

PUC

ISSN 0103-9741

Monografia em Ciência da Computação

n 01/11

The Role of Constraints in Linked Data

Marco A. Casanova, Karin K. Breitman, Antonio L. Furtado

Departamento de Informática – PUC-Rio

Vânia M.P. Vidal, José A. F. de Macêdo

Departamento de Computação – UFC

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO

Monografias em Ciência da Computação, No. 01/11 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena April, 2011

The Role of Constraints in Linked Data

Marco A. Casanova
1
, Karin K. Breitman

1
, Antonio L. Furtado

1
,

Vânia M.P. Vidal
2
 José A. F. de Macêdo

2

1
Department of Informatics – PUC-Rio – Rio de Janeiro, RJ – Brazil

{casanova, karin, furtado}@inf.puc-rio.br

2
Department of Computing, Federal University of Ceará – Fortaleza, CE – Brazil

{vvidal, jose.macedo}@lia.ufc.br

Abstract. This paper investigates the role that constraints play in Linked Data in the context of

a multi-step modeling process, involving three ontologies. The source ontology provides a local

model of the exported data. The domain ontology provides a conceptual model of the applica-

tion domain. The application ontology describes the external model of the exported data, using

a subset of the vocabulary of the domain ontology. The main contributions of the paper are me-

thods for constructing application ontology constraints and for defining the mappings between

the three ontologies. The methods assume that the ontologies are written in an expressive family

of languages and depend on a procedure to test logical implication, which explores the structure

of sets of constraints.

Keywords: constraints, Linked Data, mediated schema.

Resumo. Este trabalho investiga o papel de restrições de integridade em Linked Data, no con-

texto de um processo de modelagem envolvendo ontologias em três níveis. A ontologia da fonte

de dados oferece um modelo local para os dados exportados. A ontologia de domínio provê um

modelo conceitual do domínio de aplicação. A ontologia de aplicação descreve os dados expor-

tados usando um subconjunto do vocabulário da ontologia de domínio. A principal contribuição

do trabalho consiste em métodos para construção das restrições de integridade da ontologia de

aplicação e para definir os mapeamentos entre as três ontologias. Os métodos assumem que as

ontologias estão escritas em uma família de linguagens com poder de expressividade adequado

e dependem de um procedimento para testar implicação lógica que explora a estrutura do con-

junto de restrições.

Palavras-chave: restrições de integridade, Linked Data, esquema mediado.

 ii

Summary

1 Introduction 3

2 A Formal Framework 4

2.1 A Brief Review of Attributive Languages 4

2.2 Extralite Ontologies and Ontology Mappings 5

2.3 Constraint Graphs 6

2.4 A Simple Example 8

3 Computing the Constraints of the Application Ontology 9

3.1 Application Ontology as an Open Fragment of the Domain Ontology 9

3.2 Application Ontology as a Closed Fragment of the Domain Ontology 11

4 Adjusting the source-to-application mapping 14

5 Conclusions 15

Acknowledgements 16

References 16

In charge of publications:

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentação e Informação

PUC-Rio Departamento de Informática

Rua Marquês de São Vicente, 225 - Gávea

22451-900 Rio de Janeiro RJ Brasil

Tel. +55 21 3527-1516 Fax: +55 21 3527-1530

E-mail: bib-di@inf.puc-rio.br

Web site: http://bib-di.inf.puc-rio.br/techreports/

mailto:bib-di@inf.puc-rio.br

3

1 Introduction

The term Linked Data refers to a set of best practices for publishing and connecting structured data

on the Web [3]. A Linked Data source may publish a local model of the exported data. A model is

expressed as a vocabulary, that is, a collection of classes and properties, expressed in RDF, using

terms from RDFS and OWL. The Linked Data source may also publish a mapping between its lo-

cal vocabulary and a reference vocabulary (or several such vocabularies). A mapping may be ex-

pressed as a set of RDF triples that link classes and properties in one vocabulary to those in anoth-

er, or it may be defined using a schema mapping language.

We investigate in this paper the role that constraints play in Linked Data. The motivation lies in

that a Linked Data source should publish its local vocabulary together with a set of local con-

straints that capture the semantics of the local classes and properties. If the Linked Data source

publishes a mapping between its local vocabulary and a reference vocabulary, then we have to spe-

cify the local constraints so that they are somehow consistent with those of the reference classes

and properties.

More precisely, an ontology is a pair O = (VO , CO), where VO is a vocabulary and CO is a set of

constraints over VO. A mapping from a source ontology S = (VS , CS) into a target ontology T = (VT

, CT) is a set of definitions of the form D e, where D is a class (or property) in VT and e is a class

definition (or a property definition) that uses symbols in VS. The identity mapping maps a symbol

into itself (the symbol must therefore occur in both VS and VT). We do not require that a mapping

provides definitions for all symbols in VT.

To better formulate the local constraint specification problem, we introduce a multi-step

process to model Linked Data. Briefly, the process goes as follows. First create a source ontology

S = (VS , CS), which models the data to be published. Then select a domain ontology D = (VD , CD),

which models the application domain. In fact, D may be a combination of ontologies covering dis-

tinct domains. Proceed by creating a source-to-domain mapping from S into D. Note that may

not have definitions for all symbols in VD. Let VA be the subset of VD such that D is in VA iff has

a definition of the form D e. Create a set of constraints CA that model the semantics of the classes

and properties in VA. That is, create an application ontology A=(VA,CA). We reinterpret as a

source-to-application mapping SA from S into A and introduce an application-to-domain identity

mapping AD from A into D that associates each symbol in VA into itself (this is possible since VA is

a subset of VD). The problem is how to create CA and decide what properties A = (VA , CA), SA and

AD should have.

Suppose first that we require that the data exported through SA satisfies CA, and that CA con-

tains all constraints that can be derived from CD and that use only symbols in VA. In this case, we

say that the application ontology is an open fragment of the domain ontology. The last step of the

process is then to create CA and perhaps adjust SA so that these requirements are met. Sections 3.1

and 4 formulate these requirements in detail and describe methods to support this step.

Suppose now that we require that the data exported through SA satisfies CD, when all classes

and properties in VD, but not in VA, are taken as the empty set (when the source data is published).

In this case, we say that the application ontology is a closed fragment of the domain ontology. The

4

last step of the process now is to adjust VA and SA so that this requirement is met. Sections 3.2 and

4 formulate these requirements in detail and describe methods to support this step.

These requirements are justified since, if A is a closed fragment of D, then any Web application

that processes data modeled according to D will also be able to process data published by the data

source. Furthermore, if A is an open fragment of D, then any Web application that processes data

modeled according to D and that uses only the classes and properties in the vocabulary of A will

also be able to process the data published by the data source.

The main contributions of the paper are methods for constructing application ontology con-

straints and for adjusting the definition of the mappings, when the application ontology is an open

or a closed fragment of the domain ontology. The methods assume that the ontologies are written

in an expressive family of attributive languages and depend on a procedure to test logical implica-

tion, which explores the structure of sets of constraints, captured as a constraint graph [5].

The results reported in the paper cover a topic – the role that constraints play in Linked Data –

that is much neglected in the literature. The question of Linked Data semantics is not new, though.

Recent investigation [7,8,12] in fact questions the correct use of owl:sameAs to inter-link datasets.

They contribute to the discussion on the triplication of relational databases [6]. Indeed, triplifi-

cation tools (see [17] for a list) typically do not consider constraints.

The results in this paper also contribute to improving ontology browsing tools based on the idea

of focus+context [16], where the notion of focus would be carried out by a vocabulary selection

and the notion of context would be provided by the constraints. The methods to construct frag-

ments of the domain ontology would act as a lens through which the user would browse the (large)

domain ontology. The notions of open and closed ontology fragments are akin to the classification

of the mappings between the local sources and the mediated schema into sound, exact or complete

[9]. The three-step process adopted in the paper is similar to that proposed in [13,15]. We reported

a preliminary investigation on the generation of application ontologies in [13], but without using

constraint graphs.

The paper is organized as follows. Section 2 presents the formal framework adopted in the pa-

per. Section 3 focuses on how to construct the constraints of the application ontology. Section 4

discusses how to adjust the mapping from the source ontology into the application ontology. Final-

ly, Section 5 contains the conclusions.

2 A Formal Framework

2.1 A Brief Review of Attributive Languages

We adopt a family of attributive languages [1] defined as follows. A language L in the family is

characterized by an alphabet A, consisting of a set of atomic concepts, a set of atomic roles, the

universal concept ⊤ and the bottom concept . The set of role descriptions and the set of concept

descriptions of L (or in A) are defined as follows:

 An atomic concept, and the universal and bottom concepts are concept descriptions, and an

atomic role is a role description

5

 If e and f are concept descriptions and p is a role description, then e (negation),

e ⊔ f (union), and (n p) (at-least restriction) are concept descriptions, and p

 (inverse) is a

role description.

An interpretation s for A consists of a nonempty set
s
, the domain of s, whose elements are

called individuals, and an interpretation function, also denoted s, where:

 s() = and s(⊤) =
s

 s(A)
s
, for each atomic concept A of A

 s(P)
s

s
, for each atomic role P of A

The function s is extended to role and concept descriptions of L as follows:

 s(e) =
s
 s(e) (the complement of s(e) w.r.t.

s
)

 s(e ⊔ f) = s(e) s(f) (the union of s(e) and s(f))

 s(n p)={I
s
 / |{J

s
 / (I,J)s(p)}| n}

 (the set of individuals that s(p) relates to at least n distinct individuals)

 s(p

) = s(p)

 (the inverse of s(p))

A formula of L (or in A) is an expression of the form u ⊑ v, called an inclusion, or of the form

u ≡ v, called an equivalence, where u and v are both concept descriptions or they are both role de-

scriptions of L. A definition is an equivalence of the form D ≡ e, where D is an atomic concept and

e is a concept description, or D is an atomic role and e is a role description.

 Let s be an interpretation for A, be a formula and and be sets of formulas of L. We say

that

 s satisfies u ⊑ v iff s(u) s(v), and s satisfies u v iff s(u) = s(v)

 s is a model of , denoted s ⊨ , iff s satisfies

 s is a model of , denoted s ⊨ , iff s satisfies all formulas in

 logically implies , denoted ⊨ , iff any model of satisfies

 logically implies , denoted ⊨ , iff any model of is also a model of

 is tautologically equivalent to iff logically implies , and vice-versa

If B is a subset of A, then / B denotes the set of formulas using only symbols in B such that

 logically implies.

 Finally, we use the following abbreviations: “e ⊓ f ” for “e ⊔ f)” (intersection), “p”

for“(1 p)” (existential quantification), “(n p)” for “(n+1 p)” (at-most restriction) and “u |

v” for “u ⊑ v” (disjunction).

2.2 Extralite Ontologies and Ontology Mappings

We will work with extralite ontologies [5] that partially correspond to OWL Lite.

Definition 1: An extralite ontology is a pair O = (VO , CO) such that

(i) VO is a finite alphabet, called the vocabulary of O, whose atomic concepts and atomic roles

are called the classes and properties of O, respectively.

(ii) CO is a set of formulas in VO, called the constraints of O, which must be of one the forms

 Domain Constraint: P ⊑ D (property P has class D as domain)

6

 Range Constraint: P

 ⊑ R (property P has class R as range)

 minCardinality Constraint: C ⊑ (k P) or C ⊑ (k P

)

(property P or its inverse P

 maps each individual in class C to at least k distinct indi-

viduals)

 maxCardinality Constraint: C ⊑ (k P) or C ⊑ (k P

)

(property P or its inverse P

 maps each individual in class C to at most k distinct indi-

viduals)

 Subset Constraint: E ⊑ F (class E is a subclass of class F)

 Disjointness Constraint: E | F (classes E and F are disjoint).

We will sometimes associate a prefix, such as “o:”, to the alphabet VO and indicate that a sym-

bol T occurs in VO by writing “o:T”. We normalize a constraint by eliminating any abbreviated

form used. For example, “P ⊑ D” is normalized as “(1 P) ⊑ D” and “C | D” as “C ⊑ D”. A

constraint expression is an expression that may occur on the right- or left-hand sides of a norma-

lized constraint.

A mapping from a source ontology S = (VS ,CS) into a target ontology T = (VT ,CT) is a set ST of

definitions of the form D ≡ e where D is an atomic concept (or atomic role) in VT and eu is a con-

cept description (or a role description) in VS such that no two definitions in ST have the same sym-

bol on the left-hand side. Note that we do not require that ST has a definition for each symbol in

VT. Finally, ST induces a function ST̂ from interpretations for VS into interpretations for VT, as de-

fined in [5].

2.3 Constraint Graphs

In this section, we introduce the notion of concept graphs, which captures the structure of sets of

constraints and is essential to the constraint construction methods of Section 3 and to the mapping

redefinition method of Section 4.

We say that the complement of a non-negated expression e is e, and vice-versa; the comple-

ment of is ⊤, and vice-versa. If c is an expression, then c denotes of complement of c.

Let be a set of normalized constraints and be a set of constraint expressions.

Definition 2: The labeled graph g(,)=(,,) that captures and , where labels each node

with an expression, is defined as follows:

(i) For each concept expression e that occurs on the right- or left-hand side of an inclusion in

, or that occurs in , there is exactly one node in labeled with e. If necessary, the set of

nodes is augmented with new nodes so that:

(a) For each atomic concept C, there is one node in labeled with C.

(b) For each atomic role P, there is one node in labeled with (1 P) and one node la-

beled with (1 P

).

(ii) If there is a node in labeled with a concept expression e, then there must be exactly one

node in labeled with e .

(iii) For each inclusion e ⊑ f in , there is an arc (M,N) in , where M and N are the nodes la-

beled with e and f, respectively.

7

(iv) If there are nodes M and N in labeled with (m p) and (n p), where p is either P or P

and m<n, then there is an arc (N,M) in .

(v) If there is an arc (M,N) in , where M and N are the nodes labeled with e and f respective-

ly, then there is an arc (K,L) in , where K and L are the nodes labeled with f and e , re-

spectively.

(vi) These are the only nodes and arcs of g().

Definition 3: The labeled graph G(,)=(,,) that represents and , where labels each

node with a set of expressions, is defined from g(,) by collapsing each clique of g(,) into

a single node labeled with the expressions that previously labeled the nodes in the clique. When

 is the empty set, we simply write G() and say that the graph represents .

If a node K of G(,) is labeled with an expression e, then K denotes the node labeled with

e (which may be K itself). We use K→M to indicate that there is a path in G(,) from K to M.

Definition 4: Let G(,)=(,,) be the labeled graph that represents and . We say that a node

K of G(,) is a -node with level n, for a non-negative integer n, iff one of the following con-

ditions holds:

(i) K is is a -node with level 0 iff

a. K is labeled with , or

b. there are nodes M and N, not necessarily distinct from K, and a non-negated concept

expression h such that M and N are labeled with h and h, and K→M and K→N.

(ii) K is is a -node with level n+1 iff

a. There is a -node M of level n, distinct from K, such that K→M, and M is the -node

with the smallest level such that K→M, or

b. K is labeled with a minCardinality constraint of the form (1 P) (or of the form

(1 P

)) and there is a -node M of level n, distinct from K, such that M is labeled

with (1 P

) (or with (1 P)), and M is the -node with the smallest level labeled

with (1 P

) or (1 P).

Definition 5: Let G(,)=(,,) be the labeled graph that represents and . Let K be a node of

G(,). We say that K is a -node iff K is a -node with level n, for some non-negative integer

n. We also say that K is a ⊤-node iff K is a -node.

 Based on constraint graphs, we introduce a procedure to test logical implication for extralite

ontologies, whose soundness and completeness is established in [5]:

8

IMPLIES(, e ⊑ f)

input: a set of normalized constraints and a normalized constraint e ⊑ f

output: “YES - logically implies e ⊑ f ”

 “NO - does not logically imply e ⊑ f ”

begin Construct G(, {e, f}), the representation graph for and {e, f};

 if the node of G(, {e, f}) labeled with e is a -node, or

 the node of G(, {e, f}) labeled with f is a ⊤-node, or

 there is a path in G(,{e, f}) from the node labeled with e to the node la-

beled with f,

then return “YES - logically implies e ⊑ f ”;

else return “NO - does not logically imply e ⊑ f ”;

end

2.4 A Simple Example

The following example illustrates the concepts introduced thus far.

Example 1: Figure 1(a) shows the ER diagram of ontology PC = (VPC , CPC)

(a fragment of a model for a phone company). Figure 1(b) formalizes the set of constraints CPC.

The first column shows the domain and range constraints; for example, placedBy is an atomic

role modeling a binary relationship from Call to Phone. The second column depicts the cardinali-

ty constraints; for example, number has maxCardinality equal to 1 w.r.t. Phone. The third column

contains the subset and disjointness constraints; for example, MobilePhone and FixedPhone are

disjoint. (For simplicity, we ignore data types, such as String, which would be treated as

classes). Figure 2 depicts the graph G(CPC) that represents CPC (using normalized constraints).

Call placedBy duration

FixedPhone MobilePhone

Phone number

mobPlacedBy

Fig. 1(a). ER diagram of PC (without cardinalities).

{disjoint}

MobileCall

RadioPhone

9

3 Computing the Constraints of the Application Ontology

In what follows, let D = (VD ,CD) denote the domain ontology, S = (VS ,CS) the source ontology and

A = (VA ,CA) the application ontology. When defining the ontology mappings, we will use the pre-

fixes “d:”, “a:” and “s:” to indicate symbols of the alphabets of the domain, the application and the

source ontologies, respectively.

3.1 Application Ontology as an Open Fragment of the Domain Ontology

The design of the application ontology A and definition of the mappings depend on what require-

ments they must satisfy, discussed in detail in this and the next sections.

Recall that SA induces a function SÂ from interpretations for VS into interpretations for VA. Also

recall that CD /VA denotes the set of formulas using only symbols in VA such that CD logically im-

plies. Consider the following set of requirements:

R0. VA is a subset of VD

R1. CA is tautologically equivalent to CD /VA

R2. For any model s of CS, SÂ (s) is a model of CA

An application ontology A that satisfies R0 and R1 is called an open fragment of D. Require-

ment R0 guarantees that the data is exported in a subset of the vocabulary of the domain ontology.

Requirements R1 and R2 indicate that the data published by the data source through SA will be

consistent with all constraints that can be derived from CD and that use only symbols in VA. Intui-

tively, Requirements R0, R1 and R2 imply that any Web application that processes data modeled

according to D and that uses only the classes and properties in VA will also be able to process the

data published by the data source through SA.

(1 number)⊑ Phone
(1 duration)⊑ Call
(1 placedBy)⊑ Call

(1 placedBy

)⊑ Phone

(1 mobPlacedBy)⊑ MobileCall

(1 mobPlacedBy

)⊑ MobilePhone

Call ⊑

 (2 duration)
Phone ⊑

 (2 number)

FixedPhone ⊑ Phone

MobilePhone ⊑ Phone

RadioPhone ⊑ MobilePhone

MobilePhone ⊑ FixedPhone
MobileCall ⊑ Call

Fig. 1(b). Constraints of PC, after normalization.

MobileCall

Fig. 2. The graph G(CPC) representing the constraints of PC, after normalization.

(1 duration)

MobilePhone

Phone

(1 placedBy

)

(1 placedBy

)

(1 placedBy)

(1 placedBy)

MobileCall

Phone

Call

(1 mobPlacedBy

)

(1 mobPlacedBy

)

Call

(1 mobPlacedBy)

(1 mobPlacedBy)

RadioPhone

MobilePhone FixedPhone

RadioPhone

FixedPhone

(1 duration)

(2 duration) (2 duration)

(1 number)

(1 number)

(2 number)

(2 number)

10

Assume that the designer has already created VA by selecting symbols from VD so that R0 is tri-

vially satisfied. The procedure OpenFragment generates CA so that R1 is satisfied, based on the

representation graph of CD and on the vocabulary VA:

OpenFragment(CD , VA ; CA)

input: the set CD of normalized constraints of the domain ontology

 the vocabulary VA of the application ontology

output: the set CA of normalized constraints of the application ontology

begin Initialize CA = ;

Construct G(CD), the representation graph for CD;

Mark all nodes of G(CD) labeled with expressions that use only

atomic concepts and atomic roles in VA;

for each pair of nodes M and N of G(CD)

 if M and N are marked and there is a path from M to N in G(CD)

 then add e ⊑ f to CA where

 e and f are expressions that label nodes M and N, respectively, and

 e and f are expression of VA, and

 e ⊑ f is an allowed constraint (in the sense of Section 2.), and

 f ⊑ e is not already in CA /* to avoid redundant constraints */

return CA;

end

We note that OpenFragment is non-deterministic since the set of constraints generated de-

pends on the order that the for-loop selects pairs of nodes of G(CD), which is not unique. The cor-

rectness of OpenFragment follows from the correctness of IMPLIES, introduced at the end of

Section 2.3.

We will discuss how to adjust the source-to-application mapping to guarantee R2 in Section 4.

Example 2: Assume that the domain ontology is PC = (VPC , CPC), introduced in Example 1, and

that the designer wants to define an application ontology, called LPC (for local phone company).

He starts by manually defining the vocabulary VLPC by selecting symbols from VPC. Assume that

VLPC is:

(1) VLPC = {FixedPhone, RadioPhone, Number, MobileCall, mobPlacedBy}

Then, procedure OpenFragment generates the constraints CLPC for LPC:

(2) (1 mobPlacedBy) ⊑ MobileCall
(3) FixedPhone ⊑ (2 number)
(4) RadioPhone ⊑ (2 number)
(5) RadioPhone ⊑ FixedPhone

Recall that Figure 2 shows G(CPC), the representation graph for CPC. To help follow this exam-

ple, the thicker boxes in Figure 2 indicate the marked nodes (that contain expressions in VLPC) and

the thicker lines indicate the paths between marked nodes. Note that there is a path from Fixed-

Phone to (2 number), which implies that (3) is a logical consequence of CPC. The other con-

straints follow likewise.

Therefore, constraints (2) to (5) use only symbols in VLPC and they are logical consequences of

CPC (albeit not necessarily in CPC). In fact, they meet Requirement R1. But, for example, Open-

Fragment will not output

11

(6) FixedPhone ⊑ (1 number)
(7) (1 mobPlacedBy

) ⊑ (2 number)

(8) FixedPhone ⊑ RadioPhone

The procedure does not output (6) since there is no path G(CPC) from FixedPhone to (1 num-

ber), that is, (6) is not a logical consequence of CPC. It does not output (7) since it is not an allowed

constraint. Finally, it does not output (8) because (5) is already in CLPC. However, since Open-

Fragment is non-deterministic, it could have returned (8) instead of (5).

3.2 Application Ontology as a Closed Fragment of the Domain Ontology

Let
AC be the set of constraints CA extended with new constraints of the form C ⊑ (or P ⊑

that force each class C (or property P) in VD, but not in VA, to be the empty set. We now consider a

different set of requirements:

R0. VA is a subset of VD

R1’.
AC logically implies CD

R2. For any model s of CS, SÂ (s) is a model of CA

An application ontology A that satisfies R0 and R1’ is called a closed fragment of D. Require-

ment R0 again guarantees that the data is exported in a subset of the vocabulary of the domain on-

tology. Requirements R1’ and R2 indicate that the data published by the data source through SA

satisfies CD, when each class C (or property P) in VD, but not in VA, is taken to be the empty set.

Note that R1’ then implies that the data published by the data source through SA can always be

extended to a consistent state of D. Intuitively, Requirements R0, R1’ and R2 imply that any Web

application that processes data modeled according to D will also be able to process data published

by the data source through SA, when each class C (or property P) in VD, but not in VA, is taken to

be the empty set.

Assume that the designer has already created VA by selecting symbols from VD so that R0 is tri-

vially satisfied. In this section, we introduce a procedure, ClosedFragment, to extend VA and SA

and to create CA so that R1’ is satisfied. Again, we will discuss how to adjust the source-to-

application mapping to guarantee R2 in Section 4.

Contrasting with the result in Section 3.1, the second method may fail, if atomic roles must be

included in VA.

The procedure ClosedFragment is again based on the representation graph of CD:

12

ClosedFragment(CD , VA , SA ; AV , AC , SA)

input: the set CD of normalized constraints of the domain ontology

 the vocabulary VA of the application ontology

 the source-to-application mapping SA

output: the new vocabulary AV of the application ontology

the set of constraints AC of the application ontology

 the new source-to-application mapping SA

begin Initialize AV = VA , AC = and SA = SA ;

Construct G(CD), the constraint graph for CD;

Mark all nodes of G(CD) labeled with expressions that use only atomic concepts

 and atomic roles in VA;

Create a new graph GA by deleting any node N from G(CD) such that

 N is labeled with positive expressions and

 N has no antecedent which is marked and labeled with a positive expression, or

 N is labeled with negative expressions and

 N has no descendent which is marked and labeled with a negative expression;

Let AR be the set of atomic roles that occur in expressions that label nodes in GA

 but which are not in VA;

if AR is not empty,
 then stop warning that “a closed fragment cannot be automatically created”;

Let AC be the set of atomic concepts that label nodes in GA but which are not in VA;

for each s in AC

 add s to AV ;

 add “s s⊔…⊔ sn” to SA ,

 where s labels a node M and s ,…, sn label nodes M1,…, Mn, and

 M1,…, Mn are all nodes such that (Mk ,M) is in GA ;

Recursively replace each si in a new definition “s s⊔…⊔ sn” added to SA

 until the right-hand side of the definitions in SA contain only symbols in

 the vocabulary of the source ontology.

for each arc (M,N) of GA

 add e ⊑ f to AC where

 e and f are expressions that label nodes M and N, respectively, and

 e and f are expression of VA, and

 e ⊑ f is an allowed constraint (in the sense of Section 2.), and

 f ⊑ e is not already in AC /* to avoid redundant constraints */

return AV , AC , SA ;

end

We note that ClosedFragment is also non-deterministic. Furthermore, the recursive adjustment

of the definitions added to SA is always possible since G(CD) is acyclic, by Definition 3. The cor-

rectness of ClosedFragment also follows from the correctness of IMPLIES, introduced at the end

of Section 2.3.

13

Example 3: Consider the same scenario as in Example 2. The goal now is to compute the con-

straints of LPC so that LPC is a closed fragment of PC. Recall that VLPC is:

(1) VLPC = {FixedPhone, RadioPhone, Number, MobileCall, mobPlacedBy}

Then, ClosedFragment outputs the new vocabulary:

(2) LPCV = {FixedPhone, RadioPhone, MobilePhone, Phone, Number,

 MobileCall, Call, mobPlacedBy }

and the normalized constraints shown in Figure 3. The new source-to-application mapping is de-

fined in two stages. The first stage (in the first for-each loop of ClosedFragment) generates the

following new definitions:

(3) a:MobilePhone a:RadioPhone

(4) a:Phone a:MobilePhone ⊔ a:FixedPhone

(5) a:Call a:MobileCall

Indeed, recall that Figure 2 shows G(CPC), the representation graph for CPC. Then, for example,

the first loop generates the definition in (4) since the node labeled with Phone has two antece-

dents, labeled with FixedPhone and MobilePhone.

The second stage recursive replaces each symbol in AV that occurs on the right-hand side of (3),

(4) or (5) by its definition in SA until the right-hand sides of all definitions in SA contain only

symbols in VS, the vocabulary of the source ontology.

(1 number) ⊑ Phone

(1 mobPlacedBy) ⊑

 MobileCall

(1 mobPlacedBy) ⊑

 MobilePhone

Phone ⊑ (2 number)

FixedPhone ⊑ Phone

MobilePhone ⊑ Phone

RadioPhone ⊑ MobilePhone

MobilePhone ⊑ FixedPhone
MobileCall ⊑ Call

Fig. 3. Constraints of LPC when LPC is a closed fragment of PC.

14

4 Adjusting the source-to-application mapping

In this section, we discuss how to guarantee Requirement R2, namely:

R2. For any model s of CS, SÂ (s) is a model of CA

We reformulate R2 in a way that is both intuitive and amenable to mechanization. The essential

problem is that CA reflects CD, the constraints of D, rather than CS, the constraints of S. We then

proceed as follows (the reader should pay attention to the subscripts used). Assume that, after the

designer selects VA, he also creates a set of constraints CAS, written in VA, that reflects CS, in the

sense that

R3. For any model s of CS, SÂ (s) is a model of CAS

We call CAS the set of endogenous constraints of A and CA the set of exogenous constraints of

A. This choice of terms calls attention to the fact that CAS reflects CS whereas CA reflects CD. We

then require that:

R4. CAS logically implies CA

Note that R3 and R4 trivially imply R2. The question now is how to compute CAS and perhaps

adjust SA so that they satisfy R3 and R4. In the rest of this section, we very briefly address this

question.

We first illustrate how to compute CAS so that it satisfies R3, when SA is a renaming, which is

perhaps the simplest case. Let VSA be the subset of VS such that U is in VSA iff SA has a definition of

the form a:T ≡ s:U. Let CSA be the set of constraints that procedure OpenFragment returns when

called with parameters CS and VSA. Then, we know from Section 3.1 that CSA is tautologically

equivalent to CS /VSA, the set of formulas using only symbols in VSA such that CS logically impli-

es. We construct CAS by applying the renaming SA to CSA, that is, in each constraint of CSA, we

replace U by T, whenever SA has a definition of the form a:T ≡ s:U. Then, CAS will satisfy R3.

With the help of an example, we now briefly sketch a method to modify SA to guarantee R4 and

yet maintain R3. The method explores the structural differences between the constraint graphs of

CAS and CA.

Example 4: Assume that the application ontology is LPC2 = (VLPC2 , CLPC2), where:

(1) VLPC2 = {MobilePhone, Number, MobileCall, mobPlacedBy}

and CLPC2 contains the following constraints (using the prefix “a:” to stress that the symbols are

from VLPC2, the application ontology vocabulary):

(2) (1 a:mobPlacedBy) ⊑ a:MobileCall

(3) (1 a:mobPlacedBy

) ⊑ a:MobilePhone

(4) a:MobilePhone ⊑ (2 a:number)

Suppose that the source ontology is RPC = (VRPC , CRPC), where:

(5) VRPC = {Fixed, Nextel, id, PhoneCall, byFixed, byNextel}

15

and CRPC contains the following constraints (using the prefix “s:” to stress that the symbols are

from VRPC, the source ontology vocabulary):

(6) (1 s:byFixed) ⊑ s:PhoneCall

(7) (1 s:byNextel) ⊑ s:PhoneCall

(8) (1 s:byFixed

) ⊑ s:Fixed

(9) (1 s:byNextel

) ⊑ s:Nextel

Suppose also that the source-to-application mapping SA contains the definitions:

(10) a:MobilePhone ≡ s:Nextel

(11) a:number ≡ s:id

(12) a:MobileCall ≡ s:PhoneCall ⊓ (1 s:byNextel)

(13) a:mobPlacedBy ≡ s:byNextel

Then, the set of endogenous constraints, CLPC2, RPC, contains just two constraints:

(14) (1 a:mobPlacedBy) ⊑ a:MobileCall

(15) (1 a:mobPlacedBy

) ⊑ a:MobilePhone

Note that (14) follows from (13), (12) and (7), and (15) follows from (13), (10) and (9). We

then modify the definitions in (10) to (13) by propagating backwards the expressions that label the

nodes of the constraint graph G(CLPC2). The propagation only follows arcs in G(CLPC2) that have no

counterpart in G(CLPC2, RPC). The modified source-to-application mapping will contain the follow-

ing definitions:

(16) a:MobilePhone ≡ s:Nextel ⊓ (2 s:id)

(17) a:number ≡ s:id

(18) a:MobileCall ≡ s:PhoneCall ⊓ (1 s:byNextel)

(19) a:mobPlacedBy ≡ s:byNextel

Definition (16) follows from (10). Indeed, G(CLPC2) has an arc connecting nodes respectively

labeled with a:MobilePhone and (2 a:number) (derived from (4)), which is not in G(CLPC2, RPC).

Hence, (2 a:number) has to be propagated to the definition of a:MobilePhone, as indicated in

(16), with a:number replaced by its definition s:id, as indicated in (17). Under this new mapping,

one may verify that R4 now holds and R3 still holds. Consequently, R2 is met.

5 Conclusions

In this paper, we introduced automatic methods for constructing application ontology constraints

and for adjusting ontology mappings, when the application ontology is an open or a closed frag-

ment of the domain ontology. The final set of constraints and the mappings will have useful prop-

erties, as detailed in Section 3.1 and 3.2. The methods assume that the ontologies are written in an

expressive family of attributive languages and depend on a procedure to test logical implication,

based on constraint graphs.

The results in the paper are directly mapped to the RDF context and cover a topic – the role that

constraints play in Linked Data – that is much neglected in the literature. They also contribute to

the investigation of triplification strategies for relational databases that properly consider relational

constraints, such as keys and foreign keys.

16

As for current work, we are modifying a triplification tool [14] to generate application ontology

constraints, as described in the paper. We are also extending the strategy for generating endogen-

ous constraints, described in Section 4, to account for more complex source-to-ontology mappings,

using results from [10].

Acknowledgements

This work was partly supported by CNPq, under grants 473110/2008-3 and 557128/2009-9, by

FAPERJ under grant E-26/170028/2008, and by CAPES under grant NF 21/2009.

References

[1] Baader, F., Nutt, W. Basic Description Logics, in: F. Baader, D. Calvanese, D.L. McGuiness,

D. Nardi, P.F. Patel-Schneider (eds), The Description Logic Handbook: Theory, Implementa-

tion and Applications, Cambridge U. Press, Cambridge, UK (2003), pp. 43–95.

[2] Berrueta, D., Phipps, J. Best Practice Recipes for Publishing RDF Vocabularies - W3C

Working Group Note. http://www.w3.org/TR/swbp-vocab-pub/ (Accessed June 14, 2009).

[3] Bizer, C., Cyganiak, R., Heath, T. How to publish Linked Data on the Web.

http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/ (Accessed June 14, 2009).

[4] Bizer, C., Heath,T., Berners-Lee,T. Linked Data - The Story So Far. Int. Journal on Semantic

Web and Information Systems, 5(3), pp. 1-22, 2009.

[5] Casanova, M.A., Lauschner, T., Leme, L. A. P. P., Breitman, K. K., Furtado, A. L., Vidal, V.

M. P. Revising the Constraints of Lightweight Mediated Schemas. Data & Knowledge Engi-

neering, v.69, pp.1274 - 1301, 2010.

[6] Das, S., Sundara, S., Cyganiak, R. R2rml: Rdb to rdf mapping language. W3C RDB2RDF

working group. http://www.w3.org/TR/r2rml/ (accessed Dec. 15, 2010).

[7] Halpin, H., Hayes, P. J. When owl:sameAs isn’t the same: An analysis of identity links on the

semantic web. In Proc. Int’l. Workshop on Linked Data on the Web (2010).

[8] Jaffri, A., Glaser, H., Millard, I. URI disambiguation in the context of linked data. In Proc. of

the 1st Int’l. Workshop on Linked Data on the Web (2008).

[9] Lenzerini, M.: “Data Integration: A Theoretical Perspective”. In: Proc. of ACM Symposium on

Principles of Database Systems (2002).

[10] Lauschner, T., Casanova, M. A., Vidal, V. M. P., Macedo, J. A. F. Efficient Decision Proce-

dures for Query Containment and Related Problems. In: Proc. XXIV Brazilian Symposium on

Databases (2009).

[11] Lutz, M. Ontology-based Discovery and Composition of Geographic Information Services.

PhD Thesis, Institut für Geoinformatik (2006).

[12] McCusker, J., McGuinness, D. L. owl:sameAs considered harmful to provenance. In Proc.

ISCB Conference on Semantics in Healthcare and Life Sciences (2010).

[13] Sacramento, E., Vidal, V. M. P., Macedo, J. A. F., Lóscio, B. F., Lopes, F. L. R., Casanova,

M. A. Towards Automatic Generation of Application Ontologies. Journal of Information and

Data Management, v.1, p.535 - 550, 2010.

[14] Salas, P. E., Breitman, K. K., Viterbo, J., Casanova, M. A. Interoperability by Design Using

the Std-Trip Tool: an a priori approach In: Proc. 6th Int’l. Conf. on Semantic Systems (I-

SEMANTICS 2010), 2010, Graz.

17

[15] Vidal, V.M.P., Sacramento, E. R., Macedo, J. A. F., Casanova, M. A. An Ontology-Based

Framework for Geographic Data Integration. In: Proc. 3rd Int’l. Workshop on Semantic and

Conceptual Issues in GIS (SeCoGIS 2009). Springer, 2009.

[16] Villegas, A., Olivè, A. A method for filtering large conceptual schemas. In Proc.29th Int’l.

Conf. on Conceptual modeling (ER'10), Springer-Verlag, Berlin, Heidelberg, pp. 247-260.

[17] W3C. Semantic Web Development Tools. http://www.w3.org/2001/sw/wiki/Tools (Accessed

Abril 2nd, 2011).

