

PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 07/11

Information-gathering Events in Story Plots

Fabio A. Guilherme da Silva

Antonio L. Furtado

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 07/11 ISSN 0103-9741

Editor: Prof. Carlos José Pereira de Lucena August, 2011

Information-gathering Events in Story Plots

Fabio A. Guilherme da Silva

Antonio L. Furtado

fabio.guilherme@gmail.com, furtado@inf.puc-rio.br

Abstract: Story plots must contain, besides physical action events, a minimal set of

information-gathering events, whereby the various characters can form their beliefs on the

facts of the mini-world in which the narrative takes place. Three kinds of such events will

be considered here, involving, respectively, inter-character communication, perception and

reasoning. Multiple discordant beliefs about the same fact are allowed, making necessary

the introduction of higher-level facilities to rank them and to exclude those that violate

certain constraints. Since the proposed package was designed to run in a plan-based

context, other higher-level facilities are also available for pattern-matching against typical-

plan libraries or previously composed plots. A prototype logic programming

implementation is fully operational. A simple example is used throughout the presentation.

Keywords: Plot Composition, Communicative Acts, Perception, Deduction, Abduction,

Plan Recognition, Plan Generation, Logic Programming.

Resumo: Enredos de estórias devem conter, além de eventos de ações físicas, um conjunto

mínimo de eventos de obtenção de informação, pelos quais os vários personagens possam

formar suas crenças sobre os fatos do mini-mundo em que a narrativa tem lugar. Três

espécies de tais eventos serão consideradas aqui, envolvendo, respectivamente,

comunicação entre os personagens, percepção e raciocínio. Múltiplas crenças discordantes

sobre o mesmo fato são permitidas, tornando necessária a introdução de facilidades de nível

mais alto para graduá-las e para excluir as que violem certas restrições. Uma vez que o

pacote proposto foi projetado para rodar em um contexto baseado em planos, outras

facilidades de alto nível estão também disponíveis para casamento de padrões contra

bibliotecas de planos típicos ou enredos previamente compostos. Um protótipo

implementado em linguagem de programação em lógica está em pleno funcionamento. Um

exemplo simples é usado ao longo da apresentação.

Palavras-chave: Composição de Enredos, Atos de Comunicação, Percepção, Dedução,

Abdução, Reconhecimento de Planos, Geração de Planos, Programação em Lógica.

In charge of publications

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br

 1

1. Introduction

Story plots typically include action events, but another class of events is also needed for the

sake of realism: the information-gathering events, which enable the various characters to

mentally apprehend the state of the world. Without such events, one would have to assume

that the characters are omniscient, i.e. that they are aware of all facts that currently hold and

of how they change as a consequence of the action events.

 Here we shall recognize a sharp distinction between the facts themselves and the sets of

beliefs of each character about the facts that hold at the current state of the world, which

constitute, so to speak, their respective internal states. Beliefs can be right or wrong,

depending on their corresponding or not to the actual facts. Moreover, we have taken the

option that acquiring a belief does not cancel a previous belief. As a consequence, we allow

a character to simultaneously entertain more than one belief with respect to the same fact,

possibly with a different degree of confidence which depends on the provenance of the

beliefs.

 We shall consider three types of information-gathering events, each type associated with

a set of operations:

• Communication events - operations: tell, ask, agree.

• Perception events - operations: sense, watch.

• Reasoning events - operations: infer, suppose.

 All operations refer to beliefs on facts, except watch, whose object is some action event

witnessed by a character. The operations are defined in terms of their pre-conditions and

post-conditions [Fikes and Nilsson]. The pre-conditions are logical expressions commonly

involving affirmed or negated facts and beliefs, whereas post-conditions denote the effect

of the operation in terms of beliefs that are added or deleted to/from the current internal

states of the characters involved.

 However the specification of the operations is deliberately kept at a minimum, to be

complemented, both with respect to pre-conditions and post-conditions, by separate

conditioners, that express the peculiarities of the different characters participating in the

stories.

 As we have been doing in the course of our Logtell [Camanho et al.] storytelling project,

a plan-generation algorithm is employed to compose plots as sequences of events, in view

of the indicated goals. Since the present work focuses on the construction of an

information-gathering package, to be later integrated to the design of full-fledged narrative

genres, a single action event will be mentioned here to meet a requirement imposed by the

information-gathering events. This single action event, associated with the go operation,

consists of the displacement of a character from a place to another, which is needed because

presential verbal interaction is the only form of communication that we currently cover.

 All features discussed were implemented in a logic-programming prototype, and a

simple running example is used throughout the paper as illustration. Section 2 briefly

explains how the example was formulated so as to run in a plan-based context. Section 3

describes the three types of information-gathering events. Section 4 adds some higher-level

facilities, which help to analyze the resulting beliefs and to make comparisons by means of

plan-recognition. Section 5 contains concluding remarks.

 2

2. Example in a plan-based context

2.1. Conceptual specification

Our conceptual design method involves three schemas: static, dynamic and behavioural.

The static schema specifies, in terms of the Entity-Relationship model [Batini et al.], the

entity classes, attributes and binary-relationships. The information-gathering package

minimally requires the clauses below (see Appendix, PART 1):

entity(person,name).

attribute(person,gender).

relationship(current_place,[person,Place]) :-

 taken_as_place(Place).

attribute(person,believes).

attribute(person,told).

attribute(person,sensed).

attribute(person,watched).

attribute(person,inferred).

attribute(person,supposed).

attribute(person,asked).

relationship(trusts,[person,person]).

Notice that the specification of the current_place relationship associates the entity

person with a still undetermined entity, represented by the variable PLACE. When the

package is put together with a running application, other clauses can be added (Appendix,

PART 7), in particular to choose what sort of location will correspond to PLACE:

entity(country,country_name).

entity(city,city_name).

attribute(person,hair_colour).

attribute(person,daltonic).

relationship(born,[person,country]).

relationship(home,[person,country]).

relationship(citizen,[person,country]).

taken_as_place(city).

The dynamic schema defines a fixed repertoire of operations for consistently performing

the state changes corresponding to the events that can happen in the mini-world of the

application. The STRIPS [Fikes and Nilsson] model is used. Each operation is defined in

terms of pre-conditions, which consist of conjunctions of positive and/or negative literals,

and any number of post-conditions, consisting of facts to be asserted or retracted as the

effect of executing the operation. The operations that constitute the core of the information-

gathering package will be described in section 3.

 Currently our behavioural schema specifications mainly consist of goal-inference (a.k.a.

situation-objective) rules. Since our present running example does not employ such rules,

we shall not discuss them here (cf. [Camanho et al; Ciarlini et al]).

 3

2.2. Initial state declarations

To run an application, it is necessary to populate the initial database state with ground

clauses denoting valid instances of the specified static schema (for their formal

representation in our example, see the Appendix, PART 11).

 Informally speaking, the mini-world of our example comprises four characters, John,

Peter, Mary and Laura, three countries, UK, USA and Canada, and two cities, both in the

UK, London and Manchester.

 The recorded information does not provide a uniform coverage. It registers where Mary,

Peter and Laura were born but does not indicate John's birth-place. About Mary it adds that

her domicile (home) is also in the UK and that she has red hair, whereas Laura ─ who, in

spite of having been born in the USA, is a Canadian citizen ─ is blond. Peter is said to be

daltonic. John, Peter and Mary are currently in London, and Laura in Manchester.

 Contrary to the other characters, whose beliefs are initially confined to their explicitly

recorded properties, John is aware of all registered facts.

.

2.3. Some Features of the Plan-generator

The plan generator follows a backward chaining strategy. For a fact F (or not F) that is

part of a given goal, it checks whether it is already true (or false) at the current state. If this

is not the case, it looks for an operation Op declared to add (or delete) the fact as part of its

effects. Having found such operation, it then checks whether the pre-condition Pr of Op

currently holds – if not, it tries, recursively, to satisfy Pr. Moreover, the plan generator

must consider the so-called frame problem [Lloyd], by establishing (in second-order logic

notation) that the facts holding just before Op is executed stay valid unless explicitly

declared to be altered as part of the effects of Op.

 In view of the needs of the information-gathering package, we specified

added(pre_state(O,S),O) as one more effect of every operation O, which allows to

capture in S the prefix of operation Op, i.e. the entire plan sequence, starting at the initial

state, to which Op will be appended. Indeed, sequence S supplies a convenient operational

denotation of the state immediately before the event denoted by Op, to which we may, in

particular, apply the holds predicate to find out who was present at some place associated

with the occurrence of the event (cf. the precond clause for operation watch in the

Appendix, PART 2).

 Like goals, pre-conditions are denoted by conjunctions of literals and arbitrary logical

expressions. We distinguish, and treat differently, three cases for the positive or negative

facts involved:

a. facts which, in case of failure, should be treated as goals to be tried recursively by

the plan generator;

b. facts to be tested immediately before the execution of the operation, but which will

not be treated as goals in case of failure: if they fail the operation simply cannot be

applied;

c. facts that are not declared as added or deleted by any of the predefined operations.

 4

 Note that the general format of a pre-condition clause is precond(Op, Pr) :- B. In

cases (a) and (b), a fact F (or not F) must figure in Pr, with the distinction that the barred

notation /F (or /(not F)) will be used in case (b). Case (c) is handled in a particularly effi-

cient way. Since it refers to facts that are invariant with respect to the operations, such facts

can be included in the body B of the clause, being simply tested against the current state

when the clause is selected.

 An example is the precondition clause of operation tell(A,B,F) (in the Appendix,

PART 2), where character A tells something to character B. We require that the two

characters should be together at the same place, and, accordingly, the Pr argument shows

two terms containing the same variable L to express this location requirement, but the term

for B is barred: /current_place(B, L), which does not happen in A's case. The difference

has an intuitive justification: character A, who is the agent of the operation, has to either

already be present or to go to the place L where B is, but the latter would just happen to be

there for some other reason.

 The proper treatment of (a) and (b) is somewhat tricky, because of the backward

chaining strategy of the planning algorithm. Suppose the pre-condition Pr of operation Op

is tested at a state S1. If it fails, the terms belonging to case (a) will cause a recursive call

whereby one or more additional operations will be inserted so as to move from S1 to a state

S2 where Op itself can be included. It is only at S2, not at S1, that the barred terms in case (b)

ought to be tested, and so the test must be delayed until the return from the recursive call,

when the plan sequence reaching S2 will be fully instantiated. Delayed evaluation is also

needed, as one would expect, for instantiating the pre_state predicate mentioned before.

 Only for the sake of completion, since this feature is not used in the package, we still

have to mention that, for the added and deleted clauses declaring effects of operations, the

plan-generator also employs a barred notation, to distinguish between two cases:

(a) primary effects, and (b) secondary unessential effects. In case (a), if any fact F to be

added by Op already holds, or already does not hold if it should be deleted, then Op is

considered non-productive and fails to be included in the plan. In contrast, in case (b), such

lack of effect would be admitted and cause no failure.

 Once generated, a plan can be processed via the execute command, thus effecting the

desired state transition, i.e. adding and/or deleting facts to/from the current database state.

As a side effect, the log(S) clause (initially set as log(start)) is updated by appending to

S the plan executed. At any time, the entire story thus far composed can be narrated, in

pseudo-natural language, by simply entering ":- log.".

 To finish this partial review of the plan features, we remark that the planning algorithm

plans(G,P) can be called in more than one way. More often G is given, as the goal, and P

is a variable to which a generated plan will be assigned as output. However an inverse

usage has been provided, wherein P is given and G is a variable. In this case, the algorithm

will check whether P is executable in view of the initial state and of the interplay of pre-

and post-conditions, and, if so, assign its net effects (a conjunction of F and not F terms) to

G. This second kind of usage will be illustrated in example 11 of section 4.3.

 5

2.4. Templates for pseudo-natural language generation

Both for facts and events, we resort to templates for description and narration in pseudo-

natural language (the pertinent clauses are given in the Appendix, PARTS 3, 4, 8, as well

as in PART 2 for each operation).

 The template device allows, to begin with, to list all properties registered in the initial

database state (or in the current state reached by executing a plan), via the facts predicate:

:- facts.

 John is a person

 Mary is a person

 Peter is a person

 Laura is a person

 UK is a country

 USA is a country

 Canada is a country

 London is a city

 Manchester is a city

 Mary is female

 Laura is female

 John is male

 Peter is male

 Mary has red hair

 Laura has blond hair

 Peter is daltonic

 John is now in London

 Peter is now in London

 Mary is now in London

 Laura is now in Manchester

 Mary was born in UK

 Peter was born in UK

 Laura was born in USA

 Mary lives in UK

 Laura is a citizen of Canada

 The templates for operations and facts are combined in a way that favours a fairly

readable style. Consider, as an example, operation tell(A,B,F) as specified in the

Appendix, PART 2. Suppose fact F corresponds to a property of character C. Concerning

the identity of the three characters, we can distinguish three situations:

• They are all distinct - tell('John','Peter',hair_colour('Mary',red))

• C is the same as A - tell('Mary','Peter',hair_clour('Mary',red))

• C is the same as B - tell('John','Mary',hair_colour('Mary',red))

 The def_template algorithm (Appendix, PART 4) that drives the application of the

templates produces for the above events:

John tells Peter: "- Mary has red hair".

Mary tells Peter: "- My hair is red".

John tells Mary: "- Your hair is red".

 6

 The algorithm duly uses gender information, rendering for example

infer('Mary',citizen('Mary','UK') as:

Mary infers that she is a citizen of UK.

 Negative facts in the several operations, and the occurrence of variables in the ask

operation, are treated as expected by the algorithm. So, again for the hair_colour

property, one will have, respectively:

tell('John','Laura',not hair_colour('Laura',red))

 John tells Laura: "- Your hair is not red".

ask('John','Laura',hair_colour('Laura',X))

 John asks Laura: "- What is the colour of your hair?".

ask('John','Laura',hair_colour(X,red)))

 John asks Laura: "- Who has red hair?".

 Analogous templates are provided for rendering in pseudo-natural language the

information-package facts, such as told, asked, sensed, watched, inferred, supposed,

believes and trusts. They can be listed at any current state by entering ":-

info_facts.".

3. The information gathering events

The complete specification of the operations associated with the information-gathering

events (and of the auxiliary go operation) is given in the Appendix, PART 2.

3.1. Communication events

In the computer science community, communication between characters immediately

brings to mind the communication processes executed by software agents in multi-agent

environments. In particular, the Agent Communication Language proposed by the

Foundation for Intelligent Physical Agents consists of formally defined operations similarly

defined by their pre-conditions and post-conditions [FIPA]. Software agents differ from

fictional characters (and, ironically, from human beings in general) in that they are

supposed to only transmit information on which they believe, to agents that still lack such

information and need it in order to play their role in the execution of some practical service.

 In contrast, certain characters are prone to lie, either for their benefit or even out of

habit. In general they may ignore the conversational maxims prescribed by philosophers of

language, such as [Grice]. The bare specification of our tell(A,B,F) operation does not

even require that A has any notion of the fact F to be transmitted to B. It is enough that both

characters are at the same local L; if they are not, a current_place(A,L) sub-goal is

recursively activated, which may cause the displacement of the teller (character A) to L,

where B currently is (note the "/" sign before current_place(B,L), to indicate that B

would not be expected to move). And the only necessary effect of the operation is merely

 7

that F is told by A to B. Whether or not B will believe in F will depend on the execution of

the agree operation, which in turn depends on whether or not B trusts in A.

 The ask operation is similarly defined, and its effect is just that A has asked F from B,

who may or may not respond. The fundamental character-dependent conditioners (all

spelled out in the Appendix, PART 9) are established, respectively, by separate will_tell

and will_ask clauses.

Example 1: Mary is willing to ask John about his current whereabouts. She asks, he replies

and, since she trusts him, adopts the belief that he is in London.

:- iter(1, (believes('Mary',current_place('John',L)))).

Goal: believes(Mary, current_place(John, A))

Mary asks John: "- Where are you?". John tells Mary: "- I am now in

London". Mary agrees with John.

3.2. Perception events

Perception is the faculty whereby people keep contact with the world through their five

senses (sight, hearing, touch, smell and taste). At the present stage of our work we do not

make such distinctions, and merely consider a generic sense operation to apprehend any

sort of fact, with a variant version that makes provision for defective sensing. For correct

sensing of a positive or negative fact F, F must be successfully tested. Distorted sensing is

accompanied by a side-remark on the true fact. In any case, besides the sensed clause

(analogous to the told and asked clauses of the communication operations) a belief

clause is immediately added, since direct perception does not depend on a third party who

might not be trusted.

 The watch(W,O) operation was harder to implement, requiring the inclusion of the

already mentioned pre_state(O,S) clause as an extra feature of the plan-generator, where

O is the operation witnessed by W, and S denotes the state previous to the application of O

(i.e. the sub-sequence of the generated plan that precedes O). It becomes possible then to

check the location of character W at the time when O happens.

 As before, the definitions are left to be completed by conditioners, respectively sense-

rule and watch_rule clauses. For sense, it is required that, to ascertain a positive or

negative fact F involving an entity instance E currently at place L, a character W must be at

L, either originally or as the result of pursuing current_place(W,L) as a sub-goal. Note

that this requirement holds even if F is the negative fact not current_place(E,L), since W

must be at L to sense that E is not there.

 For watch, normally applicable to action events only, the current_place requirements

depend on what is being watched, which justifies their being left to the special watch_rule

clauses, to which the current_place(W,L) information, checked as described before, is

passed. For instance, go(A,L1,L2) can be watched partly by persons then at L1 (origin)

and partly by those present at L2 (destination). Naturally the agent (character A) is able to

watch the action in its entirety.

 8

Example 2: Peter obtains three different indications concerning the colour of Mary's hair.

Only the first, supplied by trustworthy John, was correct. Laura was lying, and Peter

himself, being daltonic, failed to perceive the true colour.

:- iter(3,believes('Peter',hair_colour('Mary',A))).

Goal: believes(Peter, hair_colour(Mary, A))

John tells Peter: "- Mary has red hair". Peter agrees with John.

Laura goes from Manchester to London. Laura tells Peter: "- Mary has

blond hair". Peter agrees with Laura.

Peter wrongly senses that Mary has green hair -- in fact Mary has red

hair.

Example 3: The daltonic Peter tries to convince himself that neither Mary nor Laura have

red hair. His eyes seem to confirm that in both cases. He is wrong with respect to Mary, but

quite right with respect to Laura, since he would not have trouble distinguishing red from

the yellow hue of Laura's hair.

:- iter(1,(sensed('Peter',not hair_colour('Mary',red)), sensed('Peter',

not hair_colour('Laura',red)))).

Goal: sensed(Peter, not hair_colour(Mary, red)), sensed(Peter, not

hair_colour(Laura, red))

Peter wrongly senses that Mary has not red hair. Peter goes from London

to Manchester. Peter senses that Laura has not red hair

Example 4: John travels from London to Manchester, and Peter, being in London, watches

the event and reports it to Mary.

:- iter(1, told('Peter', ['Mary', watched('Peter', go('John', 'London',

'Manchester'))])).

Goal: told(Peter, [Mary, watched(Peter, go(John, London, Manchester))])

John goes from London to Manchester. Peter watches the event: 'John goes

from London to Manchester'. Peter tells Mary: "- I watched the event:

'John goes from London to Manchester'".

3.3. Reasoning events

Deduction, induction and abduction are complementary reasoning strategies. For deduction,

if there is a rule A → B and the antecedent A is known to hold, it is legitimate to infer that

the consequent B holds. In the case of induction (fundamental to the natural sciences), the

systematic occurrence of B whenever A occurs may justify the adoption of rule A → B.

 Abduction (cf. [Peirce], for example) is a non-guaranteed but nevertheless most useful

resource in many uncertain situations: given the rule A → B, and knowing that B holds,

 9

one may suppose that A also holds. This is a type of reasoning habitually performed by

medical doctors, who try to diagnose an illness in view of observed symptoms. The trouble

is, of course, that it is often the case that more than one illness may provoke the same

symptom ─ in other words: there may exist other applicable rules A1 → B, A2 → B, ..., An

→ B, suggesting different justifications for the occurrence of B. In abduction, wherein the

implication arrow is followed backward, one is led to formulate hypotheses rather than the

firm conclusions issuing from deduction over deterministic rules.

 Our infer and suppose operations utilize, respectively, deduction and abduction. The

conditioners for both can be the same rules of inference (inf_rules) to be traversed

forward in the former case or backward in the latter. The reader will notice that, in the case

of infer, a rule P=>F accepted by character A, the antecedent P furnishes the beliefs to be

tested as pre-condition, whereas A's belief in F will be acquired as the added effect (another

addition being an inferred clause) upon a successful evaluation of P. Conversely, in the

case of suppose, the belief on the consequent will motivate the addition of a belief in some

fact present in the logical expression of the antecedent.

 We must stress that the inference rules adopted by one or more characters in a given

story do not have to be scientifically established rules. Often originating from popular

traditions, they may lead to far-fetched or even absurd beliefs. Informally, our rules are:

a. if person A was born in a country B, and A's domicile is also in B, then A is a

citizen of B.

b. if person A is daltonic, and says that the colour of B's hair is C1, but a daltonic

when looking at an object coloured C2 would mistakenly perceive that colour as C1,

then the colour of B's hair is C2.

c. if person A was observed departing from location L to some other location, then A

is no longer at L.

d. if person A was observed arriving at location L, coming from some other location,

then A is currently at L.

 Rules c and d are trivial, and we only included then as examples of a more general case:

watching an event from an appropriate place allows the observer to conclude that the direct

and indirect effects of the event should hold. More interesting (but not present in our

reduced context) is what one may conclude from watching a kidnap scene: not only that the

victim has lost all freedom of movement, but that the author of the villainy would take the

victim to his own dwelling. Rule a does not really cover the legal citizenship requirements

prevailing in most countries; indeed legal argument goes far beyond the scope of classical

syllogism, as expounded for instance in [Toulmin]. Rule b represents a naive understanding

(taking red for green and vice-versa) of one variety of colour blindness (cf. [Dalton] for an

early study, noting that the word "daltonism" derived from that author's name).

Example 5: John decides to leave London and go somewhere else. Manchester is chosen

(by the plan-generator) as destination. Peter, who is in London, senses that John is no

longer there, whereas Laura, living in Manchester, now senses John's presence. A trivial

inference from watching John's departure or arrival provides a second way to obtain the

same information.

 10

:- iter(3,

 (not current_place('John','London'),

 believes('Peter',not current_place('John','London')),

 believes('Laura',current_place('John',L)))).

Goal: not current_place(John, London), believes(Peter, not

current_place(John, London)), believes(Laura, current_place(John, A))

John goes from London to Manchester. Peter senses that John is not in

London now. Laura senses that John is now in Manchester.

John goes from London to Manchester. Peter senses that John is not in

London now. Laura watches the event: 'John goes from London to

Manchester'. Laura infers that John is now in Manchester.

John goes from London to Manchester. Peter watches the event: 'John goes

from London to Manchester'. Peter infers that John is not in London now.

Laura senses that John is now in Manchester.

Example 6: Peter wonders about Mary's nationality. Since John knows in what country she

was born, which is equally her domicile, he infers that she is a citizen of that country and

correctly informs Peter. Laura's indication is false ─ and also not valid, since citizenship

refers to countries, not to towns. The third sequence is more curious, and we must confess

that, though it looks rather obvious, we were not expecting it: John passes the two

antecedents to Peter, thus enabling him to deduce the consequent by himself.

:- iter(3,believes('Peter',citizen('Mary',L))).

Goal: believes(Peter, citizen(Mary, A))

John infers that Mary is a citizen of UK. John tells Peter: "- Mary is a

citizen of UK". Peter agrees with John.

Laura goes from Manchester to London. Laura tells Peter: "- Mary is a

citizen of London". Peter agrees with Laura.

John tells Peter: "- Mary was born in UK". Peter agrees with John. John

tells Peter: "- Mary lives in UK". Peter agrees with John. Peter infers

that Mary is a citizen of UK.

Example 7: Conversely, the question here concerns Laura's domicile, which is one of the

antecedents of the inference rule involved in example 6. Knowing that Laura is a Canadian

citizen, John supposes, by traversing the inference rule in the opposite direction, that

Canada is her home, and passes his belief to Peter. The belief may or may not be correct,

there being no contrary evidence at least. But notice that, if the question concerned Laura's

birth-place, the definitely incorrect supposition that this was also Canada would result,

which shows how careful one should be when resorting to abduction ─ a most useful way

to formulate hypotheses, to be later confirmed or not through additional evidence.

:- iter(1,believes('Peter',home('Laura',L))).

Goal: believes(Peter, home(Laura, A))

 11

John supposes that Laura lives in Canada. John tells Peter: "- Laura

lives in Canada". Peter agrees with John.

Example 8: As a goal that, so we thought, should fail, we enquired how could red-haired

Mary come to believe that her hair was not red. To our surprise, the planner found a

solution using inference in a most devious way: John gives Peter the correct information,

which he faithfully transmits to Mary. However, having first noticed that Peter is daltonic,

Mary is led to apply our (admittedly naive) inference rule dealing with red-green colour

blindness.

:- iter(1,(believes('Mary',hair_colour('Mary',C)),not (C = red))).

Goal: believes(Mary, hair_colour(Mary, A)), not A=red

Mary senses that Peter is daltonic. John tells Peter: "- Mary has red

hair". Peter agrees with John. Mary asks Peter: "- What is the colour of

my hair?". Peter tells Mary: "- Your hair is red". Mary infers that she

has green hair.

4. Higher-level facilities

In the current prototype, the predicates implementing the higher-level facilities (given in

the Appendix, PART 5) do not correspond to events to be inserted by the planner in a story

plot. They are, so to speak, external to the narrative, to be applied by the user currently in

control of the story composition, as an instrument of analysis. Future work may promote

their inclusion in the repertoire of events, especially in the context of detective stories,

where the critical examination of past facts and events plays a fundamental role (more on

that in section 5). To run the higher-level facilities with a specific application, a number of

clauses must be specified (for those used in our example, see the Appendix, PART 10).

4.1. Surveying and ranking multiple beliefs

Since multiple beliefs about the same fact are allowed, one needs a device to rank them on

the basis of their provenance. The survey predicate collects all beliefs of a character about

an indicated fact, together with their provenance (operation whereby they were acquired)

and puts them in decreasing order with respect to the appropriate weights. These must have

been declared by a conditioner such as weights('Peter', hair_colour(X,Y),

[1:sensed('Peter',_),2:told('John',['Peter',_])]), which is utilized in example

9 below.

Example 9: Peter collects all possible inputs on the colour of Mary's hair (as in example 2).

He then ranks the results, according to his pre-defined list of weights based on provenance.

As far as hair-colour is concerned, what he hears from John is ranked (weight 2) above the

evidence of his own defective eyesight (weight 1). He trusts Laura, but never thought of

assigning a weight to her opinion (weight 0 is the default).

 12

:- survey('Peter',hair_colour('Mary',C),F:V),

 rank('Peter',F:V,Vr),

 nl,varnames(F),

 write('Surveying: '),write(F),nl,nl,

 forall(member(Pr:_,V),(write(Pr),nl)),nl,

 write('Ranking the results: '),nl,nl,

 forall(member(P,Vr),(write(P),nl)), nl, nl, !.

Surveying: hair_colour(Mary, A)

sensed(Peter, hair_colour(Mary, green))

told(John, [Peter, hair_colour(Mary, red)])

told(Laura, [Peter, hair_colour(Mary, blond)])

Ranking the results:

2:hair_colour(Mary, red)

1:hair_colour(Mary, green)

0:hair_colour(Mary, blond)

 The survey_v predicate (also in the Appendix, PART 5), when collecting the various

inputs, rejects those that cause the activation of any violate_rule. Such rules play a

central role in the higher-level facility described in the next section.

4.2. Validating a belief

Certain beliefs may not make sense in that they violate some natural law, or legal norm or

even some convention of the chosen story genre. An elementary kind of violation refers to

the schema definition itself: e.g. instances of a relationship are not acceptable if not

declared between instances of the entity classes over which the relationship was defined.

 Also, similarly to naive inferences, a violate_rule established for a story genre may

not reflect precisely the real world.

 The violations predicate, illustrated below, checks a given expression in view of the

established violate_rules. If a rule is violated more than once, the rule identifier will be

repeated an equal number of times in the resulting list.

 In our example, both violate_rules are about the citizen relationship. According to

rule r1, any instance thereof is considered not valid if the first parameter is not a person or

the second is not a country, whereas rule r2 excludes the possibility of plural citizenship

(although, sometimes contrary to official legislation, such cases are often encountered in

practice).

Example 10: When checking expression A below, rule r1 is activated twice: London is not

a country and Mickey is not a person. A violation related to rule r2 is also detected, since

there should be no more than one clause declaring Mary's citizenship.

:- A = (citizen('Mary','UK'), citizen('Mary','London'),

 citizen('Mickey','USA')),

 violations(A,Vs),

 13

 nl,write('Clause: '),write(A),nl,

 write('violates rules: '),write(Vs),nl,nl,nl.

Clause: citizen(Mary, UK), citizen(Mary, London), citizen(Mickey, USA)

violates rules: [r1, r1, r2]

4.3. Recognizing a library plan from events observed

Typical plans can be extracted from previously existing plots, and, after their parameters

are consistently replaced by variables, be stored under this plan-pattern form in a library,

for future reference. Our tiny example library comprises two short plans:

lib([

 start=>go(A,L1,L2)=>go(B,L1,L2)=>sense(A,current_place(B,L2)),

 start=>go(A,L1,L2)=>go(A,L2,L1)

]).

 In the former, two characters A and B follow the same itinerary and, next, A senses that

they are now together at place L2. The latter just shows A leaving from and returning to the

same place.

 One of the uses of a library is to match one or more observed events against each plan-

pattern. If all the observations supplied, ideally in a small number, unify with plan events

that must lie in the same sequence but do not have to be contiguous, one gains the

following complementary benefits:

a) anticipating what the characters are trying to achieve in the long run.

b) extending the few events to a more comprehensive plot, consisting of the matching

plan pattern, with some (or all) variables instantiated due to the unification.

 To obtain further intuitive understanding of what (a) means, take the commonplace

example of a person being observed to hail a taxi and go to an airport. These observations

would match a plan-pattern with events such as buying an air ticket, hailing a taxi, loading

a number of bags on the taxi, going to the airport, etc., etc., checking-in, boarding the plane,

etc. But they might also match a similar plan in which the person would be going to the

airport not to embark but to meet another person in an arriving flight. The fact that the same

observations can match alternative plans shows that recognition can, in general, be

hypothetical.

 On the other hand, no matter if with just one or with several matching alternatives, a

prospective author would have, in view of (b), two possible plots obtained by extending an

initial fragmentary sketch. So, curiously, both plan-generation (as illustrated in the previous

sections) and plan-recognition provide useful story composition strategies. Plan-recognition

brings to mind the notion of reuse, and in the literary domain is in consonance with the

remark in [Barthes] that "any text is a new tissue of past citations".

Example 11: Two observed go(X,Y,Z) events are matched against the given library of
typical plans. The first event is fully instantiated, whereas the second seems to result from a

vague observation: the only clue is that the agent was either John himself or a woman. With

 14

the first option, the library plan wherein the same character travels forward and then

backward is recognized; with the second, the recognized plan is that two different

characters embark on the same trip, and the former notices the presence of the latter when

they have both reached their destination. Calling the plan-generator to validate the plans has

the effect of restricting the choice of the female character to Mary, who happens to be

initially in London as required.

:- Obs = [go('John','London','Manchester'),go(A,L1,L2)],

 Assuming = (A = 'John'; gender(A,female)),

 copy((Obs,A),(Obs1,A1)),varnames(Obs1),

 nl,write('Observed: '),write(Obs1),nl,

 write('assuming that '),write(A1),write(' was either John himself'),nl,

 write('or some person of the female gender'),

 nl,nl,nl,

 write('Library plans recognized - and executable:'),nl,!,

 lib(L),

 forall((Assuming,recognize_lib(Obs,P,L)),

 (plans(_,P),varnames(P),narrate(P); not plans(_,P))),

 nl, nl.

Observed: [go(John, London, Manchester), go(A, B, C)]

assuming that A was either John himself

or some person of the female gender

Library plans recognized - and executable:

John goes from London to Manchester. John goes from Manchester to London.

John goes from London to Manchester. Mary goes from London to Manchester.

John senses that Mary is now in Manchester.

4.4. Recognizing a pattern in a generated plan

Pattern-matching can also take an opposite direction, working on an existing plot and

checking whether it contains some not necessarily contiguous subsequence to which a

pattern may be matched successfully. Both verifying that the match succeeds and, if so,

extracting the matching subsequence are important contributions towards the analysis of

plots.

Example 12: A pattern expressing a going and returning trip performed by some character

is matched against an existing plot, which, among its events, contains an instance of the

pattern ─ which is duly found and displayed.

:- Evs = [go(A,L1,L2),go(A,L2,L1)], copy(Evs,Evs1),

 H = start=>go('John', 'London', 'Manchester')=>go('Laura',

 'Manchester','London')=>go('John', 'Manchester', 'London'),

 check_obs(Evs,H),

 nl,write('Applying the pattern: '),varnames(Evs1),write(Evs1),nl,

 write('to the given sequence: '),write(H), nl,

 write('one finds: '),write(Evs),

 nl,nl,nl,!.

 15

Applying the pattern: [go(A, B, C), go(A, C, B)]

to the given sequence: start=>go(John, London, Manchester)=>go(Laura,

 Manchester, London)=>go(John, Manchester, London)

one finds: [go(John, London, Manchester), go(John, Manchester, London)]

5. Concluding remarks

Besides the simple-minded example used as illustration, we have already applied some of

the information-gathering events to enhance the Swords-and-Dragons genre that runs in

Logtell, by dropping the unrealistic omniscience assumption. Now a damsel sees the

villainous Draco kidnapping princess Marian, and runs to tell sir Brian about the mischief;

the knight immediately infers that a kidnapped victim should have been carried to the

villain's dwelling, whereto he promptly rides to rescue his beloved.

 But the availability of information-gathering events will, probably after further

elaboration, open the way to more sophisticated genres. In particular, we have been

examining the requirements of detective stories. It has been convincingly argued [Todorov]

that such narratives actually contain two stories: the story of the crime and the story of the

investigation. The first story, that of the crime, ends before the second begins; the

characters of the second story, the story of the investigation, do not act, they learn ─ which

is well within the scope of the package discussed here.

 Future work should extend the repertoire of events to contemplate other speech-acts

[Austin; Searle; Leech and Weisser], for example to allow a character C1 to solicit or to

order another character C2 to execute an action of C1's interest, which C2, but not C1, is

empowered and in a position to perform.

 Moreover, in stories of even moderate complexity, behaviour should be characterized as

a decision-making process affecting the participation of each character in every kind of

event, involving physical action or the information-gathering activities of the present study

─ and this process hinges on both cognitive and emotional considerations [Brave and Nass;

Loewenstein and Lerner; McCrae and Costa; Goldberg; O'Rorke and Ortony; Ortony],

further influenced by the goals and plans of the other characters [Willensky]. We have done

some initial work on drives, attitudes, emotions, and mutual interferences among agents

[Barbosa et al.], but a full integration within the Logtell system still remains to be achieved.

References

Austin, J.L. (1962). How to do things with words. London: Oxford University Press.

Barbosa, S.D.J.; Furtado, A.L.; Casanova, M.A.C. (2010). "A Decision-making Process for Digital Storytelling". Proc. IX

Symposium on Computer Games and Digital Entertainment - Track: Computing.

Batini, C.; Ceri, S.; Navathe, S. (1992). Conceptual Design – an Entity-Relationship Approach. Benjamin Cummings.

Barthes, R. (1981). "The Theory of the Text". In Untying the Text: A Post-Structural Reader. R. Young (ed.). Boston:

Routledge, 31-47.

Brave, S.; Nass, C. (2008) “Emotion in Human-Computer Interaction”. In: A. Sears & J.Jacko (eds.) The Human-

Computer Interaction Handbook, pp. 77–92.

Camanho, M.M; Ciarlini, A.E.M.; Furtado, A.L; Pozzer, C.T.; Feijó, B. (2008). "Conciliating coherence and high

responsiveness in interactive storytelling". Proc. of the 3rd International conference on Digital Interactive Media in

Entertainment and Arts, pp. 427-434.

Ciarlini, A.E.M; Barbosa, S.D.J.; Casanova, M.A; Furtado, A.L. (2008). "Event relations in plan-based plot composition".

Proc. VII Symposium on Computer Games and Digital Entertainment - Track: Computing, pp. 31-40.

 16

Dalton, J. (1798). "Extraordinary facts relating to the vision of colours: with observations". Memoirs of the Literary and

Philosophical Society of Manchester 5: 28–45.

FIPA Communicative Act Library Specification (2002). At http://www.fipa.org/specs/fipa00037/SC00037J.html.

Fikes, R.E.; Nilsson, N.J. (1971). "STRIPS: A new approach to the application of theorem proving to problem solving".

Artificial Intelligence , 2(3-4).

Goldberg, L.R. (1992). "The Development of Markers for the Big-Five Factor Structure". Psychological Assessment, v4,

n1 pp. 26-42.

Grice,H.P. (1975). "Logic and conversation". In: P. Cole, J.L. Morgan (Eds.), Syntax and Semantics, Speech Acts, vol. 3,

Academic Press, New York.
Leech, G. and Weisser, M. (2003). 'Generic speech act annotation for task-oriented dialogues', in D. Archer, P. Rayson, A.

Wilson and T. McEnery (eds.) Proceedings of the Corpus Linguistics 2003 conference, University Centre for

Computer Corpus Research on Language, Technical Papers 16.1, pp. 441-6.

Lloyd, W. 1987. Foundations of Logic Programming. Springer.

Loewenstein, G.; Lerner, J.S. (2003). "The role of affect in decision making". In Handbook of Affective Sciences.

Davidson, R.J.; Scherer, K.R.; Goldsmith, H.H. (eds.). Oxford University Press, pp. 619-642.

McCrae, R.R.; Costa, P.T. (1987). "Validation of a five-factor model of personality across instruments and observers". J.

Pers. Soc. Psychol., 52, pp. 81-90.

O'Rorke, P.; Ortony, A. (1994). "Explaining Emotions". Cognitive Science, 18, 2, pp. 283-323.

Ortony, A. (2003). "On making believable emotional agents believable". In Emotions in Humans and Artifacts. Trappl, R.;

Petta, P.; Payr, S. (eds). The MIT Press, pp. 189-211.

Peirce, C.S. (1931). Collected Papers. Harvard University Press, Cambridge, MA (excerpted in J. Buchler (Ed.),

Philosophical Writings of Peirce, Dover, New York, 1955).

Searle, J.R. (1979). Expression and Meaning, Cambridge University Press, Cambridge.

Todorov, T. (1977). The Poetics of Prose. Cornell University Press.

Toulmin, S.E. (1958). The Uses of Argument. Cambridge, Cambridge University Press.

Willensky, R. (1983). Planning and Understanding - a Computational Approach to Human Reasoning. Addison-Wesley.

 17

Appendix

/* INFORMATION GATHERING PACKAGE */

/* preparatory commands */

:- set_prolog_flag(verbose,silent).

:- style_check([-singleton,-discontiguous]).

:- set_prolog_flag(toplevel_print_options,[max_depth(50)]).

:- dynamic told/2, sensed/2, watched/2, inferred/2, supposed/2, asked/2,

state_rep_ini/1, ini/0 , believes/2 .

:- dynamic person/1, gender/2, current_place/2.

:- dynamic it_m/1 .

% including and preparing for the planning algorithm

:- op(900,fy,not).

:- op(650,yfx,=>).

:- op(500,fx,/).

:- dynamic '/'(/1).

:- dynamic log/1 .

log(start).

log :-

 once(narrate),nl.

:- include(warbeta_info).

added(X,Y) :- /added(X,Y).

deleted(X,Y) :- /deleted(X,Y).

added(pre_state(O,S),O).

/* PART 1 - general information-gathering properties */

entity(person,name).

attribute(person,gender).

relationship(current_place,[person,Place]) :-

 taken_as_place(Place).

attribute(person,believes).

attribute(person,told).

attribute(person,sensed).

attribute(person,watched).

attribute(person,inferred).

attribute(person,supposed).

attribute(person,asked).

relationship(trusts,[person,person]).

/* PART 2 - general purpose dynamic schema */

% communication operations

operation(tell(A,B,F)).

added(told(A,[B,F]),tell(A,B,F)).

precond(tell(A,B,F),P) :-

 will_tell(A,B,F,P1),

 appc((current_place(A,L),/current_place(B,L)),P1,P).

template(tell(A,B,F),[A,' tells ',B,': "- '|Ft]) :-

 def_template(F,A,B,Ft1),

 append(Ft1,['"'],Ft).

 18

operation(ask(A,B,F)).

added(asked(A,[B,F]),ask(A,B,F)).

precond(ask(A,B,F),P) :-

 will_ask(A,B,F,P1),

 appc((current_place(A,L),/current_place(B,L)),P1,P).

template(ask(A,B,F),[A,' asks ',B,': "- '|Ft]) :-

 def_template(F,int,A,B,Ft1),

 append(Ft1,['?"'],Ft).

operation(agree(A,B,F)).

added(believes(A,F),agree(A,B,F)).

precond(agree(A,B,F),(told(B,[A,F]),trusts(A,B))).

template(agree(A,B,F),[A,' agrees with ',B]).

% perception operations

operation(sense(W,F)).

added(believes(W,F),sense(W,F)).

added(sensed(W,F),sense(W,F)).

precond(sense(W,F),P) :-

 sense_rule(W,F,P1),

 (not (F = (not current_place(_,_))),

 appc((/F,property(F,Pr,I),current_place(W,L),/current_place(I,L)),P1,P);

 F = (not current_place(I,L)),

 appc((/F,current_place(W,L)),P1,P)).

template(sense(A,F),[A,' senses that '|Ft]) :-

 def_template(F,A,nil,Ft).

operation(sense(W,F1,F2)).

added(believes(W,F2),sense(W,F1,F2)).

added(sensed(W,F2),sense(W,F1,F2)).

precond(sense(W,F1,F2),P) :-

 sense_rule(W,F1,F2,P1),

 appc((property(F1,Pr,I),current_place(W,L),/current_place(I,L)),P1,P).

template(sense(W,F,F),[W,' senses that '|Ft]) :-

 def_template(F,W,nil,Ft).

template(sense(W,F1,F2),[W,' wrongly senses that '|Ft]) :-

 def_template(F2,W,nil,Fta),

 def_template(F1,W,nil,Ftb),

 (F1 = (not _),!,Ft = Fta;

 append(Fta,[' -- in fact '|Ftb],Ft)).

operation(watch(W,O)).

added(watched(W,O),watch(W,O)).

precond(watch(W,O),(pre_state(O,S),T,holds(current_place(W,L),S))) :-

 watch_rule(W,O,R,L), (R = true, T = true; not (R = true), T = holds(R,S)).

template(watch(W,F),[W,' watches the event: '''|Ft]) :-

 template(F,Ft1),

 append(Ft1,[''''],Ft).

% reasoning operations

operation(infer(A,F)).

added(believes(A,F),infer(A,F)).

added(inferred(A,F),infer(A,F)).

precond(infer(A,F),P) :- ded(A,F,P).

template(infer(A,F),[A,' infers that '|Ft]) :-

 def_template(F,A,nil,Ft).

ded(A,F,Fc) :-

 inf_rule(A,P=>F),

 conj_list(P,L),

 ded1(A,L,Lc),

 19

 conj_list(Fc,Lc).

ded1(A,[],[]).

ded1(A,[X|R],[believes(A,X)|S]) :-

 property(X),!,

 ded1(A,R,S).

ded1(A,[X|R],[X|S]) :-

 ded1(A,R,S).

operation(suppose(A,F)).

added(believes(A,F),suppose(A,F)).

added(supposed(A,F),suppose(A,F)).

precond(suppose(A,F),C) :- property(F),abd(A,F,C).

template(suppose(A,F),[A,' supposes that '|Ft]) :-

 def_template(F,A,nil,Ft).

abd(A,Fr,Fc) :-

 inf_rule(A,P=>F),

 on_conj(Fr,P),

 (believes(A,F),!,Fc = true;

 Fc = /believes(A,F);

 Fc = sensed(A,F);

 Fc = told(_,[A,F])).

% operation that changes the current place of a character

operation(go(C,L1,L2)).

deleted(current_place(C,L1),go(C,L1,L2)).

added(current_place(C,L2),go(C,L1,L2)).

precond(go(C,L1,L2),

 (city(L1),city(L2))).

template(go(C,L1,L2),[C,' goes from ',L1,' to ',L2]).

/* PART 3 - facilities to handle facts */

% listing all property-denoting facts holding at the current state

facts :-

 nl,

 forall((property(X),X),describe(X)), nl.

property(not F,P,C) :-

 property(F,P,C).

property(F,P,C) :-

 fact(F),

 F =.. [P,C],

 entity(P,_).

property(F,P,C) :-

 fact(F),

 F =.. [P,C,_],

 attribute(_,P),

 not member(P,

 [believes,will_tell,told,will_ask,asked,sensed,watched,inferred,supposed]).

property(F,P,C) :-

 fact(F),

 (F =.. [P,C,_]; F =.. [P,_,C]),

 relationship(P,_),

 not P = trusts.

property(F) :-

 fact(F),

 20

 one(property(F,_,_)).

% listing the information-package facts holding at the current state

info_facts :-

 nl,

 forall(

 (fact(X),

 not property(X,_,_),

 X,

 clause(X,true)),

 (template(X,T),

 xclist(T,L),

 write(' '),write(L),nl)),

 nl.

template(told(A,[B,F]),T) :-

 template(tell(A,B,F),T1),

 replace(' tells ',' told ',T1,T).

template(asked(A,[B,F]),T) :-

 template(ask(A,B,F),T1),

 replace(' asks ',' asked ',T1,T).

template(sensed(A,F),T) :-

 template(sense(A,F),T1),

 replace(' senses that ',' sensed that ',T1,T).

template(watched(A,E),T) :-

 template(watch(A,E),T1),

 replace(' watches the event: \'',' watched the event: \'',T1,T).

template(inferred(A,F),T) :-

 template(infer(A,F),T1),

 replace(' infers that ',' inferred that ',T1,T).

template(supposed(A,F),T) :-

 template(suppose(A,F),T1),

 replace(' supposes that ',' supposed that ',T1,T).

template(believes(A,F),[A,' believes that '|Ft]) :-

 def_template(F,A,nil,Ft).

template(trusts(A,B),[A,' trusts ',B]).

/* PART 4 - template definition */

def_template(F,C1,C2,T) :-

 (F = (not Ft), !, M = neg;

 Ft = F, M = pos),

 def_template(Ft,M,C1,C2,T).

def_template(F,M,C1,C2,T) :-

 F =.. [P,Cf,V],!,

 (C2 = nil,!,

 (C1 = Cf,!,

 gender(C1,G),

 (G = male,!, C3 = he;

 G = female, C3 = she);

 C3 = Cf);

 C3 = Cf),

 Ft =.. [P,C3,V],

 f_template(Ft,Ts),

 (M = pos, !,

 (C1 = C3, !, Mt = i_pos;

 C2 = C3, !, Mt = y_pos;

 Mt = pos);

 M = neg, !,

 (C1 = C3, !, Mt = i_neg;

 21

 C2 = C3, !, Mt = y_neg;

 Mt = neg);

 M = int, ground(F), !,

 (C1 = C3, !, Mt = i_int;

 C2 = C3, !, Mt = y_int;

 Mt = int);

 M = int, not ground(F), !,

 (var(C3), !, Mt = int_who;

 C1 = C3, !, Mt = i_int_v;

 C2 = C3, !, Mt = y_int_v;

 Mt = int_v)),

 member(Mt:T,Ts).

def_template(F,M,C1,C2,T) :-

 F =.. [P,Cf],

 (C2 = nil,!,

 (C1 = Cf,!,

 gender(C1,G),

 (G = male,!, C3 = he;

 G = female, C3 = she);

 C3 = Cf);

 C3 = Cf),

 Ft =.. [P,C3],

 f_template(Ft,Ts),

 (M = pos, !,

 (C1 = C3, !, Mt = i_pos;

 C2 = C3, !, Mt = y_pos;

 Mt = pos);

 M = neg, !,

 (C1 = C3, !, Mt = i_neg;

 C2 = C3, !, Mt = y_neg;

 Mt = neg);

 M = int, ground(F), !,

 (C1 = C3, !, Mt = i_int;

 C2 = C3, !, Mt = y_int;

 Mt = int);

 M = int, not ground(F), !,

 Mt = int_v),

 member(Mt:T,Ts).

f_template(watched(X,E),

 [pos: [X, ' watched the event: '''|Et],

 i_pos: ['I watched the event: '''|Et],

 y_pos: ['You watched the event: '''|Et],

 neg: [X, ' did not watch the event: '''|Et],

 i_neg: ['I did not watch the event: '''|Et],

 y_neg: ['You did not watch the event: '''|Et],

 int: ['Did ',X,' watch the event: '''|Et],

 i_int: ['Did I watch the event: '''|Et],

 y_int: ['Did you watch the event: '''|Et],

 int_v: ['Who did watch the event: '''|Et]]) :-

 template(E,Et1),

 varnames(Et1),

 append(Et1,[''''],Et).

/* PART 5 - higher-level facilities */

survey(A,F,F:S) :-

 listvar(F,Lv),

 setof(P:F,

 (T,B,Plan,Lv)^(plans(believes(A,F),Plan), s_added(Plan,T),member(P,T),

 (P = sensed(A,F); P = inferred(A,F); P = supposed(A,F); P = told(B,[A,F]))),

 22

 S).

survey_v(A,F,F:S) :-

 listvar(F,Lv),

 setof(P:F,

 (T,B,Plan,Lv)^(plans((believes(A,F),valid(F)),Plan),

s_added(Plan,T),member(P,T),

 (P = sensed(A,F); P = inferred(A,F); P = supposed(A,F); P = told(B,[A,F]))),

 S).

rank(A,F:S,Sr) :-

 weights(A,F,W),

 rank1(S,W,Sw),

 sort(Sw,S1),

 rank2(S1,S2),

 sort(S2,S3),

 reverse(S3,Sr).

rank1([],_,[]).

rank1([P:F|R],W,[F:Wi|S]) :-

 copy(W,Wc),

 member(Wi:P,Wc),!,

 rank1(R,W,S).

rank1([P:F|R],W,[F:0|S]) :-

 rank1(R,W,S).

rank2([],[]).

rank2([F:V1|R],[Vs:F|S]) :-

 rank2(R,[V2:F|S]),!,

 Vs is V1 + V2.

rank2([F:V|R],[V:F|S]) :-

 rank2(R,S).

violations(Fs,Vs) :-

 findall(Rn,(violate_rule(Rn,Fs,C),C),Vs).

valid(Fs) :-

 violations(Fs,[]).

recognize_lib(Obs,Pl,Lib) :-

 member(Pl,Lib),

 recognize(Obs,Pl).

recognize(Obs,Pl) :-

 ex1p(Pl,L),

 recog(Obs,L,Rec),

 chk_patt(Rec,Obs).

recog([],_,[]).

recog([X1|R],[X2|L],[X2|T]) :-

 copy(X2,X3),

 X1 = X3,

 recog(R,L,T).

recog([X|R],[_|S],T) :-

 recog([X|R],S,T).

check_obs(Obs,Pl) :-

 ex1p(Pl,L),

 check_obs1(Obs,L,Rec),

 chk_patt(Obs,Rec).

check_obs1([],_,[]).

check_obs1([X1|R],[X2|L],[X2|T]) :-

 23

 copy(X1,X3),

 X2 = X3,

 check_obs1(R,L,T).

check_obs1([X|R],[_|S],T) :-

 check_obs1([X|R],S,T).

/* PART 6 - utilities */

replace(_,_,[],[]) :- !.

replace(X,Y,X,Y) :-

 atomic(X), !.

replace(X,Y,X,Y) :-

 var(X), !.

replace(X,Y,Z,Z) :-

 atomic(Z), !,

 not (X = Z), !.

replace(X,Y,[Z|L],[Z1|L1]) :- !,

 replace(X,Y,Z,Z1),

 replace(X,Y,L,L1).

replace(X,Y,Z1,Z2) :-

 Z1 =.. [F|L],

 replace(X,Y,F,F1),

 replace(X,Y,L,L1),

 Z2 =.. [F1|L1].

chk_patt(P,L) :-

 listvar(P,Lv),

 count(Lv,N),

 P = L,

 xsetof(X,member(X,Lv),Lvc),

 count(Lvc,N).

iterate(N,X) :-

 it_i,

 X,

 it(N), !,

 retract(it_m(_)).

it_i :-

 (it_m(X), retract(it_m(X));

 true),

 assert(it_m(1)).

it(N) :-

 it_m(I),

 (I = N,!;

 J is I+1,

 retract(it_m(I)),

 assert(it_m(J)), !,

 fail).

clear :-

 findall(H/N,(fact(F),F=..[H|_],current_predicate(H/N)),S),

 forall(member(H/N,S),abolish(H/N)),

 retractall(log(_)),

 retractall(pre_state(_,_)).

reconsult(P) :-

 clear, consult(P).

 24

/* == */

/* EXAMPLE */

/* == */

/* PART 7 - example static schema */

/* also contains additional properties for the 'person' entity */

:- dynamic country/1,city/1,hair_colour/2,daltonic/2,born/2,home/2,citizen/2.

entity(country,country_name).

entity(city,city_name).

attribute(person,hair_colour).

attribute(person,daltonic).

relationship(born,[person,country]).

relationship(home,[person,country]).

relationship(citizen,[person,country]).

taken_as_place(city).

/* PART 8 - templates for the properties */

f_template(person(X),

 [pos: [X,' is a person'],

 i_pos: ['I am a person'],

 y_pos: ['You are a person'],

 neg: [X,' is not a person'],

 i_neg: [X,'I am not a person'],

 y_neg: ['You are not a person'],

 int: ['Is ',X,' a person'],

 i_int: ['Am I a person'],

 y_int: ['Are you a person'],

 int_v: ['Who is a person']]).

f_template(country(X),

 [pos: [X,' is a country'],

 neg: [X,' is not a country'],

 int: ['Is ',X,' a country'],

 int_v: ['What country is there']]).

f_template(city(X),

 [pos: [X,' is a city'],

 neg: [X,' is not a city'],

 int: ['Is ',X,' a city'],

 int_v: ['What city is there']]).

f_template(gender(X,Y) ,

 [pos: [X,' is ',Y],

 i_pos: ['I am ',Y],

 y_pos: ['You are ',Y],

 neg: ['You are not ',Y],

 i_neg: ['I am not ',Y],

 y_neg: ['You are not ',Y],

 int: ['Is ',X,' ',Y],

 i_int: ['Am I ',Y],

 y_int: ['Are you ',Y],

 int_v: ['Is ',X,' male or female'],

 i_int_v: ['What am I, male or female'],

 y_int_v: ['What are you, male or female'],

 int_who: ['Who is ',Y]]).

f_template(hair_colour(X,Y),

 [pos: [X,' has ',Y,' hair'],

 25

 i_pos: ['My hair is ',Y],

 y_pos: ['Your hair is ',Y],

 neg: [X,' has not ',Y,' hair'],

 i_neg: ['My hair is not ',Y],

 y_neg: ['Your hair is not ',Y],

 int: ['Has ',X,' ',Y,' hair'],

 i_int: ['Have I ',Y,' hair'],

 y_int: ['Is your hair ',Y],

 int_v: ['What is the colour of the hair of ',X],

 i_int_v: ['What is the colour of my hair'],

 y_int_v: ['What is the colour of your hair'],

 int_who: ['Who has ',Y,' hair']]).

f_template(daltonic(X,Y),

 [pos: [X,' is daltonic'],

 i_pos: ['I am daltonic'],

 y_pos: ['You are daltonic'],

 neg: [X,' is not daltonic'],

 i_neg: ['I am not daltonic',Y],

 y_neg: ['You are not daltonic',Y],

 int: ['Is ',X,' daltonic'],

 i_int: ['Am I daltonic'],

 y_int: ['Are you daltonic'],

 int_v: ['Is ',X,'daltonic or not'],

 i_int_v: ['Am I daltonic or not'],

 y_int_v: ['Are you daltonic or not'],

 int_who: ['Who is daltonic']]).

f_template(born(X,Y),

 [pos: [X,' was born in ',Y],

 i_pos: ['I was born in ',Y],

 y_pos: ['You were born in ',Y],

 neg: [X,' was not born in ',Y],

 i_neg: ['I was not born in ',Y],

 y_neg: ['You were not born in ',Y],

 int: ['Was ',X,' born in ',Y],

 i_int: ['Was I born in ',Y],

 y_int: ['Were you born in ',Y],

 int_v: ['Where was ',X,' born'],

 i_int_v: ['Where was I born'],

 y_int_v: ['Where were you born'],

 int_who: ['Who was born in ',Y]]).

f_template(home(X,Y),

 [pos: [X,' lives in ',Y],

 i_pos: ['I live in ',Y],

 y_pos: ['You live in ',Y],

 neg: [X,' does not live in ',Y],

 i_neg: ['I do not live in ',Y],

 y_neg: ['You do not live in ',Y],

 int: ['Does ',X,' live in ',Y],

 i_int: ['Do I live in ',Y],

 y_int: ['Do you live in ',Y],

 int_v: ['Where does ',X,' live'],

 i_int_v: ['Where do I live'],

 y_int_v: ['Where do you live'],

 int_who: ['Who lives in ',Y]]).

f_template(citizen(X,Y),

 [pos: [X,' is a citizen of ',Y],

 i_pos: ['I am a citizen of ',Y],

 y_pos: ['You are a citizen of ',Y],

 neg: [X,' is not a citizen of ',Y],

 26

 i_neg: ['I am not a citizen of ',Y],

 y_neg: ['You are not a citizen of ',Y],

 int: ['Is ',X,' a citizen of ',Y],

 i_int: ['Am I a citizen of ',Y],

 y_int: ['Am I a citizen of ',Y],

 int_v: ['Of what country is ',X,' a citizen'],

 i_int_v: ['Of what country am I a citizen'],

 y_int_v: ['Of what country are you a citizen'],

 int_who: ['Who is a citizen of ',Y]]).

f_template(current_place(X,Y),

 [pos: [X,' is now in ',Y],

 i_pos: ['I am now in ',Y],

 y_pos: ['You are now in ',Y],

 neg: [X,' is not in ',Y,' now'],

 i_neg: ['I am not now in ',Y,' now'],

 y_neg: ['You are not now in ',Y,' now'],

 int: ['Is ',X,' in ',Y,' now'],

 i_int: ['Am I in ',Y],

 y_int: ['Are you in ',Y],

 int_v: ['Where is ',X,' now'],

 i_int_v: ['Where am I'],

 y_int_v: ['Where are you'],

 int_who: ['Who is now in ',Y]]).

/* PART 9 - conditioners */

% rules: will_tell

will_tell('John','Peter',F,believes('John',F)).

will_tell('John','Mary',F,(copy(F,F1),believes('John',F),asked('Mary',['John',F1]

))).

will_tell('John','Mary',born(X,L),(believes('John',born(X,L1)),country(L),not (L

== L1),not (X == 'Mary'))).

will_tell('Peter','Mary',F,(copy(F,F1),believes('Peter',F),asked('Mary',['Peter',

F1]))).

will_tell('Peter','Mary',watched('Peter',O),watched('Peter',O)).

will_tell('Mary','Laura',citizen('Mary',C),believes('Mary',citizen('Mary',C))).

will_tell('Laura','Peter',F,(property(F,P,'Laura'),F)).

will_tell('Laura','Peter',hair_colour('Mary',blond),true).

will_tell('Laura','Peter',citizen('Mary','London'),true).

% rules: will_ask

will_ask('Mary','John',current_place(P,L),person(P)).

will_ask('Mary','Peter',hair_colour('Mary',C),true).

% rules: regular sense_rules

sense_rule(W,F,true) :-

 not (daltonic(W,true), (F = hair_colour(_,_); F = (not hair_colour(_,_)))).

% rules: distorted sense_rules

sense_rule(W,hair_colour(P,C1),hair_colour(P,C2),(hair_colour(P,C1),map_dalt(C1,C

2))) :-

 daltonic(W,true).

sense_rule(W,not hair_colour(P,C1),not hair_colour(P,C2),

 (hair_colour(P,C1x),map_dalt(C1x,C2x),not (C2x =

C2),map_dalt1(C2,C1,C1x))) :-

 daltonic(W,true).

 27

map_dalt(C1,C2) :-

 (C1 = red, !, C2 = green;

 C1 = green, !, C2 = red;

 C2 = C1).

map_dalt1(C1,C2,C3) :-

 map_dalt(C1,Cx),

 (C1 = Cx, !;

 not (C1 = C3), !;

 C2 = Cx).

% rules: watch_rules

watch_rule(C,go(A,L1,L2),true,L1).

watch_rule(C,go(A,L1,L2),true,L2).

% rules: inf_rules

inf_rule(A,(born(X,C),home(X,C)) => citizen(X,C)) :- person(A).

inf_rule(A,(daltonic(B,true),told(B,[A,hair_colour(P,C1)]),map_dalt(C1,C2), not

(C1 == C2)) =>

 hair_colour(P,C2)).

inf_rule(C,(watched(C,go(A,L1,L2)) => (not (current_place(A,L1))))).

inf_rule(C,(watched(C,go(A,L1,L2)) => (current_place(A,L2)))).

/* PART 10 - clauses used by the higher-level facilities */

% ranking weights

weights('Peter',hair_colour(X,Y),[1:sensed('Peter',_),2:told('John',['Peter',_])]

).

weights('Peter',born(X,Y),[2:sensed('Peter',_),1:supposed('Peter',_),4:told('John

',['Peter',_])]).

weights('Peter',citizen(X,Y),[2:sensed('Peter',_),1:supposed('Peter',_),4:told('J

ohn',['Peter',_])]).

% violations

violate_rule(r1,Cs,(on_conj(citizen(X,Y),Cs), (not person(X); not country(Y)))).

violate_rule(r2,Cs,(setof(C,on_conj(citizen(X,C),Cs),S),count(S,N),N > 1)).

% plan library */

lib([

 start=>go(A,L1,L2)=>go(B,L1,L2)=>sense(A,current_place(B,L2)),

 start=>go(A,L1,L2)=>go(A,L2,L1)

]).

/* PART 11 - initial state */

person('John').

person('Mary').

person('Peter').

person('Laura').

country('UK').

country('USA').

country('Canada').

city('London').

city('Manchester').

gender('Mary','female').

gender('Laura','female').

 28

gender('John','male').

gender('Peter','male').

home('Mary','UK').

born('Mary','UK').

born('Peter','UK').

born('Laura','USA').

citizen('Laura','Canada').

current_place('John','London').

current_place('Peter','London').

current_place('Mary','London').

current_place('Laura','Manchester').

daltonic('Peter',true).

hair_colour('Mary',red).

hair_colour('Laura',blond).

trusts('Peter','John').

trusts('Mary','John').

trusts('Peter','Laura').

trusts('Laura','Mary').

believes('John',F) :- property(F), F.

believes(X,F) :- person(X), not (X == 'John'), fact(F), property(F,_,X),F.

