
PUC	

ISSN 0103-9741

Monografias em Ciência da Computação
n° 13/10

Team Orienteering Problem: Formulations and
Branch-Cut and Price

Marcus Vinicius Soledad Poggi de Aragão
Francisco Henrique de Freitas Viana

Eduardo Uchoa Barboza

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 13/10 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena September, 2010

Team Orienteering Problem: Formulations and
Branch-Cut and Price

Marcus Vinicius Soledad Poggi de Aragï¿1
2o, Francisco Henrique de Freitas

Viana and Eduardo Uchoa Barboza

{poggi,fviana}@inf.puc-rio.br, uchoa@producao.uff.br

Abstract. The Team Orienteering Problem is a routing problem on a graph with durations
associated to the arcs and profits assigned to visiting the vertices. A fixed number of
identical vehicles, with a limited total duration for their routes, is given. The total profit
gathered by all routes is to be maximized. We devise an extended formulation where edges
are indexed by the time they are placed in the route. A new class of inequalities, min cut,
and the triangle clique cuts of Pessoa et. al., 2007 are added. The resulting formulation is
solved by column generation. Branching is done following the work of Boussier et al. 2007,
to which the branch-cut-and-price algorithm here proposed is compared. A few new upper
bounds were obtained. Overall the presented approach has shown to be very competitive.

Keywords: Branch-Cut and Price. Team Orienteering Problem. Column Generation.

Resumo. O Team Orienteering Problem ï¿1
2 um problema de roteamento em um grafo

com tempos de viagem associados aos arcos e prï¿1
2mios atrelados ï¿1

2 visitaï¿1
2 ï¿

1
2o dos

vï¿12rtices. Uma quantidade fixa de veï¿12culos idï¿
1
2nticos com uma duraï¿12 ï¿

1
2o limitada

de suas rotas ï¿12 fornecida. O lucro total coletado por todas as rotas ï¿12 maximizado. Foi
desenvolvida uma formulaï¿12 ï¿

1
2o na qual as arestas sï¿12o indexadas pelo tempo que elas

estï¿12o localizadas na rota. Uma nova classe de desigualdades, min cut, bem como os triangle
clique cuts de Pessoa et. al., 2007 sï¿1

2o adicionados. A formulaï¿1
2 ï¿

1
2o resultante ï¿1

2
resolvida por geraï¿12 ï¿

1
2o de colunas. Branching ï¿12 feito seguindo o trabalho de Boussier et

al. 2007, com o qual o algoritmo branch-cut-and-price aqui proposto ï¿12 comparado. Alguns
novos limites superiores foram obtidos. Em geral, a abordagem apresentada mostrou-se ser
muito competitiva.

Palavras-chave: Branch-Cut and Price. Team Orienteering Problem. Geraï¿1
2 ï¿

1
2o de

Colunas.

In charge of publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

Contents

1 Introduction 1

2 Mathematical Formulations 2
2.1 Compact Formulation . 2
2.2 Less Compact Formulation . 3
2.3 Column Generation Formulation . 4

3 Robust Branch-Cut-and-Price Algorithm 5
3.1 Pricing Subproblem . 5
3.2 Families of Cuts . 6

3.2.1 Min Cut Inequalities . 6
3.2.2 Triangle Clique Cuts . 7

3.3 Details of the Branch-and-Bound . 8

4 Computational Experiments 9

5 Conclusions 10

References 15

iii

1 Introduction

Routing Problems are among the most studied problems in Combinatorial Optimization.
Routing problems consider a fleet of vehicles to visit a set of customers. In most versions of
this family of problems, all customers have to be visited exactly once. However, in many
applications of the real world, there are constraints that force us to choose which customers
to visit. The Team Orienteering Problem (TOP) models one of such situations. In the TOP,
each customer has an associated profit and the tours have a maximum duration. The choice
of customers is made balancing their profits and their contributions for the route duration.
Formally, we consider a complete undirected graph G(V,E) where V = {0, . . . , n+ 1} is
the set of vertices and E is the set of edges. Vertex 0 is the starting point and n+ 1 is the
ending point of the routes. A nonnegative profit pi is associated to each vertex i and lij is
a symmetric travel time between vertices i and j. The fleet has m identical vehicles. The
objective is to maximize the total reward collected by all the routes, satisfying the time limit
L for each route. Not all customers have to be visited. When only one vehicle is considered,
we have the Orienteering Problem, OP , which has been shown to be strongly NP-Hard
(see Laporte and Martello(1990) [Laporte and Martello, 1990]), therefore the TOP is also
NP-Hard.

The literature on the Team Orienteering Problem - TOP is quite recent. It has been
proposed by Butt and Cavalier(1994) [Butt and Cavalier, 1994] with the name Multiple Tour
Maximum Collection Problem. Two years later, the paper by Chao et al.(1996) [Chao et al., 1996]
formally introduced the problem. As noted above, the TOP is a version of the Orienteering
Problem considering multiple vehicles. Orienteering Problems consider that only one vehicle
visit the clients. An exact algorithm for the Orienteering Problem was proposed in Fischetti
et al.(1998) [Fischetti et al., 1998]. The first experimental work on the TOP is presented
in Chao at al. [Chao et al., 1996], it generated the currently most used benchmark in-
stances set. Tang and Miller-Hooks [Tang and Miller-Hooks, 2005] proposed a Tabu Search
combined with an adaptive memory procedure. Most of the best known solutions for
these TOP benchmark instances are found in Archetti et al.(2005) [Archetti et al., 2005].
This last work proposed two versions of Tabu Search and two metaheuristics implemen-
tations based on Variable Neighborhood Search - VNS. Ke et al. (2008) [Ke et al., 2008]
developed two ant colonies variations. This approach has been able to get competi-
tive results, reducing the overall computational time. More recently, Vansteenwegen et
al.(2009) [Vansteenwegen et al., 2009] has presented a VNS which obtains results almost
as good as the results in [Archetti et al., 2005], but with a reduced computational time.
However, in general, the quality of the solutions presented in [Archetti et al., 2005] are
still better. Finally, an exact column generation algorithm, a branch-and-price, has been
proposed by Boussier et al. [Boussier et al., 2007]. We use these last results as benchmark
for comparison.

In this paper we first present integer programming compact formulations based on
arc indexed variables. The first formulation is then extended by considering variables
that contain information on the duration of the routes. Next, this latter formulation is
decomposed to derive an associated column generation formulation where variables represent
routes (elementary or not). Valid inequalities on the arc indexed extended variables are
recalled, and new valid inequalities on these variables are proposed. These are joined up in
a branch-cut-and-price scheme.

We organized the text as follows. Section 2 addresses the compact and the column

1

generation formulations. Section 3 describes in detail the branch-cut-and-price scheme.
The following section 4 presents the experimental results obtained. They are compared
with the results in [Boussier et al., 2007]. Finally, conclusions are drawn in section 5.

2 Mathematical Formulations

We now present three Integer Programming formulations for the TOP . The first one is
equivalent to the one in Vansteenwegen et al.(2009) [Vansteenwegen et al., 2009] which uses
variables indicating whether a vehicle route uses or not an arc. Indexing on the vehicles is
necessary to take care of the duration of the routes. In the second formulation, these arc
indexed variables are also indexed on the instant it starts in the route. This allows to avoid
indexing on the vehicles, since no variable indicating an arc will finish after the maximum
duration will be considered. The first formulation is said to be compact because its number
of variables is polynomial and, although the number of constraints is exponential, they can
be separated in polynomial time (subtour elimination constraints). The second formulation
has a pseudo-polynomial number of variables and therefore is less compact than the first
one. Finally, we present a formulation with an exponential number of columns. Each
column represents a possible route and the formulation can be seen as a decomposition of
the previous one.

The notation used in the formulations considers a directed complete graph with arc set
A. Vertex sets are V = {0, . . . , n+ 1} and V − = {1, . . . , n}, where the latter contains only
the customer vertices. The nonnegative profits are denoted by pv for v ∈ V −, arc travel
times are given by la for a = (i, j) ∈ A. The number of identical vehicles is given by m.

2.1 Compact Formulation

This TOP formulation uses binary variables xka to indicate whether arc a is traversed or
not by the vehicle k. Binary variables yv are set to one to indicate the vertex v is visited
and to zero otherwise.

2

max
∑

v∈V −
pv · yv (1)

m∑
k=1

∑
a∈δ−(v)

xka − yv = 0 ∀v ∈ V − (2)

m∑
k=1

∑
a∈δ−(S)

xka − yv ≥ 0 S ⊂ V ∀v ∈ S (3)

m∑
k=1

xka ≤ 1 ∀a ∈ A (4)∑
a∈A

lax
k
a ≤ L k = 1, . . . ,m (5)∑

a∈δ+(v0)

xka = 1 k = 1, . . . ,m (6)∑
a∈δ−(vn+1)

xka = 1 k = 1, . . . ,m (7)

yv ∈ {0, 1} ∀v ∈ V − (8)
xka ∈ {0, 1} ∀a ∈ A ∀k = 1, . . . ,m (9)

The objective function (1) maximizes the sum of profits associated to the visited vertices.
Constraints (2) ensures that a customer is visited once at most by one vehicle. Connectivity
of the routes is guaranteed by constraints (3) that indirectly imposes subtour elimination
of optimal solutions. The constraint set (4) forbids the use of an arc by two or more routes.
The maximum duration of the routes imposed by constraints (5). Constraint sets (6) and
(7) force m vehicles to leave from the starting point and return to the ending point.

2.2 Less Compact Formulation

In this formulation, each arc has an extra index l. This index represents the departure
time of a vehicle using the arc. Variable xlka indicates that vehicle k passes through arc a
starting with l units of time consumed. Since each arc can only be used once, it can start
at exactly one single duration spent and we can write:

xka =
L∑
l=0

xlka (10)

In order to take into account the duration associated to the arcs, we modify the original
graph as follows. We create an intermediate vertex wa for each arc a ∈ A. These artificial
vertices have a demand associated to them equal to the travel time of arc a in the original
graph. For instance, let wij be an intermediate point on arc a = (i, j). The original arc
becomes two new arcs a1 = (i, wij) and a2 = (wij , j). The resulting modified graph has
then arc set A1

⋃
A2, where A1 = {(i, wij), (i, j) ∈ A} and A2 = {(wij , j), (i, j) ∈ A}. The

vertex set is given by V
⋃
A. Figure 1 shows the graph transformation. The intermediate

vertex (gray point) consumes a demand (time) that corresponds to the travel time of the
original arc (i, j). In this case, the travel time of arc (i, j) is 2.

The formulation on variables xlka is obtained by replacing variables xka for equation (10)
in the compact formulation 2.1. As mentioned above, constraints (5) can be removed, since

3

Figure 1: Graph transformation

the route duration limit can be done by considering only appropriate l indexes. Furthermore,
we can impose that m arcs leave vertex 0 and return to vertex n+1. This uniquely identify
the vehicle routes and, consequently, allow to remove index k from variables xlka . The
second formulation is then written on variables xla, a ∈ A1

⋃
A2, l = 0, 1, . . . , L. In fact,

it would be more precise to use as largest value of l as L minus the travel time of the arc
connecting the arrival vertex to vertex n+ 1. We use L to simplify the notation.

max
∑

v∈V −
pv · yv (11)

L∑
l=0

∑
a∈δ−(v)

xla − yv = 0 ∀v ∈ V − (12)∑
a∈δ−(v)

xla −
∑

a∈δ+(v)

xla = 0 ∀l = 0, ..., L ∀v ∈ V − (13)

xl(i,wij)
= x

(l−l(i,j))
(wij ,j)

∀l = 0, ..., L ∀(i, j) ∈ A (14)
L∑
l=0

∑
a∈δ+(0)

xla = m (15)∑
a∈δ−(n+1)

x0a = m (16)

yv ∈ {0, 1} ∀v ∈ V − (17)

xla ∈ {0, 1} ∀a ∈ A1

⋃
A2 ∀l = 0, ..., L (18)

This formulation can be seen as a flow formulation. Flow conservation is assured
by constraints (13) on the original vertices, while constraints (14) do the same on the
intermediate vertices. They also impose that traversing an arc consumes time. Finally,
constraints (15) and (16) impose the number of routes.

2.3 Column Generation Formulation

As the (pseudo-polynomial) number of variables in the formulation just above may be
huge, we apply a Dantzig-wolfe decomposition. The master problem considers only the
constraints that keep track of the visited vertices and the one that guarantees the number of
routes to be m. The columns represent the routes, therefore assuring the flow conservation
constraints are satisfied. For integer solutions of the second formulation the columns are
elementary routes. On the other hand, when the linear relaxation is considered, the less
compact formulation is equivalent to this column generation formulation when the routes
can also be non-elementary or walks on the graph.

4

All possible columns can be expressed in terms of its arcs indexed by their start instant
in the route, elementary or not. Coefficient glja indicates that arc a initiating at duration l
is used in route j. Let Q represent the set of all possible routes. Let also λj represent the
variable indicating whether route (or non-elementary route) j is chosen. We can write:∑

j∈Q
glja · λj = xla ∀a ∈ A ∀l = 0, ..., L (19)

The column generation formulation is then obtained by replacing variable xla in con-
straints (12) and (16) following the equation above. The formulation is given by:

max
∑

v∈V −
pv · yv (20)

∑
a∈δ−(v)

∑
j∈Q

L∑
l=0

glja · λj = yv ∀v ∈ V − (21)∑
a∈δ+(0)

∑
j∈Q

g0ja · λj = m (22)

yv ∈ {0, 1} ∀v ∈ V − (23)
λj ∈ {0, 1} ∀j ∈ Q (24)

Constraints (21) guarantee that if a vertex is visited, some selected route must visit it.
The constraint (22) forces that m routes leave from the starting point.

3 Robust Branch-Cut-and-Price Algorithm

This section describes the proposed Branch-Cut-and-Price algorithm. We first present
the pricing subproblem to solve the linear relaxation of the second formulation above by
column generation. This implies allowing non-elementary routes to be obtained, but also
to avoid solving a strongly NP-Hard problem. The resulting pricing can be solved in
pseudo-polynomial time. We say that the Branch-Cut-and-Price is robust regarding its
efficiency when this complexity is kept for all pricing done in the algorithm. To preserve
this property the cuts presented in following subsections are defined over the variables of
the second formulation. Branching is also done keeping this property and is detailed at the
end of this section.

3.1 Pricing Subproblem

The pricing subproblem corresponds to finding routes, elementary or not, with maximum
reduced cost and duration at most L. This can be done by dynamic programming using
the recursion given below (25).

rlc(j) = max{rlc(j), rc(i)l+l(i,j) + p(j)− π(i,j)} (25)

The maximum reduced cost at vertex j and route duration l is given by rlc(j). The value
π(i, j) is the dual cost of arc (i, j) and sums up all dual contributions from the current
restrcited master problem. In the root node of the branch-cut-and-price π(i, j) corresponds

5

to the dual variable associated to the jth constraint (21). As cuts are added and branching
is done other dual values will contribute to the value of π(i, j).

The route, elementary or not, with largest reduced cost is found, regardless of the values
of π(i, j), in O(nL). It is possible to eliminate 2-cycles in the routes ((i, j) and (j, i) in
sequence) without changing this complexity.

3.2 Families of Cuts

Two families of cuts are used in the proposed branch-cut-and price algorithm. The Min
Cut inequalities next described is, to the best of our knowledge, new. The second one is an
adaptation of the Triangle Clique cuts in Pessoa et al. (2007) [Pessoa et al., 2009]. Both
are described on variables xla and yv from the second formulation, the original variables of
the column generation formulation. However, the resulting constraints are written in terms
of λj variables, via equation (19), and added to the column generation formulation.

3.2.1 Min Cut Inequalities

This family of cuts relies on the intuition that fractional solutions for the second formulation
will go in and out of a vertex several times, while integer solutions will at most have
one value of xl(i,j) for all i and all l, greater than zero, and equal to one. In a certain
sense, it works as a sub-cycle elimination constraint, although it considers all routes with
non-negative value in the current solution at once.

Figure 2: Fractional solution violating a min-cut inequality

Figure 2 presents one such situation where a fractional can be cut off. First observe
that exactly one unit of flow enters vertex V1, satisfying constraints (12), but violating
integrality. Now, verify that the minimum cut from the departing vertex V0 to all copies of
V1 (or to the converging vertex on the top of the figure) is 0.5. This cut is given by the set
of all vertices in gray and the minimum value for it is one (or the current value of variable
y1).

6

Let S be the set of vertices associated to one such minimum cut regarding vertex v.
The corresponding inequality is given by:∑

a,l|a∈δ−(S)

xla ≥ yv (26)

Identifying a violated min-cut inequality amounts, therefore, to solve a minimum s-t
cut problem. Consider the graph with vertex set {0, n+ 1}

⋃
{(i, l)|i ∈ V −, l = 0, . . . , L}

and arc set {(il, jl−li,j)|xl(i,j) > 0}, where the capacity of the arcs are given by the values of
variables xl(i,j) in the current fractional solution. To this graph, add a sink vertex and arcs
from all copies of a vertex v, vl for l = 0, . . . , L, and assign an infinity capacity. To obtain
minimum s-t cuts, we solve max-flow problems on this graph with vertex 0 as source and
the required artificial vertex as sink.

The resulting inequality (26) is defined only on variables from the second formulation.
Therefore, the associated dual variable will allow assigning its value to the arcs dual costs
and the pricing problem will remain unchanged.

3.2.2 Triangle Clique Cuts

Let S ∈ V − be a set of exactly three vertices. Consider now all arcs in A1
⋃
A2 that has as

extreme point on a vertex in S, and their multiplicities on l. Two such arcs are compatible
when there exists a route that contains both.

Figure 3: Compatible arcs

Figure 3 illustrate the compatible arcs idea. There are black and gray vertices. The
black ones are the vertices of S. The gray ones are the intermediate ones. The index
l represents the departure time for each arc. The demand d value on the gray vertices
correspond to the travel time of the original arc associated to this intermediate vertex. It
can be observed that the arcs in bold describe a possible part of a route and therefore are
compatible. It worths mentioning that a5 and a6 are not compatible with the arcs in bold
because if there were a flow returning to vertex i, the arrival time at i would not be equal
to 10.

7

The triangle clique cuts simply states that the sum of the variables associated to arcs
(and their multiplicities) in a set where every pair is not compatible can be at most one.
This can be view as a clique in an incompatibility graph where there is an edge uniting
every pair of incompatible arcs. Another way to look at this same structure is to consider
stable sets in a compatibility graph which, in this case, is much less dense.

Let G′ = (V ′, E′) be the compatibility graph where each vertex of V ′ is a time-indexed
arc al = (i, j)l for a ∈ A1

⋃
A2 and l = 0, . . . , L. In this case, an edge e = (al11 , a

l2
2) belongs

to E′ if, and only if al11 and al22 are compatible. Let S = {i, j, k}. There are four cases:
Case 1: if e = ((i, wij)

l
1, (i, wik)

l
2), then e /∈ E′

Case 2: if e = ((i, wij)
l
1, (k,wkj)

l
2), then e /∈ E′

Case 3: if e = ((i, wij)
l
1, (wij , k)

l
2), and l1 6= l2 − l(wij), then e /∈ E′

Case 4: if e = ((i, wij)
l
1, (wij , k)

l
2), and l1 = l2 − l(wij), then e ∈ E′

For any stable set I ⊂ V ′, the following inequality is valid:
∑
al∈I

xla ≤ 1

The separation routine for the triangle clique cuts finds the stable set I ⊂ V ′ in G′

that maximizes
∑

al∈I x
l
a, where xla denotes the current LP optimal solution. Despite of

the problem of finding the maximum-weighted stable set being strongly NP-Hard, we can
explore the specific structure of G′ and find a maximum weighted independent set in linear
time.

A set I is a maximum-weight stable set for a set of chains if, and only if, it is the
union of maximum-weight stable set for each single chain. We find in linear time the
maximum-weight stable set for each chain H, using a dynamic programming procedure. Let
alii be the ith vertex in the chain H, numbered from 1 to |H| from one extreme to the other
of the chain. Let us define I∗(i, 1) as the maximum stable set for the subchain containing
the first i vertices of H than t does use the ith vertex. Finally, let c(I) =

∑
al∈I x

l
a. We

have the following recurrence:

c(I∗(i, 1)) = xliai + c(I∗(i− 1, 0))

c(I∗(i, 0)) = max(c(I∗(i− 1, 0)), c(I∗(i− 1, 1)))

It is worth mentioning that these cuts are also a way to eliminate cycles of fixed size in the
solution of the restricted master problem.

3.3 Details of the Branch-and-Bound

The branch-cut-and-price algorithm starts with a column generation phase. Once an optimal
LP solution is found either cuts are separated or branching is performed. In both cases,
the pricing problem must be solved again until another optimal LP solution is obtained.

We branch on the vertices, as in Boussier et al. (2007) [Boussier et al., 2007], deciding
whether they are served or not. It is a robust branching scheme because it does not affect
the pricing subproblem. Bounding is done using the values of the feasible solutions found
in [Boussier et al., 2007].

The master formulation used is a linear relaxation from formulation presented in 2.3.
Whenever we fix any variable yv = 1, in a node of branch-and-bound tree, there must be a
route that visits v. When this is not the case, the problem becomes infeasible. Therefore,
to branch on the yv variables, it is necessary to add artificial slack variables f+, f− and
q, with large costs, to the constraints in order to guarantee the feasibility of the current

8

restricted master problem. Its modified formulation can be written:

max
∑

v∈V −
pv · yv −

∑
v∈V −

M · f+v −
∑

v∈V −
M · f−v −M · q (27)

∑
a∈δ−(v)

∑
j∈Q

L∑
l=0

glja · λj + f+v − f−v = yv ∀v ∈ V − (28)∑
a∈δ(0)+

∑
j∈Q

g0ja · λj + q = m (29)

Infeasibility is detected when an artificial slack variable has positive value when LP
optimality is reached.

Branching only on the yv variables may end up with a fractional solution. In this case,
we may proceed branching on the xla variables until an integer optimal solution is reached.
No results with second branching is presented and when there is still a fractional solution
the corresponding upper bound is reported. We choose the yv variable with value closer to
0.5 to branch on.

4 Computational Experiments

We have tested our algorithm using the instances from Chao et al. (1996) [Chao et al., 1996].
There are seven datasets where the number of vertices ranges from 21 to 102. For a given
number of vertices, instances only differ on the values of L and m. All experiments were
performed on a notebook with processor Intel Core Duo (but using a single core) with a
clock of 1.66GHz and 2GB of RAM. Results are presented in Tables 1 to 4. All tables have
the following columns. Instance is the name of the instance file; m is the number of vehicles;
L is the maximum duration for the routes; LB is the best lower bound, i.e. the value of the
best known solution for the TOP instance; CG contains the linear relaxation value for the
column generation formulation; ROOT UB presents the LP upper bound in the root node
when both families of cuts are separated; Our UB is the value of the best upper bound
found by our branch-cut-and-price algorithm; Boussier UB is the upper bound presented in
Boussier et al.(2007) [Boussier et al., 2007]; columns CGT, CT and OT present the CPU
time spent in the pricing problem, in the cut separation procedures and in solving the linear
programming problems with CPLEX 11.2, respectively; NN indicates the number of nodes
explored in the branch-cut-and-price; finally, the IS the value of the best integer solution
our algorithm found whenever this was the case.

We concentrate our analysis on tables 1 and 2. This is so since the instances in tables
3 and 4 appear to be easy. In those tables, with instances with 64, 66 and 102 vertices,
the important remark is that when the column generation formulation did not find the
optimal solution value as upper bound, the cut separation lead to this. Moreover, the
integer optimal solution was found by our algorithm in 16 out of the 22 instances. Also,
the total CPU times where consistently below 2 minutes. This was also the case for the
branch-and-price of Boussier et. al. (2007).

Table 1 presents the results for instances with 33 vertices. In the case with 4 vehicles
the bounds where identical to the one of Boussier et. al. (2007), with only one instance
with a bound above the optimal solution value. In the cases with 2 and 3 vehicles our
algorithm compared favorably, obtaining better bounds in 7 out of 9 instances. Again the
cut separation improved significantly the bounds. Although a specific column in the tables

9

with only the Min Cut inequalities was not presented, we observed that these were the most
effective cuts. Finally, the results on the instances with 100 vertices presented in table 2 can
be verified to be similar. In the instances where a tie with the branch-and-price of Boussier
et. al. (2007) did not occur, our algorithm outperform theirs in 5 out 6 instances. This was
specially true for the most difficult instances p4.4.j and p4.4.k. Again, cut separation was
crucial.

5 Conclusions

This work proposes a robust branch-cut-and-price algorithm for the TOP . The experimental
results showed that the CPU times were considerably small, even though the duration
of the routes were considered with a precision of two decimals, corresponding to large
values. These large values explain why solving the pricing subproblem were the most
time consuming step. The family of valid inequalities, Min Cut, appeared to be the main
contribution of this work, this is so since they can be adapted to a wide class of routing
problems. Regarding the TOP , the effort is now on testing and polishing the code with
branching on the arc variables. This shall allow finding optimal solutions and to prove their
optimality for many of the instances from Chao et al.(1996). To conclude we believe that
the ideas here presented allow improving the state-of-the-art in solving instances of the
TOP in the near future.

10

T
ab

le
1:

R
es
ul
ts

fo
r
in
st
an

ce
s
w
it
h
33

ve
rt
ic
es

In
st
an

ce
m

L
LB

C
G

R
O
O
T

U
B

O
ur

U
B

B
ou

ss
ie
r
U
B

C
G
T

C
T

O
T

N
N

IS
p
3.

2.
h

2
25

41
0

43
0.
64

5
41

0
41

0
41

7.
5

26
.5
6s

18
.9
8s

0.
38

s
1

41
0

p
3.

2.
k

2
32

.5
55

0
57

5.
08

8
55

0
55

0
56

6.
66

7
81

.2
4s

28
.1
4s

1.
17

s
1

-
p3

.3
.e

3
11

.7
20

0
21

3.
33

3
21

3.
33

3
21

0
20

0
2.
68

s
15

.4
9s

0.
32

s
4

-
p
3.

3.
i

3
18

.3
33

0
35

5
33

5
33

0
33

6.
66

7
22

.0
0s

17
.9
5s

0.
64

s
3

33
0

p
3.

3.
j

3
20

38
0

40
3.
33

3
38

0
38

0
39

0
15

.6
8s

21
.5
0s

0.
47

s
1

-
p
3.

3.
k

3
21

.7
44

0
45

8.
63

6
44

0
44

0
45

0
11

.7
1s

6.
11

s
0.
32

s
1

44
0

p3
.3
.l

3
23

.3
48

0
50

3.
33

3
48

6.
66

7
48

6.
66

7
48

0
90

.1
7s

86
.4
3s

1.
63

s
4

-
p
3.

3.
m

3
25

52
0

53
7.
5

52
0

52
0

52
6.
66

7
32

.1
0s

27
.7
4s

0.
47

s
1

-
p
3.

2.
e

2
17

.5
26

0
27

6.
25

26
0

26
0

26
2

4.
96

s
0.
12

s
0.
14

s
1

26
0

p
3.

4.
k

4
16

.2
35

0
35

0
35

0
35

0
35

0
2.
47

s
0.
00

s
0.
02

s
1

35
0

p
3.

4.
l

4
17

.5
38

0
39

5
38

0
38

0
38

0
11

.8
9s

0.
41

s
0.
15

s
1

-
p
3.

4.
m

4
18

.8
39

0
40

5
39

0
39

0
39

0
9.
51

s
0.
34

s
0.
06

s
1

-
p
3.

4.
n

4
20

44
0

46
1.
66

7
44

6.
66

7
44

6.
66

7
44

6.
66

7
56

.5
9s

4.
70

s
0.
54

s
4

-
p
3.

4.
o

4
21

.2
50

0
51

1.
11

1
50

0
50

0
50

0
14

.8
5s

0.
60

s
0.
13

s
1

-
p
3.

4.
p

4
22

.5
56

0
56

6.
66

7
56

0
56

0
56

0
18

.0
9s

0.
58

s
0.
14

s
1

56
0

11

T
ab

le
2:

R
es
ul
ts

fo
r
in
st
an

ce
s
w
it
h
10

0
ve
rt
ic
es

In
st
an

ce
m

L
LB

C
G

R
O
O
T

U
B

O
ur

U
B

B
ou

ss
ie
r
U
B

C
G
T

C
T

O
T

N
N

IS
p
4.

2.
a

2
25

20
6

20
6

20
6

20
6

20
6

7.
47

s
0.
00

s
0.
17

s
1

20
6

p
4.

2.
b

2
30

34
1

34
4

34
4

34
4

34
1

24
.7
0s

2.
06

s
0.
20

s
1

-
p
4.

3.
a

3
16

.7
0

0
0

0
0

0.
15

s
0.
00

s
0.
02

s
1

-
p
4.

3.
b

3
20

38
38

38
38

38
0.
13

s
0.
00

s
0.
03

s
1

38
p
4.

3.
d

3
26

.7
33

5
34

2
34

2
33

6.
85

7
33

9
13

6.
68

s
16

4.
57

s
1.
95

s
12

-
p
4.

3.
e

3
30

46
8

47
0.
09

1
46

9.
5

46
8.

33
3

46
8.
75

32
9.
04

s
57

.5
2s

2.
12

s
8

-
p
4.

3.
f

3
33

.3
57

9
59

1
58

0.
33

3
58

0
58

4.
5

10
20

.0
8s

24
4.
82

s
4.
36

s
8

-
p
4.

4.
d

4
20

38
38

38
38

38
0.
12

s
0.
00

s
0.
04

s
1

38
p
4.

4.
e

4
22

.5
18

3
18

3
18

3
18

3
18

3
0.
62

s
0.
00

s
0.
09

s
1

-
p
4.

4.
f

4
25

32
4

32
4

32
4

32
4

32
4

3.
68

s
0.
00

s
0.
17

s
1

32
4

p
4.

4.
j

4
35

73
2

74
9.
41

73
4.
79

7
73

3.
38

74
1.
47

2
13

13
.6
0s

23
2.
69

s
7.
22

s
6

-
p
4.

4.
k

4
37

.5
82

1
84

1.
79

9
82

1.
46

2
82

1.
46

2
83

1.
94

5
19

37
.0
8s

14
3.
58

s
12

.2
9s

4
-

12

T
ab

le
3:

R
es
ul
ts

fo
r
in
st
an

ce
s
w
it
h
66

ve
rt
ic
es

In
st
an

ce
m

L
LB

C
G

R
O
O
T

U
B

O
ur

U
B

B
ou

ss
ie
r
U
B

C
G
T

C
T

O
T

N
N

IS
p
5.

2.
b

2
5

20
20

20
20

20
0.
20

s
0.
00

s
0.
65

s
1

20
p
5.

2.
c

2
7.
5

50
50

50
50

50
0.
26

s
0.
00

s
2.
32

s
1

50
p
5.

2.
d

2
10

80
80

80
80

80
0.
34

s
0.
00

s
0.
31

s
1

80
p
5.

2.
e

2
12

.5
18

0
18

0
18

0
18

0
18

0
1.
38

s
0.
00

s
0.
14

s
1

18
0

p
5.

2.
f

2
15

24
0

24
0

24
0

24
0

24
0

3.
79

s
0.
00

s
0.
19

s
1

24
0

p
5.

2.
g

2
17

.5
32

0
32

0
32

0
32

0
32

0
9.
88

s
0.
00

s
0.
23

s
1

32
0

p
5.

3.
m

3
21

.7
65

0
65

0
65

0
65

0
65

0
24

.4
6s

0.
00

s
0.
23

s
1

65
0

p
5.

3.
n

3
23

.3
75

5
75

5
75

5
75

5
75

5
39

.9
0s

0.
00

s
0.
24

s
1

-
p
5.

3.
o

3
25

87
0

87
0

87
0

87
0

87
0

62
.9
7s

0.
00

s
0.
27

s
1

87
0

p
5.

3.
p

3
26

.7
99

0
99

0
99

0
99

0
99

0
61

.6
1s

0.
00

s
0.
29

s
1

99
0

p
5.

4.
t

4
25

11
60

11
60

11
60

11
60

11
60

58
.0
8s

0.
00

s
0.
29

s
1

11
60

p
5.

4.
u

4
26

.2
13

00
13

00
13

00
13

00
13

00
60

.3
4s

0.
00

s
0.
28

s
1

13
00

p
5.

4.
v

4
27

.5
13

20
13

20
13

20
13

20
13

20
91

.8
5s

0.
00

s
0.
40

s
1

-

13

T
ab

le
4:

R
es
ul
ts

fo
r
in
st
an

ce
s
w
it
h
64

an
d
10

2
ve
rt
ic
es

In
st
an

ce
m

L
LB

C
G

R
O
O
T

U
B

O
ur

U
B

B
ou

ss
ie
r
U
B

C
G
T

C
T

O
T

N
N

IS
p
6.

2.
f

2
20

58
8

58
8

58
8

58
8

58
8

8.
38

s
0.
00

s
0.
25

s
1

58
8

p
6.

2.
g

2
22

.5
66

0
66

0
66

0
66

0
66

0
19

.3
4s

0.
00

s
0.
13

s
1

66
0

p
6.

4.
j

4
15

36
6

36
6

36
6

36
6

36
6

0.
75

s
0.
00

s
0.
02

s
1

-
p
6.

4.
k

4
16

.2
52

8
52

8
52

8
52

8
52

8
1.
52

s
0.
00

s
0.
01

s
1

-
p
6.

4.
n

4
20

10
68

10
68

10
68

10
68

10
68

26
.0
3s

0.
00

s
0.
05

s
1

10
68

p
7.

3.
f

3
40

24
7

24
7

24
7

24
7

24
7

8.
43

s
0.
00

s
0.
08

s
1

-
p
7.

3.
g

3
46

.7
34

4
34

9
34

4
34

4
34

4
30

.3
0s

0.
14

s
0.
05

s
1

34
4

p
7.

4.
i

4
45

36
6

36
9

36
6

36
6

36
6

22
.3
8s

0.
17

s
0.
05

s
1

36
6

p
7.

4.
j

4
50

46
2

47
6.
19

2
46

2
46

2
46

2
50

.1
6s

0.
34

s
0.
06

s
1

-

14

References

[Archetti et al., 2005] Archetti, C., Hertz, A., and Speranza, M. G. (2005). Metaheuristics
for the team orienteering problem. Journal of Heuristics, 13:49–76.

[Boussier et al., 2007] Boussier, S., Feillet, D., and Gendreau, M. (2007). An exact algo-
rithm for team orienteering problems. 4OR, 5(3):211–230.

[Butt and Cavalier, 1994] Butt, S. E. and Cavalier, T. M. (1994). A heuristic for the
multiple tour maximum collection problem. Computers and Operations Research, 21:101–
111.

[Chao et al., 1996] Chao, I. M., Golden, B., and Wasil, E. A. (1996). The team orienteering
problem. European Journal of Operational Research, 88:474–474.

[Fischetti et al., 1998] Fischetti, M., Salazar, J., and Toth, P. (1998). Solving orienteering
problem through branch-and-cut. INFORMS Journal on Computing, 10:133–148.

[Ke et al., 2008] Ke, L., Archetti, C., and Feng, Z. (2008). Ants can solve the team
orienteering problem. Computers and Industrial Engeneering, 54:648–665.

[Laporte and Martello, 1990] Laporte, G. and Martello, S. (1990). The selective traveling
salesman problem. Discrete Appl Math, 26:193–207.

[Pessoa et al., 2009] Pessoa, A., Poggi, M., and Uchoa, E. (2009). A robust branch-cut-
and-price algorithm for the heterogeneous fleet vehicle routing problem. Networks,
54:167–177.

[Tang and Miller-Hooks, 2005] Tang, H. and Miller-Hooks, E. (2005). A tabu search heuris-
tic for the team orienteering problem. Computers and Operations Research, 32:1379–1407.

[Vansteenwegen et al., 2009] Vansteenwegen, P., Souffriou, W., Vanden Berghe, G., and
Van Oudheusden, D. (2009). A guided local search metaheuristic for the team orienteering
problem. European Journal of Operational Research, 196(1):118–127.

15

	Introduction
	Mathematical Formulations
	Compact Formulation
	Less Compact Formulation
	Column Generation Formulation

	Robust Branch-Cut-and-Price Algorithm
	Pricing Subproblem
	Families of Cuts
	Min Cut Inequalities
	Triangle Clique Cuts

	Details of the Branch-and-Bound

	Computational Experiments
	Conclusions
	References

