static Web pages.

Note that metadata, typically associated with geographic data, can be likewise processed.

As an alternative to synthesizing natural language sentences, one might simply format
the materialized view data as HTML tables. However, this is not a reasonable strategy for
at least two reasons. First, some search mechanisms consider tables as visual objects.
Second, tables may be difficult to read, even for the typical user, or at all inadequate for
the visually impaired users.

Indeed, the third principle of the W3C recommendation [5] indicates that “Information and
the operation of user interface must be understandable.”, and item 4 of the Google Web page
optimization guidelines [14] recommends that “(Web page) content should be: easy-to-read;
organized around the topic; use relevant language; be fresh and unique; be primarily created for
users, not search engines”. This recommendation reflects the fact that Web crawlers may
interpret words randomly or repeatedly distributed in a Web page as an attempt to mani-
pulate page rank, and accordingly reject indexing the page.

Finally, we observe that some of the W3C specific recommendations for the visually im-
paired user in fact coincide with Google‟s orientations. Comparing the two, it is clear that
the difficulties faced by the visually impaired user are akin to those a search engine suf-
fers during the data collection step. As an example, both Google and W3C recommend
using the attribute "alt" to describe the content of an image. Naturally, the content of an
image is opaque to both visually impaired users and search engines, but an alternate text
describing the image can be indexed by a search engine and read (by a screen reader) to
the visually impaired user. In general, many W-Ray strategies defined to address the limi-
tations of search engines also apply to the design of a database interface for the visually
impaired user.

2.2 Guidelines for view design

As mentioned in Section 2.1, the designer must first select which data will be published
with the help of database views.

W-Ray then offers the following guidelines that the designer should follow when defin-
ing the views:

G1. Attributes whose values have no semantics outside the database should not be
directly published.

6

G2. Artificially generated primary keys, foreign keys that refer to such primary keys,
attributes with domains that encode classifications or similar artifacts, if selected
for publication, should have their internal values replaced by their respective ex-
ternal definitions. For example, a classification code should be replaced by the
corresponding classification term.

G3. Attributes that contain private data should not be published.

G4. Views should not contain too many attributes; only those attributes that are rele-
vant to help locate the objects and express their relationships should be selected.

Example 1: This example is based on the SIDRA database, a statistical aggregate database
which the Brazilian Institute of Geography and Statistics (IBGE) publishes on the Web
with the help of HTML forms. We observe that SIDRA is not indexed by any convention-
al search engine.

We first manually defined a set of database views that captured which data should be
published, following the view design guidelines listed in this section.

For example, consider the following question: “What is the population of each territorial
unit in Brazil?”, a quite frequent query. To answer such queries, we introduced the “terri-
torial_unit” view over the SIDRA database, schematically defined in Table 1, where

 the first column identifies the database tables used in the view definition.

 the second column indicates an alias to refer to the tables in the where clause of the
view definition.

 the third column indicates the attributes used (and their descriptions) in the where
clause or in the target clause of the view definition.

 the fourth column indicates which attributes appear in the target clause of the view
definition.

 the fifth column associates a variable with each target clause attribute, used to define
templates in Section 2.3.

 the sixth column indicates the where clause of the view definition.

By inspecting Table 1, one may observe that the definition of the “territorial_unit” view
meets the guidelines G2, G3 and G4. As for G1, it suffices to note that the values of the
attributes from the “v_aggregate_variable” table that appear in the target list of the view
are meaningful names (of territorial units, etc.), and those from the “v_aggregate_value”

table included in the target list are dates or values of aggregate variables.

7

2.3 Translating materialized view data to natural language sentences

2.3.1 Overview

The heart of the W-Ray approach lies in the translation of materialized view data to natu-
ral language sentences. Fuchs et al. [12] propose a single language for machine and hu-
man users, basically by translating English sentences to first-order logic. Others propose

Table 1 – Schematic definition of the “territorial_unit” view over the SIDRA database

Table Table
Alias

Attribute Used
(Description)

Target
Claus

e

Var. Where Clause

v_aggregate_variable V name_territorial_unit

(name of the territorial unit)

yes U V.code_aggregate_occurrence =

T.code_aggregate_occurrence

and

V. code_survey = T.code_survey

and

V.date_year = T.date_year

and

V. date_month = T.date_month

and

V.no_order_period =

T.no_order_period

and

V. code_aggregate_variable =

T. code_aggregate_variable

name_territorial_level

(level of the territorial unit,

such as country, state,…)

yes L

code_aggregate_occurrence

name_occurrence_survey

(survey that generated the

aggregation variable)

yes S

name_aggregate_variable

(name of an aggregation vari-

able, such as resident popula-

tion)

yes A

name_measurement_unit

(unit of measure of

the aggregation variable)

yes M

code_aggregate_variable

code_survey

date_year

date_month

no_order_period

t_ aggregate_value T code_aggregate_variable

code_survey

date_year

(year the aggregation variable

was measured)

yes Y

date_month

no_order_period

code_aggregate_occurrence

val_aggregate_occurrence

(value of the aggregation

variable)

yes V

8

to translate RDF triples to natural language sentences [11, 17], simply by concatenating
the triples. Tools to translate conventional data to RDF triples have also been developed
[3, 9], which typically map database entities to classes, attributes to datatype properties,
and relationships to object properties. The proposals introduced in [11, 17] do not consid-
er sequences of RDF triples, though, which we require to compose simple sentences into
more complex syntactical constructions. Therefore, we combine the strategies to synthes-
ize sentences described in [17] with the mapping of conventional data to RDF triples in-
troduced in [3].

The translation of materialized view data to natural language sentences involves two
tasks: choice of an appropriate external vocabulary; and definition of templates to guide
the synthesis of the sentences.

2.3.2 Choice of the external vocabulary

First observe that view and attribute names are typically inappropriate to be externalized
to the database users. The same observation also applies, to some extent, to the values of
attribute domains defined by enumeration, such as the names of the days of the week (in
some natural language). This problem is further illustrated in Example 6. Naturally,
attribute domains defined over commonly used data types, such as dates, do not require
further transformations (except perhaps minor transformations to conform with the es-
tablished conventions to denote numbers and dates), but they typically must be followed
by the unit of measure adopted. This implies that the designer must define an external
vocabulary, that is, a set of terms that will be used to describe materialized view data to
the users.

W-Ray then offers the following guidelines that the designer should follow when describ-
ing materialized view data to the users:

G5. View and attribute names should be mapped to one or more terms of controlled
vocabularies covering the application domain in question, or of general purpose
vocabularies, such as an upper-level ontology or Wordnet.

G6. Attribute domains defined by enumeration should be likewise treated.

G7. Attribute domains defined over commonly used data types should be mapped to
a XML Schema data type.

If followed, these guidelines permit defining hyperlinks from the terms of the view data
and metadata (such as attribute names) to the terms of the external vocabularies. A simi-
lar strategy to synthesize sentences is discussed in [15]. An extension to Wordnet is also
proposed in [27] to treat concepts corresponding to compound nouns.

Example 2: Continuing with Example 1, we chose the following external vocabularies to
meet guideline G5 (see Table 2):

 OECD (Organization for Economic Cooperation and Development) Glossary of Sta-
tistical Terms [23].

 EUROSTAT (statistical organization of the European Commission) Glossary of Sta-
tistical Terms [10].

9

 SUMO Ontology (Suggested Upper Merged Ontology) [28].

As for guidelines G6 and G7, we treated attribute domains as follows (see Table 3):

 The domains of the “date_year” and “val_aggregate_occurrence” attributes were
mapped to XML Schema data types.

 The domain values of the other attributes were mapped to terms of the vocabularies
indicated in Table 3. For example, the names of the Brazilian territorial units (the
domain of the “name_territorial_unit” attribute) come from IBGE‟s Brazilian gazet-
teer, which should be aligned with Geonames, a widely known gazetteer available
on the Web [13]. By contrast, the names of IBGE surveys (the domain of the
“name_occurrence_survey” attribute) should be understood as part of IBGE‟s internal

vocabulary.

Table 3 – External vocabularies for the attribute domains of the “territorial_unit” view

Attribute Name
(Description)

Attribute
Domain

Vocabulary

name_territorial_unit

Names of the Brazilian territorial units,

such as “Amazonas” and “Pará”

IBGE internal vocabulary,

aligned with Geonames

name_territorial_level

territorial unit levels,

such as “unit of the federation”

IBGE internal vocabulary,

aligned with Geonames

name_occurrence_survey

Names of the IBGE surveys ,

such as “Censo Demográfico”

IBGE internal vocabulary

name_aggregate_variable Names of aggregate variables,

such as “resident population”

IBGE internal vocabulary

name_measurement_unit

Units of measure,

such as “people”

SUMO Ontology

date_year

(year values in the standard four-digit

representation)
XML Schema data type

val_aggregate_occurrence

(numeric values in general) XML Schema data type

Table 2 – External vocabularies for the attribute names of the “territorial_unit” view

Attribute Name External Term Vocabulary

name_territorial_unit territorial unit EUROSTAT Glossary of Stat. Terms

name_territorial_level level EUROSTAT Glossary of Stat. Terms

name_occurrence_survey survey OECD Glossary of Statistical Terms

name_aggregate_variable variable OECD Glossary of Statistical Terms

name_measurement_unit unit of measure EUROSTAT Glossary of Stat. Terms

date_year year SUMO Ontology

val_aggregate_occurrence aggregated value SUMO Ontology

10

2.3.3 Free template definition

We offer three alternatives to define templates: free template definition; default template
definition; and modifiable default template definition. The first alternative, discussed in
this section, leaves template definition in the hands of the designer and, thus, may lead to
sentences with arbitrary structure. However, the designer should create templates that
define simple affirmative sentences.

Very briefly, an affirmative sentence contains a subject and a predicate [24]. The subject of a
sentence is the entity about which something is asserted and the predicate is what is de-
clared about the subject. The predicate may be divided into a verb, with optionally a direct
object, or an indirect object, or both, and predicatives. A predicative may modify the subject,
a direct object or an indirect object. The subject of the sentence is typically the value of an
identifying attribute of the view; predicatives of the subject are constructed from the val-
ues of the other attributes and from the external vocabulary; and the verb is also taken
from the external vocabulary.

W-Ray then offers the following guidelines that the designer should follow when design-
ing free templates:

G8. A template should use the external vocabularies selected during view definition,
common syntactical elements (articles, conjunctions, etc.) [24] and punctuation
marks.

G9. A template should generate a sentence that characterizes an entity through its
properties and relationships.

G10. The subject of the sentence should be associated with an identifying attribute of
the view.

G11. The predicate of the sentence should be associated with other view attributes
that further describe the entity, or that relate the entity to other entities.

Example 3: Returning to our running example, we defined the following template to pub-
lish “territorial_unit” view data, using the variables in the fifth column of Table 1:

U is a territorial unit with level “L” that has a total of V M for the year Y and varia-
ble “A”.

Next, we materialized the view and transformed each line of the resulting table into a
sentence, using the template. The following sentence illustrates the result:

Roraima is a territorial unit with level “unit of the federation” that has a total
of 395.725 people for the year 2007 and variable “resident population”.

Note that: the underlined word is the subject of the sentence; the predicate ‟is a territorial
unit with level “unit of the federation”‟ qualifies the subject; the words in boldface are
view data that play the role of predicatives of the subject, together with the fragments in

italics and the external terms in regular font.

11

2.3.4 Default template definition

Since template definition sometimes is a tedious task that may lead to ill-formed sen-
tences, we implemented a tool, written in Prolog, to help the designer. The tool generates
what we called default templates starting from an entity-relationship model that is a
high-level description of the views. The designer‟s task is therefore limited to creating the
entity-relationship model, rather than directly creating templates. The tool also materia-
lizes the views and synthesizes the corresponding sentences, which will then have a regu-
lar syntactical structure.

Example 4: We repeat Example 3 using the default templates alternative. We started by
creating an ER model of the “territorial_unit” view, which is quite simple in this case:

entity(territorial_unit,name_territorial_unit).

attribute(territorial_unit,name_territorial_level).

attribute(territorial_unit,name_occurrence_survey).

attribute(territorial_unit,name_aggregate_variable).

attribute(territorial_unit,name_measurement_unit).

attribute(territorial_unit,date_year).

attribute(territorial_unit,val_aggregate_occurrence).

We then used the design tool to generate the default templates from the entity-
relationship model, using the translations of attribute names to terms of the external vo-
cabularies indicated on Table 2 and the variables associated with attribute names from
Table 1. Examples of default templates are:

'There is a territorial unit with name P'

'The level of P is L'

Using the default templates, the tool then synthesized sentences such as (data in bold-
face):

'There is a territorial unit with name Roraima'.

'The level of Roraima is unit of the federation'.

2.3.5 Modifiable default template definition

Default templates, albeit regular, may contain a high level of redundancy. To circumvent
this problem, the tool allows the designer to redefine the default templates and to com-
bine several templates into a single template.

Example 5: Using the design tool, we redefined the two templates of Example 4 as follows
(where the variables in boldface italics in the new template must occur in the default
template):

Default template: 'There is a territorial unit with name P'
New template: 'P'

Default template: 'The level of P is L'
New template: 'is a L'

12

After redefining the templates, we combined them into a single template as follows (in
Prolog notation):

facts((territorial_unit(P),level(P,L)).

The final template will be quite simple:

'P is a L'

Using the final template, the tool then synthesized sentences such as (data in boldface):

'Roraima is a unit of the federation'

2.4 Guidelines for publishing the sentences as static Web pages

In the context of the W-Ray approach, the most relevant recommendations for Web page
construction listed by W3C [5] and Google [14] are:

 Create a main Web page with a hierarchy of hyperlinks (Google Recommendation
3).

 Publish an accurate description of the Web page content using the tag <META>
(conformance requirements of WCAG 2.0 and Google Recommendation 2).

 Add a Web page title using the tag <Title> (W3C Recommendation 2.4.2 and
Google Recommendation 1).

 Structure Web page content using header tags <hn> (W3C Recommendation 2.4.6
and Google Recommendation 6).

 Add hyperlinks returning to the main Web page from the top and bottom of each
Web page (W3C Recommendation 2.4 and Google Recommendation 3).

 Create hyperlinks between the Web pages to improve data exploration via naviga-
tion (W3C Recommendation 1.3.2 and 2.4 and Google Recommendation 3 and 5).

 Create content with well-structured sentences (W3C Recommendation 3 and
Google Recommendation 4).

 Use text to describe images when the attribute “alt” does not suffice (W3C Rec-
ommendation 1.1.1 and Google Recommendation 7).

In addition to these recommendations, W-Ray offers the following guidelines that the de-
signer should follow when designing Web pages:

G12. The structure of the Web site that will contain the materialized view data should
be decided upfront and should reflect the set of views.

G13. The Web site home page should describe the database and the views to be pub-
lished; the view and attribute names occurring in the home page should be
hyperlinked to the terms of the external vocabularies.

G14. Sentences generated from the same materialized view should be grouped in one
or more Web pages, hyperlinked from the home page and among themselves;
data coming from domains defined by enumeration should be hyperlinked to the
corresponding terms of the external vocabularies.

13

Example 6: Continuing with our running example, Figure 1 shows a fragment of a Web
page containing SIDRA data.

Consider, for example, the first sentence in Figure 1:

 The subject of the sentence, “Rondônia” was hyperlinked to an IBGE Web page with
further information about the State of Rondônia.

 The terms “territorial unit”, “level”, “unit of federation”, “people”, “year” and “variable”
were hyperlinked to IBGE Web pages which explain their meaning; these Web pag-
es in turn pointed to the corresponding terms of the external vocabularies, indicated

in Table 3.

3 W-Ray for geographical data in vector format

We first observe that a number of tools [21] offer facilities to convert geographic data in
vector format to dynamic Web pages. However, such dynamic Web pages are typically
not indexed by search engines. We also observe that geographic data in vector format is
not opaque, as raster images are, since the data is often associated with conventional data
and, in fact, with the (geographic) objects stored in the database. A solution to make vec-
tor data visible to the search engines would therefore be to publish the conventional data
associated with the vector data, as discussed in Section 2. This strategy would however
totally ignore the geographic information that the vector data capture.

On a first approximation, the W-Ray strategy for vector data is the same as for conven-
tional data: define a set of database views that capture which data should be published;
materialize the views; translate the materialized data to natural language sentences; and
publish the sentences as static Web pages.

Figure 1 – Sentences generated in Example 1 and published as a Web page.

14

More specifically, suppose that the vector data is organized by layers. Then, W-Ray offers
the following guidelines that the designer should follow when defining the views:

G15. The view definition should combine a small number of layers that contain inter-
related objects.

G16. For each layer, the view definition should include a restriction that filters out un-
important objects.

G17. For each layer, the view definition should select a few relevant attributes.

G18. When the view combines several layers,

G18a. The view definition should specify the priority between the layers.

G18b. The view definition should specify which topological relationships be-
tween the objects of different layers should be materialized.

G18c. The view definition should indicate in which topological order the ob-
jects will be described.

As for conventional data, the designer should select the external names preferably from a
controlled vocabulary, such as the ISO19115 Topic Categories [16].

Example 7:

(a) We considered a view consisting of three layers, territorial units, populated places and
waterways of Brazil, filtered as follows:

 territorial units: keep only territorial units located in the north region and which are
states, with their names, abbreviated names, area and population.

 populated places: retain only populated places located in the north region and
which are municipal and state capitals, with their names, political status, area and
population.

 waterways: keep only waterways that cross the north region, with their names, na-
vigability and flow conditions.

Furthermore, we assumed that the topological relationship between populated places and
states is „is located in‟ and that between waterways and states is „crosses‟. We also assumed
that populated places are listed from north to south and from west to east.

The reader may verify that this informal view definition meets guidelines G15 to G18.

(b) We created the following (free) templates for cities and waterways (the intended
meaning of the variables is immediate):

The city of C is located in the state of S and has an area of A square kilometers.

The waterway W crosses the state of S, with flow F and navigability condition V.

Note that the first template refers to a populated place as a city since the view definition
retains only municipal and state capitals. Likewise, the first and second templates refer to
a territorial unit as a state since again the view definition retains only states.

15

We then materialized the view and generated sentences such as these:

The city of Boa Vista is located in the state of Roraima and has an area of 5,687
square kilometers.

The waterway Amazonas crosses the state of Amazonas, with flow permanent
and navigability condition navigable.

The subject of each sentence (underlined words) were hyperlinked to a dynamic Web
page with the full information about the city or the waterway, generated by executing a
query over the underlying database.

(c) Using the design tool, we generated default templates as follows. First, we created the
following entity-relationship model for the views informally defined in Part (a) of the ex-
ample:

entity(territorial_unit,name).

entity(populated_place,name).

entity(waterway,name).

attribute(territorial_unit,population).

Attribute(territorial_unit,abbreviated_name).

attribute(territorial_unit,area).

Attribute(populated_place,level).

Attribute(populated_place,local_area).

Attribute(populated_place,local_population).

Attribute(waterway,flow).

Attribute(waterway, navigability).

Relationship(located_in,[populated_place, territorial_unit]).

Relationship(crosses, [waterway, territorial_unit]).

From this model, the design tool generated the following default templates:

'There is a populated place with name C'.

'There is a territorial unit with name S'.

'There is a waterway with name W'.

'The flow of the waterway W is F'.

'The navigability of the waterway W is V'.

'The populated place C is related to the territorial unit S by

located in'.

'The waterway W is related to the territorial unit S by

crosses’.

Finally, the design tool generated sentences from the default templates and the materia-
lized view data, such as these (with view data in boldface):

'There is a populated place with name Boavista'.

'There is a territorial unit with name Amazonas'.

'There is a territorial unit with name Pará'.

'There is a waterway with name Amazonas'.

'The flow of the waterway Amazonas is permanent'.

'The navigability of the waterway Amazonas is navigable'.

16

'The populated place Boavista is related to the territorial

unit Roraima by located in'.

'The waterway Amazonas is related to the territorial unit Ama-

zonas by crosses’.

'The waterway Amazonas is related to the territorial unit Pará

by crosses'.

(d) The default templates indeed generated regular sentences, but with a fair amount of
redundancy. Using just states and waterways as an example, we then used the tool to
modify the default templates as follows:

Default template: 'There is territorial unit with name S'
New template: 'The state of S'

Default template: 'The waterway W is related to the territorial unit
 S by crosses’
New template: 'is crossed by the waterway W'

Default template: 'The flow of the waterway W is F'.
New template: 'which is F'

Default template: 'The navigability of the waterway W is V'.
New template: 'and V'

Note again that the new templates took advantage of the fact that the view definition re-
tains only municipal and state capitals from the populated places layer, and only states
from the territorial units layer.

Furthermore, we defined the following template composition:

facts((territorial_unit(P),crosses(R,P),

 flow(R,S),navigability(R,V))).

The tool generated the final template:

'The state of S is crossed by the waterway W which is F and V’

Finally, the design tool generated sentences from the final template and the materialized
view data, such as these (with view data in boldface):

'The state of Amazonas is crossed by the waterway Amazonas

which is permanent and navigable'.

'The state of Pará is crossed by the waterway Amazonas which is

permanent and navigable'.

17

4 W-Ray for raster data

Following Leme et al. [18], the W-Ray strategy describes raster data by publishing sen-
tences that capture the metadata about how the raster data was acquired, and sentences
describing the geographic features contained within the bounding box of the raster data.
The geographic features might be obtained, for example, from a gazetteer or a geographic
database.

For example, one may adopt the ADL gazetteer [1], which holds over 4 million entries
and includes a useful Feature Type Thesaurus (FTT) for classifying geographic features.
In this case, the view definition would retrieve from the ADL gazetteer all geographic fea-
tures whose centroids fall within the bounding box of the raster data. The view definition
might also restrict the retrieved features to just a few types, using terms from the ADL
FTT.

As for vector data, the designer should define a view, this time based on the attributes of
the features contained in the gazetteer (or the geographic database). In fact, the guidelines
for view definition in the context of raster data are essentially the same as for vector data
and will not be repeated here.

The sentences associated with a raster dataset might be automatically generated using the
following template

The image I contains the iT ‟s “ 1
iF ”, …, “ in

iF ”.

where I is and external name for the raster dataset, if one exists, iT is a term from the the-

saurus and j
iF is a feature name of type iT .

Example 8: To illustrate the W-Ray approach to raster data, we selected:

 An image fragment of the City of Rio de Janeiro from the Web site “Brazil seen from
Space” (see Figure 2), whose metadata indeed indicates the coordinates of its
bounding box.

 The ADL gazetteer to provide the geographic features and their classifications.

We then defined a view over the ADL gazetteer that selects geographic features classified
as „hydrographic feature‟, a topic category of ADL FTT, whose centroid is contained in
the bounding box of the image.

We then generated sentences to describe the raster image as follows:

1. The georeferencing parameters were extracted from the image. In this case, the im-
age fragment was consistent with a scale of 1:25.000 and had bounding box defined
by ((43°15‟W, 22° 52‟ 30”S), (43° 07‟ 30”W, 23°S)).

2. By querying the ADL gazetteer using the georeferencing parameters extracted in
Step 1 and the ADL FTT term „hydrographic feature‟, nine objects were located, the
first three being (see Figure 2):

a. Feature(“Rodrigo de Freitas, Lagoa - Brazil”, lakes, contains)
b. Feature(“Comprido, Rio – Brazil”, streams, contains)

18

c. Feature(“Maracana, Rio – Brazil, streams, contains)

3. The results were translated to sentences describing the image, such as these (using
the same conventions as in Section 2.3):

The image of Rio de Janeiro, Brazil, contains the lake “Rodrigo de Freitas”. The
image of Rio de Janeiro, Brazil, contains the streams “Comprido” and “Mara-

cana”.

where the underlined words form the subject of the sentence, the words in boldface
italics are terms from the ADL FTT (under the general term „hydrographic feature‟),
and those in boldface denote the names of the geographic features in the ADL ga-
zetteer.

5 Conclusions

This paper outlined an approach to overcome the problem of accessing geographic data
from the Deep Web. The approach relies on describing the data through natural language
sentences, published as Web pages. The Web pages thus generated are easily indexed by
traditional search engines, but they also facilitate the task of engines that support seman-
tic search based on natural language features.

We implemented a proof-of-concept Web site, using the design tool to publish a subset of
the SIDRA database as natural language sentences. The Web site was then left to be in-
dexed by the Google crawler. Keyword searches were then submitted to Google, which
retrieved the correct Web pages from the experimental Web site as expected. Further

Figure 2. Fragment of ADL Feature Type Thesaurus and image fragment of Rio de Ja-

neiro (Source: Embrapa. Scale: 1:25.000).

a

c b

hydrographic features

. . .

. lakes

. seas

. . oceans

. . . ocean currents

. . . ocean regions

. streams

. . rivers

. . . bends (river)

. . . rapids

. . . waterfalls

. . springs

(hydrographic)

19

work is planned to assess which of the three alternatives for generating templates leads to
better recall. The experiments will use massive amounts of data from geographic databas-
es organized by IBGE.

Lastly, we remark that the approach can be easily modified to generate RDF triples, in-
stead of natural language sentences, and to cope with multimedia data. In a broader
perspective, it can also be used to describe databases of various kinds to the visually im-
paired users. The challenges here lie in structuring the sentences in such a way to avoid
cognitive overload.

Acknowledgements. This work was partly supported by IBGE, for H. Piccinini, and by
CNPq under grants 301497/2006-0, 557128/2009-9, and CAPES/PROCAD NF 21/2009,
for M.A. Casanova and A.L. Furtado.

6 References

[1] ALEXANDRIA DIGITAL LIBRARY PROJECT. Guide to the ADL Gazetteer Content
Standard, v. 3.2 (Feb. 26, 2004). Accessible at:
http://www.alexandria.ucsb.edu/gazetteer/ContentStandard/version3.2/GCS3.2-
guide.htm

[2] BERGMAN, M. K. The Deep Web: Surfacing Hidden Value. Journal of Electronic
Publishing 7, 1 (Aug. 2001).

[3] BIZER, C. and CYGANIAK, R. D2R Server – Publishing Relational Databases on the
Web as SPARQL Endpoints. In WWW 2006: Proceedings of the 15th World Wide
Web Conference (Edinburgh, Scotland, May 2006), ACM Press.

[4] BRIGHTPLANET. The deep web: Surfacing hidden value. (July 2000). Accessible at:
http://brightplanet.com

[5] CALDWELL, B., COOPER, M., REID, L. G. and VANDERHEIDEN, G. Web Content
Accessibility Guidelines (WCAG) 2.0. W3C Recommendation (11 December 2008).
Accessible at: http://www.w3.org/TR/WCAG20/

[6] CALLAN, J. Distributed information retrieval. In Advances in Information Retriev-
al, The Information Retrieval Series 7, Springer, USA, pp. 127–150.

[7] CHANG, K. C-C., HE, B., LI, C., PATEL, M. and ZHANG, Z. Structured databases
on the web: Observations and implications. SIGMOD Record 33, 3, (Sept. 2004), pp.
61–70.

[8] COSTA, L. Esfinge - Resposta a perguntas usando a Rede. In Proceedings of the
Conferencia Ibero-Americana IADIS WWW/Internet (Lisboa, Portugal, 2005).

[9] ERLING, O. and MIKHAILOV, I. RDF support in the virtuoso DBMS. In Proceed-
ings of the 1st Conference on Social Semantic Web (CSSW) (Leipzig, Germany, Sept.
26 - 28, 2007), Lecture Notes in Informatics 113, pp. 59–68.

20

[10] EUROSTAT. Glossary of Statistical Terms. Accessible at:
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary:Eurosta
t

[11] FLIEDL, G., KOP, C. and VÖHRINGER, J. Guideline based evaluation and verbali-
zation of OWL class and property labels. Data & Knowledge Engineering 69, 4
(April 2010), pp. 331–342.

[12] FUCHS, N. E., KALJURAND, K. and KUHN, T. Attempto Controlled English for
Knowledge Representation. In Reasoning Web 2008, Lecture Notes in Computer
Science 5224 (Springer, Berlin / Heidelberg, 2008), pp. 104–124.

[13] GEONAMES. Accessible at: www.geonames.org

[14] GOOGLE. 2008. Google's Search Engine Optimization Starter Guide, Version 1.1.
Accessible at: http://chetangole.com/blog/2008/11/official-googles-search-
engine-optimization-starter-guide-pdf/

[15] HOLLINK, L., SCHREIBER, G., WIELEMAKER, J. and WIELINGA, B. Semantic
Annotation of Image Collections. In Workshop on Knowledge Markup and Seman-
tic Annotation, KCAP‟03 (Sanibel, Florida, USA, Oct., 2003), pp. 41-48.

[16] ISO 19115:2003, Geographic Information – Metadata.

[17] KALYANPUR, A., HALASCHEK-WIENER, C., KOLOVSKI, V. and HENDLER, J.
Effective NL Paraphrasing of Ontologies on the Semantic Web. In Workshop on
End-User Semantic Web Interaction, 4th International Semantic Web conference
(Galway, Ireland, Nov. 2005).

[18] LEME, L. A. P. P., BRAUNER, D. F., CASANOVA, M. A. and BREITMAN, K. A
Software Architecture for Automated Geographic Metadata Annotation Generation.
Proceedings of the First Brazilian e-Science WorkShop (João Pessoa, Brazil, 2007).

[19] MADHAVAN, J., AFANASIEV, L., ANTOVA, L. and HALEVY, A. Harnessing the
Deep Web: Present and Future. In Proceedings of the 4th Biennial Conference on
Innovative Data Systems Research (CIDR) (Asilomar, California, USA, Jan. 4-7,
2009).

[20] MADHAVAN, J., KO, D., KOT, L., GANAPATHY, V., RASMUSSEN, A. and
HALEVY, A. Google‟s Deep-Web Crawl. Proceedings of the VLDB Endowment 1, 2
(Aug. 2008), pp. 1241–1252.

[21] MAPSERVER. Accessible at: http://mapserver.org/about.html#about

[22] MENG, W., YU, C. T. and LIU, K. L. Building efficient and effective metasearch en-
gines. ACM Computing. Survey 34, 1 (Mar. 2002), pp. 48–89.

[23] OECD. Glossary of Statistical Terms. 2007. Accessible at:
http://stats.oecd.org/glossary/index.htm

[24] PRANINSKAS, J. Rapid review of English grammar. Prentice-Hall, NJ, USA (1975).

[25] RAGHAVAN, S. and GARCIA-MOLINA, H. Crawling the Hidden Web. In Pro-
ceedings of the 27th International Conference on Very Large Data Bases (Rome, Ita-
ly, Sept. 11-14, 2001), pp. 129–138.

http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary:Eurostat
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary:Eurostat
http://stats.oecd.org/glossary/index.htm

21

[26] RAJARAMAN, A. Kosmix: High Performance Topic Exploration using the Deep
Web. In Proceedings of the VLDB Endowment 2,2 (Au. 2009), pp. 1524–1529.

[27] SORRENTINO, S., BERGAMASCHI, S., GAWINECKI, M. and PO, L. Schema Nor-
malization for Improving Schema Matching. Data & Knowledge Engineering 69, 12
(Dec. 2010), pp. 1254-1273.

[28] SUGGESTED UPPER MERGED ONTOLOGY (SUMO). Accessible at:
http://www.ontologyportal.org/

[29] ZHENG, Z. AnswerBus question answering system. In Proceedings of the 2nd In-
ternational Conference on Human Language (San Diego, California, USA, 2002), pp.
399–404.

Annex

/* TEMPLATES FOR ER SCHEMAS */

% version 1.6 - 2010

% distributed with absolutely no guarantee

% --- with database connection ---

:- set_prolog_flag(verbose,silent).

:- use_module(library(clpr)).

:- style_check([-singleton,-discontiguous]).

:- set_prolog_flag(toplevel_print_options,[max_depth(50)]).

:- dynamic utemplate/2.

:- dynamic utemplates/1.

:- op(900,fy,not).

% default templates

template(Einst,T) :-

 entity(E,I),

 Einst =.. [E,Iv],

 name(E,[N1|_]),

 name(aeiou,N),

 (on(N1,N),A = 'an ';

 not on(N1,N),A = 'a '),

 T = ['There is ',A,E,' with ',I,' ',Iv,'.'].

template(Ainst,T) :-

 attribute(E,A),

 Ainst =.. [A,Iv,Av],

 T = ['The ',A,' of ',Iv,' is ',Av,'.'].

template(Rinst,T) :-

 relationship(R,[E1,E2]),

 Rinst =.. [R,Iv1,Iv2],

 T = [Iv1,' is related to ',Iv2,' by ',R,'.'].

http://www.ontologyportal.org/

22

% creates user-defined templates

new_template(E) :-

 entity(E,I),

 name(E,[N1|_]),

 name(aeiou,N),

 (on(N1,N),A = 'an ';

 not on(N1,N),A = 'a '),

 xconc_id(E,Id),

 xclist(['There is ',A,E,' with ',I,' ',Id],Tg),

 nl,write('Default template: '),

 nl,write(Tg),nl,nl,nl,

 write('Please, type sentence with '),

 write(Id),nl,

 write('my choice: '),

 read_line(Tgn),

 (Tgn == stop, !;

 Tgn == nil;

 not (Tgn == nil),

 name(Tgn,Ln),

 repl_n(Id,Ln,Ln1),

 repl_n1([Id],Ln1,Ln2),

 repl_v(Id,V,Ln2,Ln3),

 Ent =.. [E,V],

 (utemplate(Ent,Old), retract(utemplate(Ent,Old));

 not utemplate(Ent,_)),

 assert(utemplate(Ent,Ln3))).

new_template(A) :-

 attribute(I,A),

 xconc('id-',I,E),

 xconc('val-',A,Val),

 xclist(['The ',A,' of ',E,' is ',Val],Tg),

 nl,write('Default template: '),

 nl,write(Tg),nl,nl,nl,

 write('Please, type sentence with both '),

 write(E),write(' and '),write(Val),nl,

 write('my choice: '),

 read_line(Tgn),

 (Tgn == stop, !;

 Tgn == nil;

 not (Tgn == nil),

 name(Tgn,Ln),

 repl_n(E,Ln,Ln1),

 repl_n(Val,Ln1,Ln2),

 repl_n1([E,Val],Ln2,Ln3),

 repl_v(E,V1,Ln3,Ln4),

 repl_v(Val,V2,Ln4,Ln5),

 Attr =.. [A,V1,V2],

 (utemplate(Attr,Old), retract(utemplate(Attr,Old));

 not utemplate(Attr,Old)),

23

 assert(utemplate(Attr,Ln5))).

new_template(R) :-

 relationship(R,[I1,I2]),

 (I1 == I2, xconc('id1-',I1,E1),

 xconc('id2-',I2,E2);

 not (I1 == I2), xconc('id-',I1,E1),

 xconc('id-',I2,E2)),

 xclist([E1,' is related to ',E2,' by ',R],Tg),

 nl,write('Default template: '),

 nl,write(Tg),nl,nl,nl,

 write('Please, type sentence with both '),

 write(E1),write(' and '),write(E2),nl,

 write('my choice: '),

 read_line(Tgn),

 (Tgn == stop, !;

 Tgn == nil;

 not (Tgn == nil),

 name(Tgn,Ln),

 repl_n(E1,Ln,Ln1),

 repl_n(E2,Ln1,Ln2),

 repl_n1([E1,E2],Ln2,Ln3),

 repl_v(E1,V1,Ln3,Ln4),

 repl_v(E2,V2,Ln4,Ln5),

 Rel =.. [R,V1,V2],

 (utemplate(Rel,Old), retract(utemplate(Rel,Old));

 not utemplate(Rel,Old)),

 assert(utemplate(Rel,Ln5))).

repl_n(C,[],[]).

repl_n(C,[A|R],V) :-

 name(C,N),

 append(N,V1,[A|R]),

 repl_n(C,V1,V2),nl,

 V = [C|V2].

repl_n(C,[A|R],[A|S]) :-

 name(C,N),

 not append(N,_,[A|R]),

 repl_n(C,R,S).

repl_n1(L,[],[]).

repl_n1(L,[A|R],[Li|S]) :-

 on(Li,L),

 append([Li],V,[A|R]),

 repl_n1(L,V,S).

repl_n1(L,[A|R],[C|S]) :-

 not (on(Li,L), append([Li],_,[A|R])),

 repl_n2(L,[A|R],[],Lc),

 name(C,Lc),

 append(Lc,V,[A|R]),

 repl_n1(L,V,S).

24

repl_n2(L,[],[],[]).

repl_n2(L,[Li|R],V,V) :-

 on(Li,L), !.

repl_n2(L,[A|R],V1,[A|V2]) :-

 not (on(Li,L),A == Li),

 repl_n2(L,R,V1,V2).

repl_v(_,_,[],[]).

repl_v(C,V,[T|R],[V|S]) :-

 not var(C),

 T == C,

 repl_v(C,V,R,S).

repl_v(C,V,[T|R],[T|S]) :-

 not var(C),

 not (T == C),

 repl_v(C,V,R,S).

% save, remove or restore the user-defined templates

save_uts :-

 (not utemplates(S),!;

 utemplates(S),

 retract(utemplates(S))),

 findall(U,(U = utemplate(X,Y),U),S),

 assert(utemplates(S)).

remove_uts :-

 (utemplates(_),!;

 save_uts),

 forall(utemplate(X,Y), retract(utemplate(X,Y))).

restore_uts :-

 utemplates(S),

 forall(on(utemplate(X,Y),S), assert(utemplate(X,Y))).

% creating SQL queries

create_queries :-

 forall(entity(E,_), (P =.. [E,_], create_query(P))),

 forall(attribute(_,A), (P =.. [A,_,_], create_query(P))),

 forall(relationship(R,_), (P =.. [R,_,_], create_query(P))).

create_query(T) :-

 sql_query(T,Q),

 assert((T :- Q)).

sql_query(T,Q) :-

 sql_query1(T,Q1),

 B =

 [odbc_connect('XE', _, [user(prolog), password(prolog),

alias(prolog), open(once)]),!,

 odbc_query(prolog,Q1,Row),

25

 T =.. [_|X],

 Row =.. [row|X]],

 conj_list(Q,B).

sql_query1(T,Q) :-

 T =..[E,I],

 entity(E,A),

 (var(I),

 Q1 = ['select ',A,' from ',E];

 not var(I),

 Q1 = ['select ',A,' from ',E,' where ',A,' = ',I]),

 yclist(Q1,Q).

sql_query1(T,Q) :-

 T =..[A,I,V],

 attribute(E,A),

 entity(E,Ai),

 (var(I), var(V),

 Q1 = ['select ', Ai,',',A,' from ',E];

 var(I), not var(V),

 Q1 = ['select ', Ai,',',A,' from ',E,' where ',A,' = ',V];

 not var(I), var(V),

 Q1 = ['select ', Ai,',',A,' from ',E,' where ',Ai,' = ',I];

 not var(I), not var(V),

 Q1 = ['select ', Ai,',',A,' from ',E,' where ',Ai,' = ',I,' and

',A,' = ',V]),

 yclist(Q1,Q).

sql_query1(T,Q) :-

 T =..[R,I1,I2],

 relationship(R,[E1,E2]),

 entity(E1,Ai1),

 entity(E2,Ai2),

 (var(I1), var(I2),

 Q1 = ['select ', E1,',',E2,' from ',R];

 var(I1), not var(I2),

 Q1 = ['select ', E1,',',E2,' from ',R,' where ',Ai2,' = ',I2];

 not var(I1), var(I2),

 Q1 = ['select ', E1,',',E2,' from ',R,' where ',Ai1,' = ',I1];

 not var(I1), not var(I2),

 Q1 = ['select ', E1,',',E2,' from ',R,' where ',Ai1,' = ',I1,'

and ',Ai2,' = ',I2]),

 yclist(Q1,Q).

% single-query execution

sql_query(T) :-

 sql_query(T,Q),

 Q,

 show(T).

% display database tables

26

table_info :-

 odbc_connect('XE', _, [user(prolog), password(prolog),

alias(prolog), open(once)]),!,

 nl,

 forall(

 (odbc_query(prolog,

 'select us-

er_tab_columns.table_name,user_tab_columns.column_name,user_tab_co

lumns.data_type

 from user_tab_columns, user_tables

 where user_tab_columns.table_name = user_tables.table_name',

 row(T,C,D)), not (T == 'HTMLDB_PLAN_TABLE')),

 (write(T), ttt, write(C), write(' ('),

 downcase_atom(D,D1), write(D1), write(')'), nl)).

ttt :-

 stream_property(S,alias(user_output)),

 stream_property(S,position(Pos)),

 Pos =.. [F,A,B,P,C],

 P1 is 19 - P,

 tab(P1),

 write(' - ').

% current workspace facts and sql queries

list_ws_facts :-

 forall((entity(E,_),F =.. [E,Ai], clause(F,B), B ==true),

 portray_clause(F)),

 forall((attribute(_,A), F =.. [A,I,V], clause(F,B), B ==true),

 portray_clause(F)),

 forall((relationship(R,_), F =.. [R,I1,I2], clause(F,B), B

==true),

 portray_clause(F)).

list_sql_queries :-

 forall((entity(E,_),F =.. [E,Ai], clause(F,B), not (B==true)),

 portray_clause((F :- B))),

 forall((attribute(_,A), F =.. [A,I,V], clause(F,B), not

(B==true)),

 portray_clause(F :- B)),

 forall((relationship(R,_), F =.. [R,I1,I2], clause(F,B), not

(B==true)),

 portray_clause(F :- B)).

% to display, based on templates, all facts available

facts :-

 nl,

 forall((fact(F), F), (facts(F),nl)), nl.

show :- facts.

27

% to display, based on templates, all workspace facts

ws_facts :-

 forall((entity(E,_),F =.. [E,Ai], clause(F,B), B ==true),

 (xtemplate(F,P), xclist(P,S), write(' '), write(S), nl)),

 forall((attribute(_,A), F =.. [A,I,V], clause(F,B), B ==true),

 (xtemplate(F,P), xclist(P,S), write(' '), write(S), nl)),

 forall((relationship(R,_), F =.. [R,I1,I2], clause(F,B), B

==true),

 (xtemplate(F,P), xclist(P,S), write(' '), write(S), nl)).

% to display, based on templates, a fact or a conjunction of facts

show(F) :-

 is_conj(F),!,

 facts(F).

show(F) :-

 not is_conj(F),

 facts((F,nil)).

facts(F) :-

 not var(F), F == nil, !.

facts(F) :-

 is_conj(F),

 findall(F,ck_facts(F),T),

 forall(on(Ti,T),

 (nl,forall(on_conj(Fi,Ti),facts(Fi)))),

 nl, nl.

facts(F) :-

 not is_conj(F),

 (ground(F);

 not ground(F),once(F)),

 xtemplate(F,P),!,

 replace('$null$',undefined,P,P1),

 xclist(P1,S),

 write(' '), write(S).

fact(F) :- not var(F), !,

 F =.. [P|_],

 (entity(P,_);

 attribute(_,P);

 relationship(P,_)),

 current_predicate(P/_).

fact(F) :-

 (entity(P,_), F =.. [P,_];

 attribute(_,P), F =.. [P,_,_];

 relationship(P,_), F =.. [P,_,_]),

 current_predicate(P/_).

ck_facts(F) :-

 is_conj(F),

28

 conj_list(F,L),

 ck_facts1(F,L).

ck_facts1(F,[]).

ck_facts1(F,[nil]).

ck_facts1(F,[F1|R]) :-

 not (F1 == nil),

 fact(F1),

 F1,

 ck_facts1(F,R).

xtemplate(F,T) :-

 (utemplate(F,T);

 not utemplate(F,_),

 template(F,T)).

% to store a series of sentences in a text file

w_show(F) :-

 is_conj(F),!,

 w_facts(F).

w_show(F) :-

 not is_conj(F),

 w_facts((F,nil)).

w_facts(F) :-

 is_conj(F),

 findall(F,ck_facts(F),T),

 prep,

 forall(on(Ti,T),

 (nl(text),

 forall(on_conj(Fi,Ti),w_facts(Fi)))),

 nl(text), nl(text),

 close(text).

w_facts(F) :-

 not var(F), F == nil, !.

w_facts(F) :-

 not is_conj(F),

 (ground(F);

 not ground(F),once(F)),

 xtemplate(F,P),!,

 xclist(P,S),

 write(text,S), write(text,' ').

% to read a series of pre-recorded sentences

r_facts :-

 open_teste,

 nl,

 r_facts1,

 close(text).

29

r_facts1 :-

 read_line(text,A),

 (A = end, !;

 A = nil, r_facts1;

 not (A = nil),write(A),nl,r_facts1).

% UTILITIES

xclist([],'').

xclist([A|R],S) :-

 xclist(R,S1),

 xconc(A,S1,S).

xconc(A,B,C) :-

 name(A,L1),

 name(B,L2),

 append(L1,L2,L3),

 rem_under(L3,L4),

 name(C,L4).

rem_under([],[]).

rem_under([95|R],S) :- !,

 rem_under(R,S1),

 append([32],S1,S).

rem_under([X|R],[X|S]) :-

 rem_under(R,S).

yclist([],'').

yclist([A|R],S) :-

 yclist(R,S1),

 yconc(A,S1,S).

yconc(A,B,C) :-

 name(A,L1),

 name(B,L2),

 append(L1,L2,L3),

 name(C,L3).

xconc_id(B,C) :-

 name('id-',L1),

 name(B,L2),

 append(L1,L2,L3),

 name(C,L3).

on(X,[X|_]).

on(X,[Y|R]) :-

 on(X,R).

replace(_,_,[],[]) :- !.

replace(X,Y,X,Y) :-

 atomic(X), !.

replace(X,Y,X,Y) :-

30

 var(X), !.

replace(X,Y,Z,Z) :-

 atomic(Z), !,

 not (X = Z), !.

replace(X,Y,[Z|L],[Z1|L1]) :-

 var(Z), !,

 Z1 = Z,

 replace(X,Y,L,L1).

replace(X,Y,[Z|L],[Z1|L1]) :- !,

 replace(X,Y,Z,Z1),

 replace(X,Y,L,L1).

replace(X,Y,Z1,Z2) :-

 Z1 =.. [F|L],

 replace(X,Y,F,F1),

 replace(X,Y,L,L1),

 Z2 =.. [F1|L1].

is_conj((_,_)).

conj_list(true,[]) :- !.

conj_list(X,[X]) :- not X =.. [',',_,_], !.

conj_list((X , C),[X|Z]) :-

 conj_list(C,Z).

on_conj(X,C) :-

 conj_list(C,L),

 on(X,L).

read_line(A) :-

 rl([],L),

 (L == [], A = nil;

 not (L == []),

 name(A,L)).

rl(L,L1) :-

 get0(A),

 (not (A == 10), !,

 append(L,[A],L2),

 rl(L2,L1);

 L1 = L).

read_line(F,A) :-

 rl(F,[],L),

 (L == end_of_file, !, A = end;

 L == [], A = nil;

 not (L == []),

 name(A,L)).

rl(F,L,L1) :-

 get0(F,A),

 (A == -1, !, L1 = end_of_file;

 not (A == 10), !,

31

 append(L,[A],L2),

 rl(F,L2,L1);

 L1 = L).

open_teste :-

 open('C:/Users/Helena/PUC/2010Casanova/Furtado/testeW-Ray1.htm',

 read,P,

 [alias(text)]).

reset_teste :-

 set_stream_position(text,'$stream_position'(1,1,1,0)).

prep :-

(stream_property(S,alias(text)),stream_property(S,input),!,close(t

ext);

 true),

 open('C:/Users/Helena/PUC/2010Casanova/Furtado/testeW-Ray1.htm',

 append,P,

 [alias(text)]).

% EXAMPLE STATIC SCHEMA

entity(political_division,pdname).

entity(populated_place,popname).

entity(waterway,wname).

attribute(political_division,population).

attribute(political_division,abbreviated_name).

attribute(political_division,area).

attribute(populated_place,administration_level).

attribute(populated_place,local_area).

attribute(populated_place,local_population).

attribute(waterway,flow).

attribute(waterway,navigability).

relationship(located_in,[populated_place,political_division]).

relationship(crosses,[waterway,political_division]).

:- forall(entity(E,_),(dynamic E/1)).

:- forall(attribute(_,A),(dynamic A/2)).

:- forall(relationship(R,_),(dynamic R/2)).

/* current SQL tables

table political_division(pdname, population, abbreviated_name,

area)

table populated_place(popname, administration_level, local_area,

local_population)

table waterway(wname, flow, navigability)

table located_in(populated_place,political_division).

table crosses(waterway,political_division)

32

*/

% EXAMPLE USER TEMPLATES

utemplate(political_division(A), ['<p class=MsoPlainText><span

class=spelle><span lang=EN-US style=''mso-ansi-language: EN-

US''>The ', A]).

utemplate(crosses(A, _), ['is crossed by the ',A, ',']).

utemplate(flow(_, A), ['which is ', A]).

utemplate(navigability(_, A), ['and ', A, '.</p><p

class=MsoNormal style=''mso-margin-top-alt:auto;mso-margin-bottom-

alt:auto''><span

lang=EN-US style=''mso-ansi-language:EN-US''></p></div>

</div> </body> </html>']).

% DEMOS

% shows on the screen

% demo1 :- show((political_division(P),crosses(R,P),

% flow(R,S),navigability(R,V))).

% stores in the file testeW-Ray1.htm

demo2 :- w_show((political_division(P),crosses(R,P),

 flow(R,S),navigability(R,V))).

