

ISSN 0103-9741

Monografias em Ciência da Computação

n° 16/10

A Multi-Agent System Framework to Assure the
Reliability of Self-Adapted Behaviors

Andrew Diniz da Costa
Viviane Torres da Silva

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 16/10 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena November, 2010

A Multi-Agent System Framework to Assure the
Reliability of Self-Adapted Behaviors

Andrew Diniz da Costa, Viviane Torres da Silva1,
Carlos José Pereira de Lucena

1Departamento de Informática – Universidade Federal Fluminense (UFF)

acosta@inf.puc-rio.br, viviane.silva@ic.uff.br, lucena@inf.puc-rio.br

Abstract. One of the most important issues in self-adaptive systems is to assure the re-
liability of self-adapted behaviors. However, few works provide solution to deal with
such concern. The majority considers the execution of test cases to validate the self-
adapted behavior. Based on this idea, the paper proposes a framework that helps on
building self-adaptive and self-testable multi-agent system This framework allows the
creation of different self-adaptation processes (control-loops) composed of a set of ac-
tivities (e.g. collect, analyze, plan, execute, etc). In order to help on testing and validat-
ing the adapted behavior, the framework provides two main activities (test and vali-
date) and a set of elements that help on representing the self-test concept in different
control-loops. The applicability of the framework is demonstrated by an industrial sys-
tem, developed to a petroleum company, responsible for identifying routes that attend
products derived from the petroleum (e.g. kerosene, gasoline, etc) in different places in
Brazil.

Keywords: Design, Reliability, Experimentation, Security and Verification.

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

 Table of Contents

1 Introduction 1
2 Related Work 2
3 Self-Test Framework 3

3.1 Main Idea 3
3.2 XML Files 4
3.3 Hot-Spots and Frozen-Spots 8
3.4 Using ST Framework 9

4 Case Study: Petroleum Control System 10
4.1 Main Idea 10
4.2 Agents that Perform Self-Test 11

5 Conclusion and Future Work 12
References 13

 1

1 Introduction

The development of complex systems, which are able to self-adapt theirs behaviors
when necessary, is becoming extremely common. In this context, the multi-agent sys-
tem paradigm (Wooldridge and Jennings, 1998) has been used especially when distrib-
uted, autonomous and pro-active entities are represented.

In order to deal with such tendency, several approaches have been proposed to help
on building self-adapted systems. However, few works, such as (Denaro et al., 2007),
(Costa et al, 2010), (Stevens et al, 2007) and (Wen et al, 2005) provide solution to deal
with one of the most important issues in self-adaptive systems that is to assure the reli-
ability of the self-adapted behavior. The main idea of such approaches is to execute
tests before effectively adapt the behavior. Thus, it is possible to evaluate if a suggested
adaptation is adequate or not.

Although it is possible to define tests to be executed to test the adapted behavior,
such approaches provide little support to their definition. After analyzing several ap-
proaches published in the literature, we have figured out that a set of important con-
cerns are not represented by them:

• Relating artifacts to be tested to their test cases. It is not only important to
define the tests themselves but also to relate them to the artifacts (or behavi-
or) that they are able to test;

• Defining test conditions of a test case, i.e., to define different sets of input da-
ta and output assertions to a specific test. By doing this, the use of a given
test case become more flexible since it can be executed in different ways for
different purpose;

• Helping on the creation of tests able to read stored data, i.e. data stored in
databases, files, etc. This is an important concern because tests that use per-
sisted data are common in complex systems;

• Defining the order of the execution of the tests used for validating a given ar-
tifact. This concern is important because the execution of one test may de-
pend on the results of another test;

• Defining different log formats to store the results of the performed tests.
Thus, each system can define different ways of handling them;

• Allowing the use of the self-test activity in other self-adaptation processes,
i.e. such activity should not be tied to only one process.

The goal of the paper is to present the Self-Test (ST) Framework that aims to allow
the creation of multi-agent systems that perform self-test before executing the self-
adapted behavior. ST framework enables the construction of self-adaptive agents that
can execute different self-adaptation processes (control-loops) composed of activities
that can perform the collection of data, analysis, decisions, etc. The main features of the
framework are: (i) to provide two activities (test and validate) that represent the self-test
concept and that can be used in different self-adaptation processes; (ii) to allow the cre-
ation of different control-loops; (iii) to provide a default control-loop that uses the test
and validate activities; and (iv) to define, by using XML files, the test cases that will be
used to validate the artifacts.

 2

The paper is organized as follows. In Section 2 we present related works. Section 3
details the ST Framework. In Section 4 a case study is described and finally, in Section
5, conclusions and some future works are presented.

2 Related Work

The main focus of the work presented in (King et al., 2007) is to provide a self- test
framework that should be used at microprocessors. The framework consists of two
main steps: (i) self-test of on-chip processor core(s), and (ii) test and response analysis
of other on-chip components, using the tested processor core(s) as the pattern genera-
tor and response analyzer. Since the components of the framework are tied to concepts
related to microprocessors, it is not possible to use it in different domains, such as the
approach being proposed in this paper.

In (Denaro et al., 2007) the authors presents a self-adaptive approach that uses a
control loop structured in the following way: monitoring mechanisms, diagnosis
mechanisms, and adaptation strategies. The self-adaptive approach implemented con-
sists of a pre-processing and a generation step. The pre-processing test is composed of:
the identification of possible integration problems, the generation of test cases for re-
vealing integration problems, and the definition of suitable recovery actions. Even con-
sidering such structure, the approach does not consider important steps defined in the
proposal being presented in this paper, such as the possibility to define input data and
output assertions to be used in different tests and to define the order of execution of
the responsible tests for validating the artifacts (e.g. behavior, web-service, etc). In ad-
dition and different to our approach, the self-test approach presented in (Denaro et al.,
2007) proposes a fix process. In our approach different control loops can be created.

The work in (Stevens et al, 2007) proposes a framework for testing self-adaptive sys-
tems. Such work introduces the concept of an autonomic container, which is a data
structure that has self-managing capabilities, and also has the implicit ability to self-
test. Such approach uses a strategy that tests copies of managed resources while the
actual managed resource is being used by a system, a technique known as replication
with validation. However, it does not allow the use of the self-test activities in other ar-
chitectures because the framework is tied to the IBM’s layered architecture for auto-
nomic computing (AC) systems (IBM, 2003). Therefore, it is not possible to use the self-
test activities in different self-adaptation processes. Besides, the framework does not
help the creation of test cases that recovery data from different bases what is frequently
used when testing and validating complex self-adapt systems.

The approach in (Costa et al., 2010) proposes the Java self-Adaptive Agent Framework
with self-Test (JAAF+T) that extends the JADE framework (Bellifemine et al., 2007),
which already gives support to the implementation of autonomous and pro-active
agents. JAAF+T allows the creation of self-adaptive agents that can execute different
self-adaptation processes and activities that compose such processes. However, the
framework does not provide support to the creation of tests that need to recovery data
stored in different bases. Although JAAF+T provides files that represent test cases and
data that can be used in self-adaptation processes, the framework does not provide an
intuitive way to relate test cases with artifacts that must be tested, and to define test
conditions to a same test case. Such disadvantages are treated by the approach being
proposed in this paper.

 3

3 Self-Test Framework

As previously mentioned one of the most important issues in self-adaptive systems is
to assure the reliability of the self-adapted behavior. However, few works, such as
(Denaro et al., 2007), (Costa et al, 2010), (Stevens et al, 2007) and (Wen et al, 2005) pro-
vide solution to deal with such issue.

The approaches used by (Costa et al, 2010) and (Stevens et al, 2007) execute tests in
the proposed adaptation in order to evaluate its reliability. However, such approaches
have some drawbacks. For instance, they do not help the designers on the creation of
tests able to read stored data, i.e. data stored in databases, files, etc. Based on this idea,
the Self-Test (ST) framework allows the creation of self-tests that can use data stored in
different bases.

Initially, this section presents the main idea of the ST framework (section 3.1). Next,
a set of XML files that helps on defining the testes is presented (section 3.2). After, the
hot-spots and frozen-spots of the framework are described (section 3.3). And finally, a
step by step description of how to use the ST framework is presented.

3.1 Main Idea

Before adapting its behavior, the agent should execute a set of tests in order to validate
its adaptation. Aiming to contemplate this idea, we extended the JADE framework
(Bellifemine et al., 2007), a FIPA compliant framework developed in Java to implement
multi-agent systems (MASs), in order to represent the following concepts: (i) self-
adaptation plans (or control-loops) that makes JADE agents able to perform self-tests;
(ii) activities that are the steps of such plans, in particular two activities called Test and
Validate that can be re-used in different control-loops; and (iii) a set of XML files that
allows representing the tests to be executed.

To facilitate the work of developers, the ST framework provides a control-loop
based on the default self-adaptation process proposed in (IBM, 2003). Such control-
loop is composed of six activities (Collect, Analyze, Decision, Test, Validate and Effect) as
illustrated in Figure 1.

Collect activity is responsible for recovering data that help to identify the problem
and on choosing the action to be adapted. Besides, such activity formats the data re-
covered according to a structure readable by other activities. Next, the Analyze activity
performs a diagnosis based on the recovered data in order to verify if a self-adaptation
will be necessary.

After meeting the diagnosis, the Decision activity looks for an action (or behavior,
web-service, etc.) that may help the agent on achieving its goal. However, before con-
firming the choice, the action is sent to the Test activity, which is responsible for execut-
ing tests on such action. When the execution is finished, the results of the tests are pro-
vided to the Validate activity that is responsible to analyze the results of the tests, and
decide if the action is a valid one or if it is necessary to choose another one. If the action
is approved, the Effect activity is executed in order to configure the agent with the cho-
sen action. On the other hand, the Decision activity is executed again to choose another
action.

 4

Figure 1. Control-Loop provided by the Self-T framework

Figure 2 illustrates a class diagram of the framework with its main classes. By using
the ControlLoop class it is possible to define different self-adaptation plans. Such class
extends the FSMBehaviour that allows to define the new activities (by extending the Ac-
tivity class) based on the conception of finite state machines. The ST framework already
provides the control-loop illustrated in Figure 1 and implemented by CLWithSelfTest
class that has the six activities represented by Collect, Analyze, Decision, Test, Validation
and Effect classes. Besides, in order to represent data that can be handled by different
activities, the HandledData class was defined.

Test and Validate classes represent the main activities that allow applying the self-
test concept in a control-loop. The first activity executes a set of tests in a given artifact
(such as a behavior or web-service) by using the StartTests class, while the second activ-
ity evaluates the results of the executed tests by reading a set of logs from the Readin-
gLog class in order to evaluate if a tested action really can be executed.

The description of the test cases that will be executed, the control-flow (or running
cycle) of the tests to be executed, and the data used as input and to be confirmed as
output are defined in the following XML files, TL, CFL and DL, respectively. Details of
such files and of the classes used by the Test activity are presented in the next subsec-
tions.

3.2 XML Files

As mentioned previously, ST framework provides three XML files: TL, CFL and DL. TL
(Test Language) file describes the test cases that can be executed in the system. CFL
(Control Flow Language) file describes the control-flow for the execution of the tests
related to each artifact that must be tested, and DL (Data Language) file represents the
input data and output assertions of each test case.

 5

In order to use the ST framework to perform self-test, it is necessary to provide such
files before the execution of the framework. Aiming to clarify the use of such files, ex-
amples illustrating the structure of each one are presented in the following.

Figure 2. Main Class Diagram to represent self-test

Figure 3 presents an example of the TL file. It describes two sets of test cases, each
one described by using the setTestCase element. Each test case set has attributes that can
be used to identify the set, such as the version of the system to be tested, the type of
tests to be executed (e.g. unit, database, integration or functional), the name of the set
(that is a mandatory information), and the context related to the tests (e.g. e-commerce,
traffic-control, oil’s system, etc.). Each test case set can be composed of several test
cases. A test case is identified by a name, the type of the test to be executed (e.g. JUnit
or DBUnit) and the path of the test case that will be executed (classname element). In
addition, it is also possible to indicate the priority of each test by taking into account

 6

only the tests defined in the same set. The above mentioned data, except for the prior-
ity of the test cases, are mandatory. ParserTL class (see Figure 2) is responsible to read
TL files.

Figure 3. An example of the TL file

In Figure 4 part of a CF file is illustrated. It presents two artifacts that should be
tested. For each artifact it is necessary to inform: (i) its type (type attribute), for instance
behaviors; (ii) an identifier that informs where such artifact is located (nameArtifact at-
tribute); (iii) the path of the file that will store the results of the tests to be executed (log
attribute); and (iv) the tests to be used to validate such artifact (test element).

Test element has two attributes: type and name. The first attribute informs if the ele-
ment is related to a test case (testcase) or to a set of test cases (setTestCase). The second
attribute informs the name of the test case or the name of the set defined in the TL file.
In our example, the first artifact is related to the settestcase1 defined in the TL file pre-
sented in Figure 3. The second artifact is related to a test case called tetsCase3, which
must be defined in another TL file.

The framework considers that the order of the tests described in the CFL file is the
execution order. However, if a test element is related to a set of tests, the order will be
based on the priority defined for each test case represented in the TL file (see priority
element in Figure 3).

The DL file is responsible for representing the input and output assertions used for
each test case. Figure 5 illustrates part of a DL file with its elements and attributes. The
data element defines the data to be used as input and output in each test case. There-
fore, one test case must be indicated for each data element by using the attribute called
testCaseRelated. In addition, each test case has a condition element that defines the sets of
input data and output assertion to be used when testing and validating the artifact.

 7

The input and output data represented in the DL file can be used to store the data
that will be directly used by the test case or to store the data that will be saved in a da-
tabase or file used by the test case to read the desired information. Note that the output
assertions are data that are used to verify if the test obtained the expected result.

Figure 4. An example of the CF file

Figure 5. An example of the DL file

In order to define such difference, the save attribute (save=true) must be used to in-
form if the data must be saved in a database or file. If the data should be persisted, the
developer must inform in the type_data attribute the type of the base where such data
will be stored. Nowadays, the framework allows storing data in two different base
types: database or a text file.

 8

In the example of a DL file illustrated in Figure 5 the input and output data related
to testCase1 (test cases identified in TL file) are stores in a database. For each input and
output element, the name of the table that stores the data is informed in the destiny at-
tribute and the column name where the data is stored is informed in the name attribute.
This attribute must have the same column name of the column represented in the pro-
vided table.

Note that for each input or output element it is possible to define if such information
will be stored or not. In order to do so the store attribute associated with the setInputs
and setOutputs elements should be used. In Figure 5 the output data of the testCase1
should not be stored. Considering this case, the tests will work with the transaction
concept, i.e., commits are not performed in the database used.

Data about connections with a database or a file (e.g. url, login, password) should be
informed in a properties file provided by the framework. However, if the developer
wants to define other configurations, the DBStoreData and FileStoreData classes (see
Figure 2) should be extended, respectively.

It is also possible to inform by using the attribute deleteBeforeTest of the DL file if the
data stored in the tables informed by using the attribute destiny should be deleted or
not before executing the test.

Figure 6 illustrates the dependences between the XML files provided by the ST
framework. Note that CFL and DL files depend on the TL file, because they reference
test cases defined in such file.

Figure 6. Relation between CFL, TL and DL.

3.3 Hot-Spots and Frozen-Spots

This section describes in detail the hot-spots (flexible points) and frozen-spots (fixed
points) (Fayad et al., 1999) of the ST framework. The hot-spots defined by the frame-
work are:

• The creation of control-loops: by extending the ControlLoop class, different
self-adaptation plans can be created representing different control loops. The
default control-loop provided by the framework is the control-loop for self-
adaptive systems being proposed in this paper and illustrated in Figure 1.

• The creation of activities: by extending the Activity class, new activities for
different control-loops can be created. Such class provides the following t-
hree methods that should be implemented by its sub-classes:: (i) preCondition
that should be called before executing the activity in order to check the pre-
condition for such execution; (ii) execute that represents the main execution
of the related activity; and (iii) posCondition that should be called after execu-
ting the activity in order to check the post-condition of such execution.

• The definition of new conditions: by using the Condition class it is possible to
define pre- and pos-conditions of activities defined to a given control-loop.

 9

• The definition of different types of tests: In order to allow the execution of
different types of tests (e.g. unit, functional, etc) the ExecutionTest class was
defined. The framework already provides support to the execution of unit
tests by using the JUnit (JUnit, 2010) and DBUnit API (DBUnit, 2010). In or-
der to implement other types the ExecutionTest class must be extended.

• The reading of different logs: By extending the ReadingLog class it is respon-
sible to read different types of logs.

• The writing in different logs: By extending the LoadingLog class it is possi-
ble to load the result of tests saved in different log’s formats.

• The definition of different ways of persisting the data to be used in the tests:
By extending the StoreData class different ways of persisting the data to be
used in tests can be defined. The framework already provides two options:
the use of a database (DBStoreData class) or the use of a file (FileStoreData
class).

The frozen-spots of the framework are:

• The control-loop provided by the framework: ST framework provides the
control-loop presented in Figure 1 (CLWithSelfTest class), composed of six ac-
tivities (Collect, Analyze, Decision, Test, Validate and Effect).

• The support for reading two different types of logs: The framework provides
support for reading two types of logs: XML (XMLLog class) and Text (Tex-
tLog class).

• The parsing of TL file: ST framework provides support for the reading of the
TL file by using the ParserTL class that was implemented following the Sin-
gleton pattern (Gamma et al., 1995).

• The parsing of CFL file: In order to read the data informed in the CFL file,
the framework provides the ParserCFL class, also implemented following the
Singleton pattern.

• The parsing of DL file: As well as the TL and CFL files, the DL file also is a
singleton (ParserDL) that allows the reading of data in the DL format.

• The support for easily execute the testes: In order to execute the desired
tests, the framework provides the StartTests class. Such class applies the Fa-
çade pattern (Gamma et al., 1995) in order to simplify the execution of the
tests. Thus, to execute test cases the executeTests is the unique method that
must be called.

3.4 Using ST Framework

In order to implement a self-adaptive agent that performs self-test, the main steps
should be followed:

1) Define in TL the test cases that should be executed to evaluate the self-
adaptations.

2) Implement the different types of test executions (e.g. functional, integration) by
extending the ExecutionTest class. As mentioned previously, the framework al-

 10

ready gives support to the execution of unit tests created by using the JUnit and
DBUnit APIs.

3) Define in DL, the input and output data used in each test case.

4) Implement different treating of access of data stored in bases by using the Store-
Data class.

5) Define by using LoadingLog and ReadingLog classes how the results of the exe-
cuted tests will be written and read, respectively.

6) Define by using CFL the control-flow of tests.

7) Use the default control-loop provided by the framework or create a new one by
using the ControlLoop class. If the developer wants to create new activities, he
should extend the Activity class.

8) Create a software agent by extending the Agent class, provided by the JADE
framework, and associate it with the control-loop defined in the previous step.

4 Case Study: Petroleum Control System

The Software Engineering Laboratory of the Pontifical Catholic University of Rio de
Janeiro has extensively worked on developing legacy systems and on coordinating and
carrying out tests of such systems developed to a Brazilian petroleum company.

The application that we will explore in this paper is responsible to: (i) register routes
(i.e. paths) based on ducts and ships that could be used to transport the derived pro-
ducts (e.g. gasoline, lubricating oil, kerosene, etc); (ii) predict when such products will
arrive in strategic points (e.g. terminals, refineries, etc) located in different places; (iii)
plan the best routes to transport a particular product; (iv) register the real data that in-
form when and which products arrive in some point; (v) compare real data with the
predicted data; (vi) provide different types of reports and graphics to help on the a-
nalysis of different activities; and (vii) control when and which products are imported
from or exported to other countries.

Aiming to identify a set of routes that gets to attend requests of customers, one of
the modules of the application uses the paradigm of self-adaptive and self-test multi-
agent system. This module looks for routes based on data provided by customer, and
applies self-adaptation to meet the best route options.

4.1 Main Idea

The user of the multi-agent system provides a set of data to be used by the system to
come up with the best routes following such requirements: (i) the strategic point (e.g.
refinery) that must be attended, (ii) the product and amount desired, (iii) the type of
the strategic point that should be the supplier of the product, and (iv) the maximum
price that the customer is able to pay. The Manager agent receives such information
and is responsible for checking the Route agents that can provide routes that have as
supplier the same type of the strategic point informed by the customer. There are dif-
ferent types of Route agents: sea terminal, land terminal and refinery agent. Each type
knows all the routes that have a specific strategic point as supplier of products.

The Manager agent contacts only the Route agent that knows the type of strategic
point that can work as supplier of products as informed by the user. The Route agent

 11

looks for routes that attend the data provided by the customer and send such informa-
tion to the Manager agent. On the one hand, if a route is met, the data received by the
Manager agent are forward to the customer. On the other hand, the Manager performs
a self-adaptation looking for other routes that partially attend the request performed
by the user. Figure 7 illustrates the idea of the system. Note that each Route agent re-
ads a part of a corporative database in order to recover routes related to different types
of strategic points.

4.2 Agents that Perform Self-Test

As stated before, the Manager agent is the responsible for performing a self-adaptation
when the first Route agent does not provide any route that attends the request per-
formed by the customer. With the aim to adapt its behavior, the Manager agent uses
the control loop composed of the six activities described in Section 3.1.

Figure 7. Petroleum control system

In the collect activity the agent collects data provided by the user and the last routes
met by the Route agent.I It is possible to meet routes that can attend partially the re-
quest performed, in special the desired amount of a specific product and the cost that
the customer is available to pay. Next, in the analyze activity the agent uses a forward
chaining algorithm (Bigus et al., 2002) to meet the reason of the fail. Three main rea-
sons were defined: (i) communication error between the agents of the system, (ii) one
of the user requirements could not be attended (such as type of supplier, product,
amount or cost), and (iii) any other execution error. The met diagnosis is then provided
to the decision activity.

The decision activity receives such diagnosis and uses it to choose another behavior
that can solve the problem. In order to meet such solution, a case-based reasoning algo-
rithm (Amodt and Plaza, 1994) is used. Such algorithm finds the solution to a problem
based on similar cases that relate problems and solutions. For example, in case no route
is found because there is not any strategic point of a given type that can be the supplier

 12

of the amount of product desired, the agent self-adapt its behavior to look for routes
that include other types of strategic points to supply the product.

The test activity is initiated in the following. This activity executes a set of test cases
respecting the control-flow, tests and data, defined in the CFL, TL and DL files, respec-
tively. Different test cases are executed, such as:

1) One of the most simple test cases only verifies if the communication between
the agents is possible;

2) Another test case verifies if connections with the database used by the sys-
tem are being performed successfully;

3) The most interesting test verifies if a Route agent is recovering the correct set
of routes from a database considering the strategy represented in the chosen
behavior by the decision activity. The input data and the output assertions are
defined in the DL file. Besides, the data defined in the DL file is not commit-
ted in such database in order to avoid the loss of stored data.

After executing the tests, the validate activity analyzes the log file that describes the
result of each test case executed. Based on such information, the activity decides if the
chosen behavior is adequate or not. If not, another behavior must be chosen and the
decision activity is re-executed. However, when the tested behavior is validated, the ef-
fect activity is activated.

Figure 8. Example of map generated from the system.

When the effect activity is executed, the agent is reconfigured in order to use the
chosen behavior. Figure 8 illustrates an example of a map generated with routes that
attend a terminal in the state called Pará (PA) in Brazil.

5 Conclusion and Future Work

This paper presents the Self-Test Framework that extends JADE, a FIPA compliant
framework developed in Java to implement multi-agent systems, in order to apply the

 13

self-test concept. The main entities responsible for representing such concept are the
test and validate activities, which can be reused in different self-adaptation processes.
Thus, the main idea of this proposal is to evaluate, before adapting the agent behavior,
if such behavior contemplates the environment/system requirements.

Aiming to demonstrate the use of our approach, we have used it in an industrial
system, developed to a petroleum company, responsible for identifying routes that at-
tend products derived from petroleum (e.g. kerosene, gasoline, etc). If the system is not
able to find a route that follows the exactly request made by a customer, the system
self-adapts to meet a route whose characteristics are very similar to the ones requested
by the customer.

Nowadays, we are in the process of developing a tool able to automatically generate
the content of the TL, DL and CFL files based on test models created by using a UML
Testing Profile (OMG, 2010). The test cases source code will also be generated, such as,
the unit tests that use JUnit and DBUnit API. Beyond this, we are evaluating how much
time developer spends on learning to use the ST framework and the impact that the
self-test concept has in the performance of self-adaptive systems.

References

Amodt, A. and Plaza, E., Case-based reasoning: Foundational issues, methodological
variations, and system approaches. In AI Communications, volume 7:1, pages 39–59.
IOS Press, March 1994.

Bellifemine, F., Caire, G., Trucco, T., Rimassa, G., Jade Programmer’s Guide, 2007.

Bigus, J. P.; Schlosnagle, D. A., Pilgrim, J. R.; et. al..ABLE: A toolkit for building
multiagent autonomic systems. IBM Syst. J. 41, 3, 350–371, 2002.

Costa, A. D., Silvia, V., Lucena, C. J. P., JAAF+T: A Framework to Implement Self-
Adaptive Agents that Apply Self-Test. In Proceeding of the 25th Symposium on
Applied Computing (SAC 2010), Sierre, Switzerland, pp. 928-935, March 2010.

DBUnit Web Site, http://www.dbunit.org/, Last access at August 2010.

Denaro, G., Pezze, M., and Tosi, D., Designing Self-Adaptive Service-Oriented
Applications. In Proceedings of the Fourth International Conference on Autonomic
Computing. IEEE Computer Society, Washington, DC, 16, 2007.

Dobson, S., Denazis, S., Fernández, A., Gaiti, D., Gelenbe, E., Massacci, F., Nixon, P.,
Saffre, F., Schmidt, N., Zambonelli, F., A survey of autonomic communications, ACM
Transactions Autonomous Adaptive Systems (TAAS), 223-259, December 2006.

Fayad, M., Johnson, R., Building Application Frameworks: Object-Oriented
Foundations of Framework Design (Hardcover), Wiley publisher, first edition, ISBN-
10: 0471248754, 1999.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of Reusable
Object-Oriented Software, 1st.ed. USA: Addison-Wesley, 1995.

IBM, An architectural blueprint for autonomic computing. Technical Report., IBM,
2003.

JUnit Web Site, http://www.junit.org/, Last access at August 2010.

Karam, K. S., Landslide Hazards Assessment and Uncertainties, Thesis: Massachusetts
Institute of Technology, 2005.

 14

Kephart, J. O. and Chess, D. M., The Vision of Autonomic Computing. Computer 36, 41-
50, January 2003.

King, T. M., Ramirez, A. E., Cruz, R., Clarke, P. J., An integrated self-testing
framework for autonomic computing systems, Journal of Computers, Vol. 2, No. 9,
November 2007.

OMG - Object Management Group, UML Testing Profile, version 1,
http://www.omg.org/cgi-bin/doc?formal/05-07-07, Last access at August 2010.

Stevens, R., Parsons, B., and King, T. M., A self-testing autonomic container. In
Proceedings of the 45th Annual Southeast Regional Conference (Winston-Salem, North
Carolina). ACM-SE 45. ACM, New York, NY, 1-6, 2007.

Wen, C., Wang, L.-C, Cheng, K.-T, Yang, K., Liu, W.-T.., "On a Software-Based Self-Test
Methodology and Its Application". IEEE VLSI Test Symposium, May 2005.

Wooldridge, M. and Jennings, “N. R. Pitfalls of agent-oriented development,”
Proceedings of the Second International Conference on Autonomous Agents
(Agents'98), ACM Press, pp. 385-391, 1998.

