

PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 11/11

IDB - An Environment for Experimenting with
Intelligent Database-Resident Information Systems

Antonio L. Furtado

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 11/11 ISSN 0103-9741
Editor: Prof. Carlos José Pereira de Lucena September, 2011

IDB - An Environment for Experimenting with

Intelligent Database-Resident Information Systems

Antonio L. Furtado

furtado@inf.puc-rio.br

Abstract: The IDB tool aims to provide an environment for the conceptual specification
and testing of intelligent information systems. The IDB environment comprises three
different options. Initially, it runs in the workspace of a Prolog program. Next, still under
the control of this program, it operates upon database-resident relational tables via an
ODBC interface. Finally leading to an operational stage, it provides automatically
generated stored procedures, which enforce integrity and collect execution traces for
continuing maintenance and redesign purposes. The tool relies on plan-generation to
conduct experiments, both in main memory and over the Oracle database.

Keywords: Conceptual Specification, Entity-Relationship Model, Relational Databases,
Plan Generation, Simulation, Logic Programming, Constraint Programming.

Resumo: A ferramenta IDB visa criar um ambiente para a especificação conceitual e teste
de sistemas inteligentes de informação. O ambiente IDB compreende três diferentes
opções. Inicialmente, roda no espaço de trabalho de um programa em Prolog. Em seguida,
ainda sob o controle desse programa, opera sobre tabelas relacionais residentes em banco
de dados através de uma interface ODBC. Finalmente levando a um estágio operacional,
fornece procedimentos armazenados, os quais garantem a integridade e coletam traços de
execução, visando a manutenção contínua e o reprojeto. A ferramenta se serve da geração
de planos para conduzir os experimentos, tanto em memória principal quanto sobre o banco
de dados em Oracle.

Palavras-chave: Especificação Conceitual, Modelo Entidades-Relacionamentos, Bancos
de Dados Relacionais, Geração de Planos, Simulação, Programação em Lógica,
Programação por Restrições.

In charge of publications

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br

 1

1. Introduction

The objective of this paper is to document our initial effort to provide an environment,
supported by the Intelligent Data Base (IDB) plan-driven tool, rich enough to support the
development of intelligent database-resident information systems. To behave
"intelligently", such systems should have:

1. online access to detailed knowledge about the application domain [FC]
2. one or more reasoning capabilities, such as interpretation, diagnosis, prediction,

planning and monitoring [Wa]
3. running records of its use by the various authorized agents, to support double-loop

learning [Mo]

 As a preliminary step, the system must be specified at the conceptual level. Our
specification method comprises three schemas: the static schema, describing the entity
classes and their properties in terms of the Entity-Relationship (ER) model [BCN], the
dynamic schema, defining the domain-specific operations in a declarative style by their pre-
conditions and post-conditions according to the STRIPS proposal [FN], and the
behavioural schema – not to be treated here (cf. [FC]) –, wherein goal inference rules are
formulated, indicating what goals the agents involved would be expected to pursue when
certain situations arise. The entire specification, expressing domain knowledge in clausal
notation, is kept accessible on line, thus serving the first requirement above.
 For the first option, all data, also expressed in clausal form, is manipulated in workspace
memory by the IDB program (written in SWI-Prolog) that handles the environment. With
the help of a planner, which implements one of the capabilities enumerated in requirement
2, simulation experiments can be run through the execution of the generated plans (which
consist of sequences of the pre-defined operations). As a side-effect, the plan sequence is
appended to a list representing the execution log (also in the main memory Prolog
workspace), whereby requirement 3 is also served.
 A second option is supplied, utilizing an ODBC interface, through which the Prolog
interpreter is allowed to invoke Oracle commands to access data represented in relational
tables residing in secondary memory. To take advantage of this facility, the IDB program
includes a compiler that converts the operations, previously formulated in declarative style
as mentioned above, into a procedural format, wherein the pre-conditions give origin to

select clauses, and the post-conditions to insert, delete or update clauses. Such
clauses, programmed in IDB as Prolog predicates, call the corresponding Oracle commands
via the ODBC interface. Now, whenever a flag attached to this option is turned on, the
same operation sequences generated by the planner will be executed as IDB-controlled
transactions over the actual database tables, with the side-effect of registering the execution
in a log also represented as a relational table in the Oracle database.
 A third option is enabled by a second compiler supplied by IDB, which converts the
procedural format operations into SQL stored procedures, to be executed directly (i.e.
outside the IDB environment) by some appropriate Oracle shell. Assembled in packages,
the stored procedures should constitute an effective way to enforce database integrity, since
they are created to reflect the pre-conditions/ post-conditions interplay specified at the
conceptual design stage. Indeed, the policy of granting user access to such packages, but

 2

not to the primitive data manipulation commands, is in conformance with a strict abstract

data type discipline [GG].
 Although moving to this third option would seem to indicate the end of the design phase,
designers and end users are aware that any system needs maintenance, often involving
extensive redesign. For this purpose, one may revert, whenever convenient, to the first two
Prolog-driven options, to consider possible revisions of the conceptual schemas and
evaluate their consequences by once again performing simulated experiments. Note in
particular that, by consulting the log of executed operations, it is possible to learn (as
anticipated in requirement 3) from the practical use of the system.
 Sections 2, 3 and 4 illustrate, on the basis of a small example, how the environment
operates for the three options. Section 5 contains concluding remarks. The entire Prolog
program implementing IDB is shown in the Appendix, and the relevant features of the plan-
generating program are briefly reviewed in section 2.2.

2. First option: Prolog only

2.1. Conceptual specification in clausal notation

The example deals with an academic database. The entity classes are student, course,

and program. The identifying attributes are, respectively: student_name, course_name,

and program_name. The other attributes, in this simple example just one for each entity

class, are, respectively, credits_won, credits and requirement. Three relationships

associate students with courses: takes, has_finished, and has_dropped. Relationship

graduated_in associates students with programs.
 The Prolog clauses are shown below, noting that the identifying attributes are introduced
in the entity clauses themselves, whereas the other attributes appear in separate attribute
clauses. The relationship clauses indicate, enclosed in square brackets, the participating
entity classes. The current version of IDB is restricted to binary relationships.

% static schema - classes of facts

entity(student,student_name).

attribute(student,credits_won).

entity(course,course_name).

attribute(course,credits).

entity(program,program_name).

attribute(program,requirement).

relationship(takes,[student,course]).

relationship(has_finished,[student,course]).

relationship(has_dropped,[student,course]).

relationship(graduated_in,[student,program]).

 Students begin with zero credits_won, the value of this attribute being incremented by
the credits of the courses that they manage to finish successfully. Different academic
programs may be offered, which, in this oversimplified example, differ only in terms of the
total credits required. For graduation in a program, the number of credits won by the
student must reach, exactly, the program's requirement.

 3

 Here is a possible initial state, containing a few facts also in clause format, which are
instances of the specified schema; notice the absence of students:

course('Art').

credits('Art',2).

course('Semiotics').

credits('Semiotics',3).

course('Design').

credits('Design',1).

program('Alpha').

requirement('Alpha',5).

program('Beta').

requirement('Beta',4).

 State changes will be limited to those that can be performed by a pre-defined repertoire
of operations, specified in terms of their pre-conditions and post-conditions (effects)
according to the STRIPS proposal. The IDB planning and execution algorithms enforce a
discipline that in most cases simplifies the definition of the operations. First of all, it is not
mandatory (although it may be done, in order to guarantee the instantiation of certain
parameters) to declare as a pre-condition that a fact to be added by an operation must not
already hold at the current state, or that a fact to be deleted does not hold.
 In addition, an operation is caused to fail if for any reason it cannot produce all the
specified effects, except for those that, in the clausal notation, are prefixed with a "/". This

notation serves to indicate that an effect of the form /F (or /(not F)) will be performed "if

needed"; in particular, if F already holds (or already does not hold) its addition (or deletion)
will simply be recognized as unnecessary.
 The planner interprets the pre-conditions both as tests for the applicability of an

operation Op and, in case of failure, as sub-goals to be fulfilled by operations to be

introduced before Op in the plan. This recursive treatment of pre-conditions as sub-goals
constitutes the backward chaining strategy, on which many planning algorithms (including
the one used by IDB) are based. However not all failed pre-conditions are so treated; a
second use of the "/" notation is to mark positive or negative pre-conditions that are to be

handled exclusively as tests. Thus, if a positive /F or negative /(not F) pre-condition for

an operation Op fails, operation Op is simply not included in the plan. It must also be
stressed, again in view of backward chaining, that such tests are delayed until the planning

algorithm, after returning from the recursive calling sequence, is about to append Op to the
plan.
 An especially powerful feature that allows the planner to pursue goals or sub-goals
involving numerical expressions is constraint programming, which is conveniently
provided by SWI-Prolog. In IDB, we utilize the clpd (constraint logical programming over
finite domains) library module. Constraint programming also relies on delayed evaluation,
since the numerical expressions cannot be computed until all variables have been
instantiated.
 Before showing the clausal specification of the operations, we give an informal
description. As usual, the existence of integrity constraints and of some sort of regulatory

procedures is assumed. For example, it is prescribed that each instance S of the student
entity class is created when S is for the first time enrolled in some course C. The assumed

regulations further establish that S can drop a course C only by being transferred to some

 4

other course not taken before (i.e. that S has neither finished nor dropped before). As will
be noted, the two uses of the "/" notation are conveniently illustrated in the

transfer(S,C1,C2) operation in view of the above requirements: information about
someone being a student, initially with 0 credits won, is added only if needed (i.e. if not

already present as the result of a previous enrollment); the pre-conditions requiring that S

has not previously finished nor dropped C are mere tests, not sub-goals ─ contrary to the

course(C) pre-condition, whose presence without "/" tells the planner that a course may be
created on demand, i.e. if there are students willing to take it.

 Another noteworthy example is the pre-condition specification of pass(S,C,T1,T2),

wherein the relation between T1 and T2 is expressed in constraint programming terms. An
effect of passing a course C is that the number of credits of C is summed to T1 (the credits

accumulated before) to yield the new total T2. Clearly the sum must wait for the (delayed)

evaluation of T1. Because constraint programming interprets numerical expressions as

goals to be satisfied, this specification of pass(S,C,T1,T2) is able to lead the planner to

compose a sequence to which operation receive_degree(S,P), which depends on S

achieving the number of credits required by program P, is successfully appended.

- operation offer(C,N) - offer course C with N credits

pre-conditions: course C is not already offered, even with a different

number of credits

post-conditions: clauses course(C) and credits(C,N) are added to the

workspace

- operation enroll(S,C) - enroll student S in course C

pre-conditions: course C is currently offered, and student S has neither

finished nor dropped it before

post-conditions: clause takes(S,C) is added; the clause student(S) is

added if this is the first enrollment of S in a course

- operation transfer(S,C1,C2)

pre-conditions: student S is taking C1, course C2 is currently offered,

and student S has neither finished nor dropped it before

post-conditions: clause takes(S,C1) is deleted and clauses dropped(S,C1)

and takes(S,C2) are added

- operation cancel(C)

pre-conditions: no student is currently taking C

post-conditions: clauses course(C) and credits (C,N) are deleted

- operation change_cr(C,N1,N2)

pre-conditions: C is being offered with N1 credits

post-conditions: clause credits(C,N1) is deleted and clause credits(C,N2)

is added

- operation pass(S,C,T1,T2)

pre-conditions: S is taking C, which gives N credits, and has completed

T1 credits; T2 is obtained by summing N to T1

post-conditions: clauses takes(S,C) and credits_won(S,T1) are deleted,

and clauses credits_won(S,T2) and has_finished(S,C) are added

- operation create_program(P,R)

pre-conditions: program P is not aleady being offered, with any number of

total credits required

 5

post-conditions: clauses program(P) and requirement(P,R) are added

- operation receive_degree(S,P)

pre-conditions: student S has obtained exactly the total number of

credits required for the completion of program P and is no longer taking

courses

post-conditions: clause graduated_in(S,P) is added

 The full specification of the dynamic schema in clause format is shown below.

% dynamic schema - operations to produce events

operation(offer(C,N)).

added(course(C),offer(C,N)).

added(credits(C,N),offer(C,N)).

precond(offer(C,N),/(not(course(C)))).

operation(enroll(S,C)).

/added(student(S),enroll(S,C)).

/added(credits_won(S,0),enroll(S,C)) :-

 not credits_won(S,_).

added(takes(S,C),enroll(S,C)).

precond(enroll(S,C),

 (course(C),

 /(not has_finished(S,C)),/(not has_dropped(S,C)))).

operation(transfer(S,C1,C2)).

deleted(takes(S,C1),transfer(S,C1,C2)).

added(has_dropped(S,C1),transfer(S,C1,C2)).

added(takes(S,C2),transfer(S,C1,C2)).

precond(transfer(S,C1,C2),

 (course(C2),/takes(S,C1),

 /(not has_finished(S,C2)),/(not has_dropped(S,C2)))).

operation(cancel(C)).

deleted(course(C),cancel(C)).

deleted(credits(C,N),cancel(C)).

precond(cancel(C),

 not takes(S,C):(student(S),takes(S,C))).

operation(change_cr(C,N1,N2)).

deleted(credits(C,N1),change_cr(C,N1,N2)).

added(credits(C,N2),change_cr(C,N1,N2)).

precond(change_cr(C,N1,N2),credits(C,N1)).

operation(pass(S,C,T1,T2)).

deleted(credits_won(S,T1),pass(S,C,T1,T2)).

deleted(takes(S,C),pass(S,C,T1,T2)).

added(has_finished(S,C),pass(S,C,T1,T2)).

added(credits_won(S,T2),pass(S,C,T1,T2)).

precond(pass(S,C,T1,T2),(credits_won(S,T1),takes(S,C))) :-

 credits(C,N),

 T2 #= T1 + N, T1 #>= 0.

operation(create_program(P,R)).

added(program(P),create_program(P,R)).

 6

added(requirement(P,R),create_program(P,R)).

precond(create_program(P,R),/(not program(P))).

operation(receive_degree(S,P)).

added(graduated_in(S,P),receive_degree(S,P)).

precond(receive_degree(S,P),

 (requirement(P,T),credits_won(S,T),/(not takes(S,_)))).

2.2. Plan generation and execution in workspace memory

Once the static schema and the dynamic schema have been specified, and a (possibly
empty) initial state has been provided in workspace memory, one can perform state

transitions through the execute predicate. For example, execute(enroll('Bea','Art'))
would have the double effect of enrolling Bea in the Art course and, since this would be her
first enrollment, of registering her as a student.
 But the crucial resource for experimenting with a specification is the plan-generator.

Given a goal expression as its first parameter the plans predicate will substitute a suitable
plan for the variable placed at the second parameter position. The example below shows
how Bea could fulfill the requirements to earn a degree in program Alpha, assuming that
she is already taking the Art course.

?- plans(graduated_in('Bea','Alpha'),Plan), narrate(Plan).

student Bea enrolled in course Semiotics.
student Bea, having passed course Semiotics, has a total of 3 credits.
student Bea, having passed course Art, has a total of 5 credits.
student Bea has graduated in program Alpha.

Plan = start=>enroll(Bea, Semiotics)=>pass(Bea, Semiotics, 0, 3)=>pass(Bea, Art, 3,
5)=>receive_degree(Bea, Alpha) .

 The execute predicate also works on plans, but another predicate, goal_exec, has the
advantage of exhibiting the alternative plans that have been found to achieve the given goal
expression, and allowing the user to choose the alternative to be executed. As goal
expression, let us consider some course for Joe, different from those that Bea is taking
(assuming that the plan whereby Bea would graduate in program Alpha has not been
executed, so that she is still taking the Art course).

?- goal_exec((takes('Joe',C),/(not takes('Bea',C)))).

student Joe enrolled in course Semiotics.

choose one: yes/no/stop - no.

student Joe enrolled in course Design.

choose one: yes/no/stop - yes.

C = Design .

 7

 Successive executions of single operations and of entire plans has the side-effect of

updating a log clause, to which the narrate predicate (with no argument) can be applied:

?- narrate.

student Bea enrolled in course Art.

student Joe enrolled in course Design.

3. Second option: Prolog, ODBC interface, Oracle

The second option is still performed in Prolog, but now a real Oracle database is involved
instead of the main memory workspace. A first step is required, which is not automatic in
the current implementation of IDB (though it is not difficult to add this feature, as we did in
[TCF]). One must write and then run a script (i.e. a ".sql" program) in SQL*Plus, in order
to create relational tables corresponding to the specified entities, attributes and binary
relationships:

student(student_name, credits_won)

course(course_name, credits)

takes(student_name, course_name)

has_finished(student_name, course_name)

has_dropped(student_name, course_name)

program(program_name, requirement)

graduated_in(student_name, program_name)

 In addition to these information tables, two other tables must be created for data
administration purposes:

ref(r)

log(ref,ts,event).

 The REF table stores the granted references, which are distinct positive integers that will
serve as identifiers for the IDB-transactions. This special type of transaction controlled by
IDB allows to characterize a potentially long process, which may be resumed in future
sessions. The LOG table registers the execution of the operations, giving, for each
execution, the reference of the transaction to which it belongs, the time-stamp read from the
system's clock, and the event (name and parameters of the operation executed).
 The script program used for our example is given below:

CREATE TABLE "STUDENT"

 ("STUDENT_NAME" VARCHAR2(100),

 "CREDITS_WON" NUMBER

);

CREATE TABLE "COURSE"

 ("COURSE_NAME" VARCHAR2(100),

 "CREDITS" NUMBER

);

 8

CREATE TABLE "TAKES"

 ("STUDENT_NAME" VARCHAR2(100),

 "COURSE_NAME" VARCHAR2(100)

);

CREATE TABLE "HAS_FINISHED"

 ("STUDENT_NAME" VARCHAR2(100),

 "COURSE_NAME" VARCHAR2(100)

);

CREATE TABLE "HAS_DROPPED"

 ("STUDENT_NAME" VARCHAR2(100),

 "COURSE_NAME" VARCHAR2(100)

);

CREATE TABLE "PROGRAM"

 ("PROGRAM_NAME" VARCHAR2(100),

 "REQUIREMENT" NUMBER

);

CREATE TABLE "GRADUATED_IN"

 ("STUDENT_NAME" VARCHAR2(100),

 "PROGRAM_NAME" VARCHAR2(100)

);

CREATE TABLE "LOG"

 ("REF" NUMBER,

 "TS" VARCHAR2(100),

 "EVENT" VARCHAR2(100)

);

CREATE TABLE "REF"

 ("R" NUMBER

);

 The IDB program, connected from then on with Oracle via the ODBC interface, is able
to check the structure of the information tables:

?- table_info.

GRADUATED_IN - PROGRAM_NAME (varchar2)

GRADUATED_IN - STUDENT_NAME (varchar2)

COURSE - CREDITS (number)

COURSE - COURSE_NAME (varchar2)

HAS_DROPPED - COURSE_NAME (varchar2)

HAS_DROPPED - STUDENT_NAME (varchar2)

HAS_FINISHED - COURSE_NAME (varchar2)

HAS_FINISHED - STUDENT_NAME (varchar2)

PROGRAM - REQUIREMENT (number)

PROGRAM - PROGRAM_NAME (varchar2)

STUDENT - CREDITS_WON (number)

STUDENT - STUDENT_NAME (varchar2)

TAKES - COURSE_NAME (varchar2)

TAKES - STUDENT_NAME (varchar2)

 9

 The next step, however, is totally automatic. IDB implements in Prolog, as augmented
with a number of ODBC special predicates, the select, insert, delete and update commands
of the SQL language. By entering the line:

:- compile_ops.

a procedural version of the operations is compiled from the previously introduced
declarative specification. Their main components are predicates that were implemented to
execute, via ODBC, the basic SQL commands. The pre-conditions are now expressed in

terms of select calls, and the post-conditions (effects) in terms of insert, delete and

update calls.

offer(A, B) :-

 ref(C),

 not select(course(A)),

 insert(course(A, B)),

 ins_log(C, offer(A, B)).

enroll(B, A) :-

 ref(C),

 select(course(A)),

 not select(has_finished(B, A)),

 not select(has_dropped(B, A)),

 (select(student(B))

 ; not select(student(B)),

 insert(student(B, 0))

),

 insert(takes(B, A)),

 ins_log(C, enroll(B, A)).

transfer(B, C, A) :-

 ref(D),

 select(course(A)),

 select(takes(B, C)),

 not select(has_finished(B, A)),

 not select(has_dropped(B, A)),

 delete(takes(B, C)),

 insert(has_dropped(B, C)),

 insert(takes(B, A)),

 ins_log(D, transfer(B, C, A)).

cancel(A) :-

 ref(B),

 not select(takes(_, A)),

 delete(course(A, _)),

 ins_log(B, cancel(A)).

change_cr(A, B, C) :-

 ref(D),

 select(credits(A, B)),

 update(course(A, B=>C)),

 ins_log(D, change_cr(A, B, C)).

 10

pass(A, C, B, D) :-

 ref(F),

 select(credits_won(A, B)),

 select(takes(A, C)),

 select(credits(C, E)),

 D#=B+E,

 update(student(A, B=>D)),

 delete(takes(A, C)),

 insert(has_finished(A, C)),

 ins_log(F, pass(A, C, B, D)).

create_program(A, B) :-

 ref(C),

 not select(program(A)),

 insert(program(A, B)),

 ins_log(C, create_program(A, B)).

receive_degree(B, A) :-

 ref(D),

 select(requirement(A, C)),

 select(credits_won(B, C)),

 not select(takes(B, _)),

 insert(graduated_in(B, A)),

 ins_log(D, receive_degree(B, A)).

 Notice that the first line in the body of the operation clauses asks for the current
transaction reference, which must have been previously set by entering a line such as:

:- grant_ref(126).

with the side effect of adding the tuple [126] to the REF table. Now, if to enroll Bea in the
Art course one enters:

:- enroll('Bea','Art').

the tuples ['Bea',0] and ['Bea','Art'] will be inserted, respectively, into tables STUDENT and
TAKES, and the tuple [126,2010/09/20/10/31/17/900,enroll('Bea','Art')] will be inserted

into the LOG table. A transaction can be continued in another day by entering grant_ref
with the same reference, in which case the reference (already registered in the REF table)
will again become current.
 As one might expect, the predicates implemented in correspondence with the SQL
commands are perfectly apt to query and modify the Oracle tables. Any of their parameters
can be either a constant value or a variable, in which case it will be instantiated as a result

of execution. This makes the usage of the select predicate particularly convenient, since
the Prolog implementation takes care of determining the proper formulation of the
select/from/where parts of the SQL select command to be executed.
 However, for modifying the data, both in workspace and, even more crucially, in actual
databases, it is most convenient to adopt the abstract datatype discipline [GG]. Whereas
queries can safely be done (except for authorization rules, that may be later prescribed) via

the select predicate, changes to the data should be restricted to the pre-defined repertoire

 11

of operations whose pre-conditions and post-conditions have been adjusted in view of
integrity constraints and prevailing regulations.
 A sequence of operations belonging to the same IDB-transaction can be executed as a
single unit by using the "$" operator (in special, notice the use of variables in the calls to

operation pass, to be instantiated by selection and numerical computation as determined in
the body of the operation's clause):

$ pass('Bea', 'Semiotics',X1, Y1), pass('Bea','Art',X2,Y2),

 receive_degree('Bea','Alpha')).

X1 = 0 Y1 = 3 X2 = 3 Y2 = 5

where by "single unit" we mean that, if any of these three operations fails, those previously
executed will be rolled back. It might happen, for instance, that the sum of credits would
not add up to what program Alpha requires. Only if no such problems occur, the
appropriate commit commands with be issued.
 The planner is still available to work upon the information now stored in the Oracle

database. To redirect the planner, it suffices to enter the line ":- env_option(db).". (To

return to the workspace regime, the required parameter is memory or simply mem).
 The LOG table can be inspected at any time, either in the Prolog environment by
entering:

?- select_log(R,Ts,Ev).

or via a select command over the Oracle Database XE shell, with the output shown below:

 12

 A more user-friendly pseudo-natural language format is provided, again in the Prolog
environment, by typing:

?- show_trace.

ref: 123

program Alpha is open, requiring a total of 5 credits.

course Art created with 2 credits.

course Semiotics created with 3 credits.

ref: 124

program Beta is open, requiring a total of 4 credits.

course Design created with 1 credits.

ref: 125

student Joe enrolled in course Art.

student Joe enrolled in course Design.

student Moe enrolled in course Design.

ref: 126

student Bea enrolled in course Art.

student Bea enrolled in course Semiotics.

ref: 127

student Joe transferred from course Design to course Semiotics.

student Moe transferred from course Design to course Art.

ref: 128

course Design cancelled.

ref: 129

student Bea, having passed course Semiotics, has a total of 3 credits.

student Bea, having passed course Art, has a total of 5 credits.

student Bea has graduated in program Alpha.

4. Third option: Oracle alone

The first two options are intended for the specification tasks and for the performance of
simulation runs, with the vital help of the plan-generator. For operational usage, the
common practice is to fully employ some commercially available DBMS, such as Oracle,
possibly together with a suitable host language, such as C.
 To facilitate the transition, the IDB tool has a second compiler to translate from the
procedural version of the operations, created by the first compiler mentioned in the
preceding section, into Oracle stored procedures.
 These procedures will run over the same tables, and will equally update the LOG table.
Two advantages accrue from adopting this policy:

• the constraint-preserving abstract data type discipline will still be enforced if the
procedures are incorporated in Oracle packages, and users will not be granted the
right to update the database except through such packages;

 13

• the story of the database usage kept in the LOG table will help towards the
maintenance and eventual redesign of the system, especially by returning to the
early stages of the IDB plan-driven environment.

 The compiler generates the procedures displayed below, and stores them in a text file:

:- print_procs_txt.

create procedure offer(rn number, co varchar2, cr number) is

 found number;

 ev varchar(100);

begin

 select r into found

 from ref

 where r = rn;

 select count(*) into found

 from course

 where course_name = co;

 if found > 0 then return;

 end if;

 insert into course

 values (co, cr);

 ev := 'offer(' || co || ',' || cr || ')';

 ins_log(rn,ev);

 commit;

end offer;

create procedure enroll(rn number, s varchar2, c varchar2) is

 found number;

 ev varchar(100);

 course_name_c varchar(100);

begin

 select r into found

 from ref

 where r = rn;

 select course_name into course_name_c

 from course

 where course_name = c;

 select count(*) into found

 from has_finished

 where student_name = s and course_name = c;

 if found > 0 then return;

 end if;

 select count(*) into found

 from has_dropped

 where student_name = s and course_name = c;

 if found > 0 then return;

 end if;

 select count(*) into found

 from student

 where student_name = s;

 if found = 0 then

 insert into student

 values (s, 0);

 end if;

 insert into takes

 14

 values (s, c);

 ev := 'enroll(' || s || ',' || c || ')';

 ins_log(rn,ev);

 commit;

end enroll;

create procedure transfer(rn number, s varchar2, c1 varchar2, c2

varchar2) is

 found number;

 ev varchar(100);

 course_name_c1 varchar(100);

 course_name_c2 varchar(100);

 student_name_s varchar(100);

begin

 select r into found

 from ref

 where r = rn;

 select course_name into course_name_c2

 from course

 where course_name = c2;

 select student_name, course_name into student_name_s, course_name_c1

 from takes

 where student_name = s and course_name = c1;

 select count(*) into found

 from has_finished

 where student_name = s and course_name = c2;

 if found > 0 then return;

 end if;

 select count(*) into found

 from has_dropped

 where student_name = s and course_name = c2;

 if found > 0 then return;

 end if;

 delete from takes

 where student_name = s and course_name = c1;

 insert into has_dropped

 values (s, c1);

 insert into takes

 values (s, c2);

 ev := 'transfer(' || s || ',' || c1 || ',' || c2 || ')';

 ins_log(rn,ev);

 commit;

end transfer;

create procedure change_cr(rn number, co varchar2, cr1 number, cr2

number) is

 found number;

 ev varchar(100);

 course_name_co varchar(100);

 credits_cr1 number;

begin

 select r into found

 from ref

 where r = rn;

 select course_name, credits into course_name_co, credits_cr1

 from course

 where course_name = co and credits = cr1;

 15

 update course

 set credits = cr2

 where course_name = co and credits = cr1;

 ev := 'change_cr(' || co || ',' || cr1 || ',' || cr2 || ')';

 ins_log(rn,ev);

 commit;

end change_cr;

create procedure cancel(rn number, c varchar2) is

 found number;

 ev varchar(100);

begin

 select r into found

 from ref

 where r = rn;

 select count(*) into found

 from takes

 where course_name = c;

 if found > 0 then return;

 end if;

 delete from course

 where course_name = c;

 ev := 'cancel(' || c || ')';

 ins_log(rn,ev);

 commit;

end cancel;

create procedure pass(rn number, st varchar2, co varchar2, t1 number, t2

in out number) is

 found number;

 ev varchar(100);

 course_name_co varchar(100);

 credits_A number;

 credits_won_t1 number;

 student_name_st varchar(100);

begin

 select r into found

 from ref

 where r = rn;

 select student_name, credits_won into student_name_st, credits_won_t1

 from student

 where student_name = st and credits_won = t1;

 select student_name, course_name into student_name_st, course_name_co

 from takes

 where student_name = st and course_name = co;

 select course_name, credits into course_name_co, credits_A

 from course

 where course_name = co;

 t2:=t1+credits_A;

 update student

 set credits_won = t2

 where student_name = st and credits_won = t1;

 delete from takes

 where student_name = st and course_name = co;

 insert into has_finished

 values (st, co);

 ev := 'pass(' || st || ',' || co || ',' || t1 || ',' || t2 || ')';

 16

 ins_log(rn,ev);

 commit;

end pass;

create procedure create_program(rn number, p varchar2, r number) is

 found number;

 ev varchar(100);

begin

 select r into found

 from ref

 where r = rn;

 select count(*) into found

 from program

 where program_name = p;

 if found > 0 then return;

 end if;

 insert into program

 values (p, r);

 ev := 'create_program(' || p || ',' || r || ')';

 ins_log(rn,ev);

 commit;

end create_program;

create procedure receive_degree(rn number, st varchar2, pr varchar2) is

 found number;

 ev varchar(100);

 credits_won_A number;

 program_name_pr varchar(100);

 requirement_A number;

 student_name_st varchar(100);

begin

 select r into found

 from ref

 where r = rn;

 select program_name, requirement into program_name_pr, requirement_A

 from program

 where program_name = pr;

 select student_name, credits_won into student_name_st, credits_won_A

 from student

 where student_name = st and credits_won = requirement_A;

 select count(*) into found

 from takes

 where student_name = st;

 if found > 0 then return;

 end if;

 insert into graduated_in

 values (st, pr);

 ev := 'receive_degree(' || st || ',' || pr || ')';

 ins_log(rn,ev);

 commit;

end receive_degree;

 Notice that all procedures have an additional first parameter, rn, to be filled-up with the
reference of the IDB-transaction under which it should be registered. Also notice that at the
end, just before committing, all procedures duly update the LOG table.

 17

 Characteristics of Oracle led us to implement tests in a way that would not cause the
programs to abort as the result of a failed select command. A typical case is that of the

enroll procedure, when checking whether or not this is the person's first enrollment.
Directly selecting a tuple with the person's name from the STUDENT table should be the
normal way to do the test, but to be able to proceed if no such tuple is found we resorted to
the count function:

 select count(*) into found

 from student

 where student_name = s;

 if found = 0 then

 insert into student

 values (s, 0);

 end if;

 A complementary procedure that had to be produced manually, was made necessary by

the "in out" (input-output) nature of parameter t2 of the pass procedure, which due to the
presence of such parameter cannot be called directly:

create procedure do_pass(rn number, st varchar2, co varchar2) is

 t number;

 tn number;

begin

 select credits_won into t

 from student

 where student_name = st;

 pass(rn,st,co,t,tn);

 dbms_output.put_line('total credits ' || tn);

 commit;

end do_pass;

 Yet another manually-produced procedure is the one that handles the LOG table ─ it is

invoked by all procedures (except do_pass, of course) and should remain the same for any
future application that may be designed with the help of the IDB tool.

create procedure ins_log(ref number, ev varvhar2) is

 ts varchar(100);

begin

 select to_char(localtimestamp,'YYYY/MM/DD/HH24/MI/SS/FF3')

 into ts

 from DUAL;

 insert into log

 values (ref,ts,ev);

 commit;

end ins_log;

 We found it expedient to employ two different shells to handle the stored procedures:
the Oracle Database Xe shell to enter the compiled programs, performing a "cut and
paste" upon the text file generated by the IDB tool; and the SQL*Plus shell for execution

runs. Reproduced next are the screens showing the do_pass procedure being registered in
the former shell, and its execution in the latter ─ note the "set serveroutput on" line,
required for the onscreen exhibition of the printed output.

 18

Entering the procedures via the Oracle Database XE shell

Execution in the SQL*Plus shell

 19

5. Concluding remarks

The work developed until now was enough to demonstrate that the availability of a plan-
generation facility, with access to the meta-data knowledge conveyed by the conceptual
schemas, is an asset towards the specification and experimentation of intelligent
information systems. Moreover, collecting traces of execution runs, both at the design
stages and after the system is delivered for routine usage, eases the maintenance and
redesign tasks, for which the IDB tool can again be conveniently used. The analysis of
traces (plot mining) is the object of a previous study of our group [FCBB]. Also promising
is the reuse and adaptation of the narrative patterns discovered in one domain, whenever
they are found to be applicable to analogous situations in other domains [KL, BBFC].
 In a broader context, our tool may come to serve as one more resource among other
systems that similarly provide flexible environments (or meta-environments) for software
development. The Talisman system, reviewed in [St]1, is a significant contribution of our
department in this direction.
 A prototype implementation of IDB is fully operational, but more effort is needed to
improve performance and detect and correct possible deficiencies. Moreover, after a
sizeable number of different users have tried it, a thoroughly-documented user-friendly
interface can be designed and made available. Indeed, the greater benefit of environments
to support the production of information systems is to give to all classes of prospective
users the chance of participating in the specification, and then of making sure, through early
usage, that their needs are adequately satisfied.

Referencces

[BBFC] Barbosa, S. D. J., Breitman, K. K., Furtado, A. L. , Casanova, M. A.. "Similarity and analogy over

application domains". Proceedings of SBBD, 2007.
[BCN] Batini, C., Ceri, S. and Navathe, S. Conceptual Design – an Entity-Relationship Approach.

Benjamin Cummings, 1992.
[FC] Furtado, A.L., Ciarlini, A.E.M. "Generating Narratives from Plots using Schema Information". In:

Proc. 5th International Workshop on Applications of Natural Language for Information Systems. Springer-
Verlag, 2000.

[FCBB] Furtado, A.L., Casanova, M.A., Barbosa, S.D.J., Breitman, K.K. "Plot mining as an aid to
characterization and planning". Technical Report MCC07, PUC-Rio, 2007.

[FN] Fikes, R. E. and Nilsson, N. J. "STRIPS: A new approach to the application of theorem proving to
problem solving". Artificial Intelligence , 2(3-4), 1971.

[GG] Garland, S.J., Guttag, J.V. "Inductive Methods for Reasoning about Abstract Data Types". In Proc.

Fifteenth Annual ACM Symposium on Principles of Programming Languages, 1988.
[KL] Kolodner, J.L., Leake, D. "A Tutorial Introduction to Case-Based Reasoning". In Case-Based

Reasoning: Experiences, Lessons and Future Directions, Leake, D. (ed.), MIT Press. pp. 31-65, 1996.
[Mo] Morgan, G. Images of organization - Executive edition. Sage Publications, 1998.
[St] Staa, A. v. "Overview of the Talisman Version 5 software engineering meta-environment".

Technical Report MCC08/11, Pontifícia Universidade do R.J., 2011.
[TCF] Tucherman, L., Casanova, M.A., Furtado, A.L. "The CHRIS consultant-a tool for database design and rapid

prototyping". Information Systems 15(2): 187-195, 1990.
[Wa] Waterman, D. A. A Guide to Expert Systems. Addison-Wesley, 1985.

1 ftp://ftp.inf.puc-rio.br/pub/docs/techreports/11_08_staa.pdf

 20

Appendix

/* The IDB logic programming tool */

% a Casa_Soft product

% version 1.0 - 2010

% distributed with absolutely no guarantee

:- set_prolog_flag(verbose,silent).

:- style_check([-singleton,-discontiguous]).

:- dynamic op_level/1,log/1,

 state_rep/1,ini/0,state_rep_ini/1,

 ref/1,ref_list/1.

:- dynamic fail_flag/0,not_exs_flag/0, db_flag/0.

:- dynamic include_ex/0.

:- consult(war_idb).

:- use_module(library(odbc)).

:- use_module(library(clpfd)).

:- set_prolog_flag(clpfd_goal_expansion,false).

:- (include_ex, !; consult(ex1_idb), assert(include_ex)).

:- odbc_connect('XE', C, [user(prolog), password(prolog),

 alias(prolog),

 open(once)]),

 odbc_set_connection(C,null(null)).

% choose whether to work on memory or on database

env_option(Eo) :-

 (Eo == mem; Eo == memory),

 (db_flag, retract(db_flag);

 not db_flag).

env_option(Eo) :-

 (Eo == db; Eo == database),

 (db_flag;

 not db_flag, assert(db_flag)).

% primitive query and update operations

insert(E) :-

 ground(E),

 E =.. [T|R],

 insert(R,T).

insert(R,T) :-

 odbc_connect('XE', C, [user(prolog), password(prolog),

 alias(prolog),

 open(once)]),

 Cond =.. [T|R],

 (not select(Cond), !; !, fail),

 findall('?',on(X,R),Lq),

 conj_list(Cq,Lq),

 term_to_atom(Cq,Aq),

 concat('insert into ',T,Ins1),

 concat(Ins1,' \ values(',Ins2),

 concat(Ins2,Aq,Ins3),

 21

 concat(Ins3,')',Ins),

 upcase_atom(T,T1),

 findall(Dt,

 (odbc_prepare(prolog,

 'select data_type from user_tab_columns \

 where table_name = ?',

 [atom > varchar(100)],S1),

 odbc_execute(S1, [T1], row(Dt))),

 Dts),

 prep_set2(R,Dts,Preplist),

 odbc_prepare(prolog,Ins,Preplist,St),

 odbc_execute(St,R).

delete(E) :-

 E =.. [T|R],

 delete(R,T).

delete(R,T) :-

 odbc_connect('XE', C, [user(prolog), password(prolog),

 alias(prolog),

 open(once)]),

 upcase_atom(T,T1),

 findall(Col,

 (odbc_prepare(prolog,

 'select column_name from user_tab_columns \

 where table_name = ?',

 [atom > varchar(100)],S1),

 odbc_execute(S1, [T1], row(Col))),

 Cols),

 findall(Dt,

 (odbc_prepare(prolog,

 'select data_type from user_tab_columns \

 where table_name = ?',

 [atom > varchar(100)],S1),

 odbc_execute(S1, [T1], row(Dt))),

 Dts),

 sel1(Cols,R,Where,Vals,Del,Lvar),

 sel3(Where,Vals,Del_cont),

 concat('delete from ',T,Del_tab),

 (not (Del_cont = []),!,

 concat(Del_tab,' where ',Del_expr1),

 concat(Del_expr1,Del_cont,Del_expr);

 Del_expr = Del_tab),

 sel4(R,Dts,Preplist),

 sel6(Vals,Valsx),

 odbc_prepare(prolog,Del_expr,Preplist,St),

 odbc_execute(St,Valsx).

user:update(E) :-

 E =.. [T|P],

 upd(P,Po,Pn),

 update(Po,Pn,T).

upd([],[],[]).

upd([P|R],[Vo|S],[Vn|T]) :-

 not var(P),

 P = (Vo => Vn), !,

 upd(R,S,T).

upd([P|R],[P|S],[_|T]) :-

 not var(P), !,

 upd(R,S,T).

upd([P|R],[P|S],[_|T]) :-

 upd(R,S,T).

 22

update(R,R1,T) :-

 odbc_connect('XE', C, [user(prolog), password(prolog),

 alias(prolog),

 open(once)]),

 upcase_atom(T,T1),

 findall(Col,

 (odbc_prepare(prolog,

 'select column_name from user_tab_columns \

 where table_name = ?',

 [atom > varchar(100)],S1),

 odbc_execute(S1, [T1], row(Col))),

 Cols),

 findall(Dt,

 (odbc_prepare(prolog,

 'select data_type from user_tab_columns \

 where table_name = ?',

 [atom > varchar(100)],S1),

 odbc_execute(S1, [T1], row(Dt))),

 Dts),

 sel1(Cols,R,Where,Vals_w,Upd,Lvar),

 sel1(Cols,R1,Set1,Vals_s,Upd1,Lvar1),

 sel3(Where,Vals_w,Upd_cont),

 prep_set1(Set1,Upd_cont1),

 concat('update ',T,Upd_tab),

 concat(Upd_tab,' set ', Upd_expr2),

 concat(Upd_expr2,Upd_cont1,Set),

 (not (Upd_cont = []),!,

 concat(Set,' where ',Upd_expr1),

 concat(Upd_expr1,Upd_cont,Upd_expr);

 Upd_expr = Upd_tab),

 prep_set2(R1,Dts,Preplist1),

 sel4(R,Dts,Preplist2),

 append(Preplist1,Preplist2,Preplist),

 sel6(Vals_w,Vals_w1),

 append(Vals_s,Vals_w1,Vals),

 odbc_prepare(prolog,Upd_expr,Preplist,St),

 odbc_execute(St,Vals).

select(E) :-

 E =.. [En,I],

 entity(En,_),

 findall(X,attribute(En,_),As),

 not (As == []),

 Q =.. [En,I|As],

 select(Q).

select(A) :-

 A =.. [An,I,V],

 attribute(E,An),

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog),

open(once)]),!,

 upcase_atom(E,T),

 findall(Col,

 (odbc_prepare(prolog,

 'select column_name from user_tab_columns \

 where table_name = ?',

 [atom > varchar(100)],S1),

 odbc_execute(S1, [T], row(Col))),

 Cols),

 upcase_atom(An,Ancol),

 item(Ancol,Cols,N),

 findall(X,on(Y,Cols),Parm),

 23

 item(I,Parm,1),

 item(V,Parm,N),

 Q =.. [E|Parm],

 select(Q).

select(S) :-

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog),

open(once)]),!,

 S =.. [T1|Plist],

 upcase_atom(T1,T),

 findall(Col,

 (odbc_prepare(prolog,

 'select column_name from user_tab_columns \

 where table_name = ?',

 [atom > varchar(100)],S1),

 odbc_execute(S1, [T], row(Col))),

 Cols),

 findall(Dt,

 (odbc_prepare(prolog,

 'select data_type from user_tab_columns \

 where table_name = ?',

 [atom > varchar(100)],S1),

 odbc_execute(S1, [T], row(Dt))),

 Dts),

 sel1(Cols,Plist,Where,Vals,Sel,Lvar),

 sel2(Sel,Sel_ini),

 sel3(Where,Vals,Sel_cont),

 concat('select ',Sel_ini,Sel_ask),

 concat(Sel_ask,' from ',Sel_tab1),

 concat(Sel_tab1,T,Sel_tab),

 (not (Sel_cont = []),!,

 concat(Sel_tab,' where ',Sel_expr1),

 concat(Sel_expr1,Sel_cont,Sel_expr);

 Sel_expr = Sel_tab),

 sel4(Plist,Dts,Preplist),

 sel5(Plist,Dts,Optlist),

 (Optlist = [], Topl = [];

 not (Optlist = []), Topl = [types(Optlist)]),

 (T1 == log, concat(Sel_expr,' order by TS',Sel_exprx);

 not (T1 == log), Sel_exprx = Sel_expr),

 sel6(Vals,Valsx),

 odbc_prepare(prolog,Sel_exprx,Preplist,Stat,Topl),

 odbc_execute(Stat, Valsx, Answer),

 (not (Lvar == []),

 Answer =.. [row|Lvar];

 Lvar == []).

sel1([],[],[],[],[],[]).

sel1([C|Rc],[V|Rv],[C|W],[V|Wv],A,Lv) :-

 nonvar(V),

 sel1(Rc,Rv,W,Wv,A,Lv).

sel1([C|Rc],[V|Rv],W,Wv,[C|A],[V|Lv]) :-

 var(V),

 sel1(Rc,Rv,W,Wv,A,Lv).

sel2([],'*') :- !.

sel2([C],C) :- !.

sel2([C|R],S) :-

 sel2(R,S1),

 concat(C,', ',S2),

 concat(S2,S1,S).

sel3([],[],[]) :- !.

 24

sel3([C],[V],CV) :-

 V == null,!,

 concat(C,' is null',CV).

sel3([C],_,CV) :- !,

 concat(C,' = ?',CV).

sel3([C|R],[V|S],CV) :-

 V == null,!,

 sel3(R,S,CV1),

 concat(C,'is null and ',CV2),

 concat(CV2,CV1,CV).

sel3([C|R],[_|S],CV) :- !,

 sel3(R,S,CV1),

 concat(C,' = ? and ',CV2),

 concat(CV2,CV1,CV).

sel4([],[],[]) :- !.

sel4([P|R1],[Dt|R2],R3) :-

 P == null, !,

 sel4(R1,R2,R3).

sel4([P|R1],[Dt|R2],[Dc|R3]) :-

 nonvar(P),!,

 (Dt == 'NUMBER', Dc = (integer > numeric);

 Dt == 'FLOAT', Dc = (double > float);

 Dt == 'VARCHAR2', Dc = (atom > varchar(100))),

 sel4(R1,R2,R3).

sel4([P|R1],[_|R2],R3) :-

 var(P),

 sel4(R1,R2,R3).

sel5([],[],[]) :- !.

sel5([P|R1],[Dt|R2],[Dc|R3]) :-

 var(P),!,

 (Dt == 'NUMBER', Dc = integer;

 Dt == 'FLOAT', Dc = float;

 Dt == 'VARCHAR2', Dc = atom),

 sel5(R1,R2,R3).

sel5([P|R1],[_|R2],R3) :-

 nonvar(P),

 sel5(R1,R2,R3).

sel6([],[]) :- !.

sel6([V|Vl],[V|Vl1]) :-

 not (V == null), !,

 sel6(Vl,Vl1).

sel6([V|Vl],Vl1) :-

 sel6(Vl,Vl1).

prep_set1([],[]) :- !.

prep_set1([C],CV) :- !,

 concat(C,' = ?',CV).

prep_set1([C|R],CV) :- !,

 prep_set1(R,CV1),

 concat(C,' = ? and ',CV2),

 concat(CV2,CV1,CV).

prep_set2([],[],[]) :- !.

prep_set2([P|R1],[Dt|R2],[Dc|R3]) :-

 nonvar(P),!,

 (Dt == 'NUMBER', Dc = (integer > numeric);

 Dt == 'FLOAT', Dc = (double > float);

 Dt == 'VARCHAR2', Dc = (atom > varchar(100))),

 prep_set2(R1,R2,R3).

prep_set2([P|R1],[_|R2],R3) :-

 25

 var(P),

 prep_set2(R1,R2,R3).

% queries based on the catalogue

table_info :-

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog),

open(once)]),!,

 nl,

 forall(

 (odbc_query(prolog,

 'select

user_tab_columns.table_name,user_tab_columns.column_name,user_tab_columns.data_ty

pe

 from user_tab_columns, user_tables

 where user_tab_columns.table_name = user_tables.table_name',

 row(T,C,D)), downcase_atom(T,Tt), (entity(Tt,_);relationship(Tt,_))),

 (write(T), spc, write(C), write(' ('),

 downcase_atom(D,D1), write(D1), write(')'), nl)).

spc :-

 stream_property(S,alias(user_output)),

 stream_property(S,position(Pos)),

 Pos =.. [F,A,B,P,C],

 P1 is 19 - P,

 tab(P1),

 write(' - ').

tables(Ts) :-

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog),

open(once)]),!,

 findall(T,

 (odbc_query(prolog,'select table_name from user_tables',row(T1)),

 downcase_atom(T1,T),(entity(T,_);relationship(T,_))),

 Ts).

traverse_table(T,A) :-

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog),

open(once)]), !,

 tables(Ts),

 on(T,Ts),

 concat('select * from ',T,Sel),

 odbc_query(prolog, Sel, R),

 R =.. [row|P],

 A =.. [T|P].

er_tab(E,T) :-

 entity(E,N),

 findall(A,attribute(E,A),As),

 T =.. [E,N|As].

er_tab(R,T) :-

 relationship(R,[E1,E2]),

 entity(E1,N1),

 entity(E2,N2),

 T =.. [R,N1,N2].

db_tab(E,Tab) :-

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog),

open(once)]),!,

 upcase_atom(E,T),

 findall(Col,

 (odbc_prepare(prolog,

 26

 'select column_name from user_tab_columns \

 where table_name = ?',

 [atom > varchar(100)],S1),

 odbc_execute(S1, [T], row(Col))),

 Cols),

 findall(Coli,(on(X,Cols),downcase_atom(X,Coli)),Colns),

 Tab =.. [E|Colns].

db_types(T,Dts) :-

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog),

open(once)]),!,

 upcase_atom(T,T1),

 findall(Dt,

 (odbc_prepare(prolog,

 'select data_type from user_tab_columns \

 where table_name = ?',

 [atom > varchar(100)],S1),

 odbc_execute(S1, [T1], row(Dt))),

 Dts).

% transaction management

trans(T) :-

 check_ref(R),

 trans1(T).

$(T) :- trans(T).

trans1(Ops) :-

 odbc_connect('XE', C, [user(prolog), password(prolog),

 alias(prolog),

 open(once)]),!,

 odbc_set_connection(C,auto_commit(false)),

 (Ops,

 odbc_end_transaction(C, commit), !;

 assert(fail_flag),odbc_end_transaction(C, rollback)),

 odbc_set_connection(C, auto_commit(true)),

 (fail_flag,retract(fail_flag),!,fail;

 not fail_flag).

% grant and check a reference

grant_ref(R) :-

 (ref(X), retract(ref(X));

 not ref(X)),

 assert(ref(R)),

 (select(ref(R));

 not select(ref(R)),

 insert(ref(R))).

check_ref(R) :-

 not var(R),

 ref(R), !.

check_ref(R) :-

 not var(R),

 select(ref(R)), !.

check_ref(R) :-

 nl,write('valid reference needed'),nl,

 !, fail.

ref_list(L) :-

 27

 findall(R,select(ref(R)),L).

% add a refererence test and log-insertion clause to the operations

add_ins_log :-

 forall(operation(O), add_ins_log(O)).

add_ins_log(O) :-

 operation(O),

 clause(O,C),

 appc(ref(R), (C,ins_log(R,O)),C1),

 retract((O :- C)),

 assert((O :- C1)).

% update and query the log

ins_log(R,Op) :-

 term_to_atom(Op,Ev1),

 rem_quote(Ev1,Ev),

 ref(R),

 get_time(T),

 ts_date(T,Td),

 date_char(Td,Ts),

 odbc_prepare(prolog, 'insert into log \ values (?,?,?)',

 [integer > numeric, atom > varchar(100), atom > varchar(100)], S),

 odbc_execute(S, [R,Ts,Ev]).

select_log(R,Ts,Ev) :-

 ref_list(L),

 on(R,L),

 select(log(R,Ts1,Ev1)),

 ev_term(Ev1,Ev),

 char_date(Ts1,Ts).

ev_term(Ev,T) :-

 sub_string(Ev,I,L,R,'('),

 J is I + 1,

 K is R - 1,

 sub_string(Ev,J,K,_,P),

 ev_t1(P,Pe),

 sub_string(Ev,0,J,_,F),

 concat(F,Pe,T1),

 concat(T1,')',T2),

 term_to_atom(T,T2), !.

ev_t1(P,Pe) :-

 not sub_string(P,_,_,_,','),

 term_to_atom(T,P),

 (not number(T),

 concat('''',P,P1),

 concat(P1,'''',Pe);

 number(T),

 Pe = P).

ev_t1(P,Re) :-

 sub_string(P,I,L,R,','),

 sub_string(P,0,I,R1,P1),

 J is I + 1,

 sub_string(P,J,R,_,P2),

 ev_t1(P1,P1e),

 ev_t1(P2,P2e),

 28

 concat(P1e,',',Re1),

 concat(Re1,P2e,Re).

rem_quote(Eq,E) :-

 name(Eq,Lq),

 q_rem(Lq,L),

 name(E,L).

q_rem([],[]) :- !.

q_rem([T|L],R) :-

 T == 39,!,

 q_rem(L,R).

q_rem([T|L],[T|R]) :-

 q_rem(L,R).

date_list(D,L) :-

 date_list1(D,L1),

 reverse(L1,L).

date_list1(D,[D]) :-

 (atomic(D);var(D)),!.

date_list1(D/X,L) :-

 date_list1(D,L1),

 append([X],L1,L).

list_date(L,D) :-

 reverse(L,L1),

 list_date1(L1,D).

list_date1([X],X) :- !.

list_date1([A|R],D) :-

 list_date1(R,S),

 D = S/A.

date_char(D,C) :-

 date_list(D,L),

 dat_c1(L,C).

dat_c1([F],Fc) :- !,

 T is F + 1000,

 term_to_atom(T,A),

 sub_string(A,1,3,_,Fc).

dat_c1([N|R],C) :-

 (N > 2000, !, term_to_atom(N,Nc);

 T is N + 100,

 term_to_atom(T,A),

 sub_string(A,1,2,_,Nc)),

 dat_c1(R,Rc),

 concat(Nc,'/',T1),

 concat(T1,Rc,C).

char_date(C,D) :-

 term_to_atom(D,C).

date_ts(Dt,Ts) :-

 Dt = (Y/Mo/D/H/Mi/S/F),

 S1 is S + F/1000,

 date_time_stamp(date(Y,Mo,D,H,Mi,S1,10800,local,true),Ts).

ts_date(Ts,(Y/Mo/D/H/Mi/S/F)) :-

 convert_time(Ts,Y,Mo,D,H,Mi,S,F).

 29

% trace extraction

get_trace(Ref,Tr) :-

 ref_list(Lref),

 on(Ref,Lref),

 findall(Ev,

 (select(log(Ref,Ts,Ev1)),

 ev_term(Ev1,Ev)),

 Tr).

show_trace :-

 nl,

 get_trace(R,Tr),

 write('ref'),write(': '),write(R),nl,

 forall(on(Op,Tr),show(Op)),

 nl.

% display events or facts in template-driven sentence format

show(F) :-

 templatex(F,T),

 xclist(T,S),

 write(S), nl.

% default templates for facts

template(Einst,T) :-

 entity(E,I),

 Einst =.. [E,Iv],

 name(E,[N1|_]),

 name(aeiou,N),

 (on(N1,N),A = 'an ';

 not on(N1,N),A = 'a '),

 T = ['There is ',A,E,' with ',I,' ',Iv,'.'].

template(Ainst,T) :-

 attribute(E,A),

 Ainst =.. [A,Iv,Av],

 T = ['The ',A,' of ',Iv,' is ',Av,'.'].

template(Rinst,T) :-

 relationship(R,[E1,E2]),

 Rinst =.. [R,Iv1,Iv2],

 T = [Iv1,' is related to ',Iv2,' by ',R,'.'].

% calls for plan generation and execution

goal_exec(G) :-

 plans(G,P),

 narrate(P),

 nl,write('choose one: yes/no/stop - '),

 read(A),

 (A == yes, !, plan_exec(P);

 A == no, fail;

 A == stop, !).

plan_exec(P) :-

 ex1p(P,L),

 conj_list(Tr,L),

 (db_flag, $Tr;

 30

 not db_flag,

 execute(P)).

% perform the db-implementation of the operations

compile_ops :-

 forall(operation(O),

 compile_op(O,Oc)).

list_ops :-

 forall(operation(O),

 listing(O)).

compile_op(O,Oc) :-

 operation(O),

 (clause(O,C),retract((O :- C));

 not clause(O,C)),

 compile_op1(O,Oc),

 assert(Oc).

compile_op1(O,Oc) :-

 operation(O),

 comp_preconds(O,Pr),

 comp_effs(O,Ef),

 appc((ref(R),Pr),Ef,B1),

 appc(B1,ins_log(R,O),B),

 Oc = (O :- B).

comp_preconds(O,P) :-

 operation(O),

 clause(precond(O,P1),B),

 (B == true,!, P1x = P1;

 B = holds_now(S),!,

 appc(P1,S,P1x);

 appc(P1,B,P1x)),

 repl_r(/X,X,P1x,P2),

 repl_r(X:_,X,P2,P3),

 rem_comp(P3,P4),

 replace_f(P4,P).

comp_effs(O,Oc) :-

 if_needed(O,Nd,Na),

 ndgroup(O,Nd,Ndg1),

 nagroup(O,Na,Nag1),

 ugroup(O,Ndg1,Nag1,Ndg,Nag),

 necess_effects(O,D,A),

 dgroup(O,D,Dg1),

 agroup(O,A,Ag1),

 ugroup(O,Dg1,Ag1,Dg,Ag),

 append(Ndg,Nag,Oc1),

 append(Oc1,Dg,Oc2),

 append(Oc2,Ag,Oc3),

 conj_list(Oc,Oc3).

necess_effects(O,D,A) :-

 operation(O),

 xbagof(T,

 (P,C)^(current_predicate(deleted,P),

 clause(deleted(T,O),C),

 not var(T)),

 D),

 xbagof(T,

 31

 (P,C)^(current_predicate(added,P),

 clause(added(T,O),C),

 not var(T)),

 A).

if_needed(O,Nd,Na) :-

 operation(O),

 xbagof(T,

 (P,C)^(current_predicate(/,P),

 clause(/deleted(T,O),C)),

 Nd),

 xbagof(T,

 (P,C)^(current_predicate(/,P),

 clause(/added(T,O),C)),

 Na).

dgroup(O,[],[]).

dgroup(O,[X|R],[delete(T)|S]) :-

 gr_t(X,T,Tab,Ar),

 (Ar > 1, !,

 N is Ar - 1,

 count(L,N),

 append(L,U,R),

 gr_t1(T,Tab,E,L),

 dgroup(O,U,S);

 dgroup(O,R,S)).

agroup(O,[],[]).

agroup(O,[X|R],[insert(T)|S]) :-

 gr_t(X,T,Tab,Ar),

 (Ar > 1, !,

 N is Ar - 1,

 count(L,N),

 append(L,U,R),

 gr_t1(T,Tab,E,L),

 agroup(O,U,S);

 agroup(O,R,S)).

ugroup(O,[],As,[],As).

ugroup(O,[D|R],As,[update(T2)|S],C) :-

 D = delete(T),

 T =.. [A,I,Vo],

 attribute(E,A), !,

 on(insert(T1),As),

 T1 =.. [A,I,Vn],

 er_tab(E,Row),

 arg(Pa,Row,A),

 functor(Row,E,N),

 functor(T2,E,N),

 arg(1,T2,I),

 arg(Pa,T2,Vo=>Vn),

 append(W,[insert(T1)|Z],As),

 append(W,Z,B),

 ugroup(O,R,B,S,C).

ugroup(O,[D|R],As,[D|R1],As1) :-

 ugroup(O,R,As,R1,As1).

ndgroup(O,[],[]).

ndgroup(O,[X|R],

 [(select(T),delete(T);not select(T))|S]) :-

 gr_t(X,T,Tab,Ar),

 (Ar > 1, !,

 N is Ar - 1,

 32

 count(L,N),

 append(L,U,R),

 gr_t1(T,Tab,E,L),

 ndgroup(O,U,S);

 ndgroup(O,R,S)).

nagroup(O,[],[]).

nagroup(O,[X|R],

 [(select(T1);not select(T1),insert(T))|S]) :-

 gr_t(X,T,Tab,Ar),

 (Ar > 1, !,

 N is Ar - 1,

 count(L,N),

 append(L,U,R),

 gr_t1(T,Tab,E,L),

 T =.. [Tf,I|_],

 T1 =.. [Tf,I],

 nagroup(O,U,S);

 T1 = T,

 nagroup(O,R,S)).

gr_t(X,T,Tab,Ar) :-

 X =.. [E,I],

 entity(E,N),!,

 er_tab(E,Tab),

 functor(Tab,E,Ar),

 functor(T,E,Ar),

 arg(1,T,I).

gr_t(X,X,_,1) :-

 X =.. [R,I1,I2],

 relationship(R,_), !.

gr_t(X,X,_,1) :-

 X =.. [A,I,V],

 attribute(_,A).

gr_t1(T,Tab,E,[]).

gr_t1(T,Tab,E,[P|R]) :-

 P =.. [A,_,V],

 attribute(E,A),

 arg(J,Tab,A),

 arg(J,T,V),

 gr_t1(T,Tab,E,R).

replace(_,_,X,[]) :- X == [], !.

replace(X,Y,X,Y) :-

 atomic(X), !.

replace(X,Y,X,Y) :-

 var(X), !.

replace(X,Y,Z,Z) :-

 var(Z), !.

replace(X,Y,Z,Z) :-

 atomic(Z), !,

 not (X = Z), !.

replace(X,Y,X,Y) :-

 X =.. [F|L], not var(Y),!.

replace(X,Y,ZL,[Z1|L1]) :-

 not var(ZL),

 ZL = [Z|L], !,

 replace(X,Y,Z,Z1),

 replace(X,Y,L,L1).

replace(X,Y,Z1,Z2) :-

 not var(Z1),

 Z1 =.. [F|L],

 33

 replace(X,Y,F,F1),

 replace(X,Y,L,L1),

 Z2 =.. [F1|L1].

repl_r(X,Y,R,S) :-

 ground(X),

 replace(X,Y,R,S).

repl_r(X,Y,R,S) :-

 repl_r1(X,Y,(R,nil),(S,nil)).

repl_r1(X,Y,R,S) :-

 replace(X,Y,R,R),

 S = R.

repl_r1(X,Y,R,S) :-

 copy((X,Y),(X1,Y1)),

 replace(X,Y,R,T),

 not (R = T),

 repl_r1(X1,Y1,T,S).

rem_comp(P,Q) :-

 conj_list(P,L),

 rem_comp1(L,L1),

 conj_list(Q,L1).

rem_comp1([],[]) :- !.

rem_comp1([A|R],S) :-

 A =.. [F|_],

 term_to_atom(F,Fa),

 name(Fa,[35|T]),

 not (T == [61]),!,

 rem_comp1(R,S).

rem_comp1([A|R],[A|S]) :-

 rem_comp1(R,S).

replace_f(X,[]) :- X == [], !.

replace_f(X,X) :-

 atomic(X), !.

replace_f(X,X) :-

 var(X), !.

replace_f(X,select(X)) :-

 fact(X),!.

replace_f([Z|L],[Z1|L1]) :- !,

 replace_f(Z,Z1),

 replace_f(L,L1).

replace_f(Z1,Z2) :-

 Z1 =.. [F|L],

 replace_f(F,F1),

 replace_f(L,L1),

 Z2 =.. [F1|L1].

% implement the operations as stored procedures

compile_proc(O,P) :-

 O =.. [F|Parms],

 operation(O),

 clause(O,Cx),

 once(op_body(Cx,C)),

 conj_list(C,L1),

 once(pre_comp(O,L1,L)),

 copy((O,L),(Ocop,Lcop)),

 varnames((Ocop,Lcop)),

 O = Ocop,

 34

 once(comp_proc(L,Lcop,Ps,Lv)),

 concat('end ',F,En1),

 concat(En1,';',En),

 conj_list(C1,L),

 once(header(O,C1,H)),

 prep_parms(F,Parms,Ev),

 xsetof(Vi,on(Vi,Lv),Lv1),

 Ps1 = [H,' found number;',' ev varchar(100);',Lv1,

 'begin',

 ' select r into found',' from ref',' where r = rn;',

 Ps,

 Ev,' ins_log(rn,ev);',

 ' commit;',En],

 flatten(Ps1,P).

op_body(Bx,B) :-

 conj_list(Bx,L),

 append([ref(_)],L1,L),

 append(L2,[ins_log(_,_)],L1),

 conj_list(B,L2).

comp_proc([],[],[],[]) :- !.

comp_proc([Cl|R],[Clcop|Rcop],[Clc|S],Vs) :-

 cl_patt(Cl,Clcop,Clc1),

 (is_list(Clc1),Clc = Clc1,Vs1 = [];

 Clc1 = (Clc/Vs1);

 Clc1 = (Clca + Clcb),append(Clca,Clcb,Clc),Vs1 = []),

 comp_proc(R,Rcop,S,Vs2),

 append(Vs1,Vs2,Vs).

cl_patt(Cl,Clcop,P) :-

 Cl = select(_), !,

 select_query(Cl,Clcop,S,Lv),

 (not_exs_flag, !,

 retract(not_exs_flag),

 P = ([S,' end if;']/Lv);

 P = (S/Lv)).

cl_patt(Cl,_,P) :-

 Cl = insert(_), !,

 insert_eff(Cl,S),

 (not_exs_flag, !,

 retract(not_exs_flag),

 P = [S,' end if;'];

 P = S).

cl_patt(Cl,_,P) :-

 Cl = delete(_), !,

 delete_eff(Cl,S),

 (not_exs_flag, !,

 retract(not_exs_flag),

 P = [S,' end if;'];

 P = S).

cl_patt(Cl,_,P) :-

 Cl = update(_), !,

 update_eff(Cl,S),

 (not_exs_flag, !,

 retract(not_exs_flag),

 P = [S,' end if;'];

 P = S).

cl_patt(Cl,_,P) :-

 Cl = (not select(_)),

 notsel_cond(Cl,S),

 P = S.

cl_patt(Cl,_,P) :-

 35

 Cl = (X #= E),

 term_to_atom((X := E),Clat),

 concat(' ',Clat,P1),

 concat(P1,';',P2),

 term_to_atom(P2,P3),

 rem_quote(P3,P4),

 P = [P4].

cl_patt(Cl,Clcop,P) :-

 Cl = (not select(_); select(_), Op),

 Clcop = (_;_,Opcop),

 op_exists_cond(Cl,S1,Op),

 cl_patt(Op,Opcop,S2),

 P = (S1 + S2).

cl_patt(Cl,Clcop,P) :-

 Cl = (select(_); not select(_), Op),

 Clcop = (_;_,Opcop),

 op_notexists_cond(Cl,S1,Op),

 cl_patt(Op,Opcop,S2),

 P = (S1 + S2).

pre_comp(O,[],[]) :- !.

pre_comp(O,[Cl|R],[Cl|S]) :-

 not (Cl = select(_)),!,

 pre_comp(O,R,S).

pre_comp(O,[Cl|R],[Cl|S]) :-

 Cl = select(T),

 T =.. [F|L],

 not (attribute(_,F)),!,

 pre_comp(O,R,S).

pre_comp(O,[Cl|R],[Cle|S]) :-

 Cl = select(T),

 sel_attr(Cl,Cle),

 pre_comp(O,R,S).

sel_attr(select(A),select(Q)) :-

 A =.. [An,I,V],

 attribute(E,An),

 odbc_connect('XE', _, [user(prolog), password(prolog), alias(prolog),

open(once)]),!,

 upcase_atom(E,T),

 findall(Col,

 (odbc_prepare(prolog,

 'select column_name from user_tab_columns \

 where table_name = ?',

 [atom > varchar(100)],S1),

 odbc_execute(S1, [T], row(Col))),

 Cols),

 upcase_atom(An,Ancol),

 item(Ancol,Cols,N),

 findall(X,on(Y,Cols),Parm),

 item(I,Parm,1),

 item(V,Parm,N),

 Q =.. [E|Parm].

header(O,C,H) :-

 operation(O),

 parms_type(O,C,L,Ts,Ps),

 O =.. [T|_],

 concat('create procedure ',T,S1),

 concat(S1,'(',S2),

 Ts1 = ['rn number'|Ts],

 c_list(Ts1,As),

 concat(S2,As,S3),

 36

 concat(S3,') is',H).

c_list([B],B).

c_list([B|A],D) :-

 c_list(A,C),

 xconc(B,', ',B1),

 xconc(B1,C,D).

parms_type(O,B,L,Ts,Cs) :-

 O =.. [T|L],

 pty(O,L,Ts,Cs,B).

pty(O,[],[],[],_) :- !.

pty(O,[P|R],[Pt|S],[C|W],B) :-

 on_conj(Cl,B),

 (Cl = insert(E);

 Cl = delete(E);

 Cl = update(E1),

 E1 =.. [F|E1l],

 upd(E1l,Le1,Le2),

 varnames((Le1,Le2)),

 (E =.. [F|Le1]; E =.. [F|Le2]);

 Cl = select(E);

 Cl = (not select(E))),

 E =.. [T|L],

 v_on(P,L),

 db_tab(T,Tab),

 db_types(T,Dts),

 arg(I,E,P),

 arg(I,Tab,C),

 item(Ty1,Dts,I),

 downcase_atom(Ty1,Ty),

 (on_conj((P #= Expr),B),!,

 concat(P,' in out ',Pt1);

 concat(P,' ',Pt1)),

 concat(Pt1,Ty,Pt),

 pty(O,R,S,W,B).

prep_parms(F,Parms,Ev) :-

 prep_parms1(Parms,Ps),

 concat(' ev := ''',F,Ps1),

 concat(Ps1,'(''',Ps2),

 concat(Ps2,' || ',Ps3),

 concat(Ps3,Ps,Ev).

prep_parms1([P],Ps) :-

 concat(P,' || '')'';',Ps).

prep_parms1([P|R],Ps) :-

 prep_parms1(R,Rs),

 concat(P,' || '',''',Ps2),

 concat(Ps2,' || ',Ps3),

 concat(Ps3,Rs,Ps).

select_query(select(E),select(Ecop),S,Lvs) :-

 E =.. [T|L],

 Ecop =.. [T|Lcop],

 db_types(T,Typs),

 db_tab(T,Tab),

 Tab =.. [T|Cols],

 findall(N,

 (item(Pi,Lcop,I),

 item(Ci,Cols,I),

 concat(Ci,'_',N1),

 37

 concat(N1,Pi,N)),

 Lc),

 findall(Col,

 (item(Pi,Lcop,I),

 item(Col,Cols,I)),

 Lcol),

 conj_list(Ccol,Lcol),

 term_to_atom(Ccol,Acol),

 findall(Vt,

 (item(Ni,Lc,I),

 item(Ti1,Typs,I),

 (Ti1 = 'VARCHAR2', Ti = 'varchar(100)';

 Ti1 = 'NUMBER', Ti = number),

 concat(' ',Ni,N0),

 concat(N0,' ',N1),

 concat(N1,Ti,N2),

 concat(N2,';',Vt)),

 Lvs),

 conj_list(Cc,Lc),

 term_to_atom(Cc,Ac),

 concat(' select ',Acol,S01),

 concat(S01,' into ',S02),

 concat(S02,Ac,S1),

 concat(' from ',T,S2),

 where_cl(E,T,S3),

 (S3 == [], concat(S2,';',S2f),S = [S1,S2f];

 not (S3 == []),

 S = [S1,S2,S3]),

 assign_v(L,Lc).

assign_v([],[]) :- !.

assign_v([X|R],[Y|S]) :-

 (var(X), X = Y;

 nonvar(X)),

 assign_v(R,S).

insert_eff(insert(E),S) :-

 E =.. [T|L],

 concat(' insert into ',T,S1),

 c_list(L,A),

 concat(' values (',A,S2),

 concat(S2,');',S3),

 S = [S1,S3].

delete_eff(delete(E),S) :-

 E =.. [T|L],

 concat(' delete from ',T,S1),

 where_cl(E,T,S2),

 S = [S1,S2].

update_eff(update(E),S) :-

 E =.. [T|L],

 concat(' update ',T,S1),

 upd(L,L1,L2),

 E1 =.. [T|L1],

 where_cl(E1,T,S5),

 E2 =.. [T|L2],

 db_tab(T,Tab),

 findall(CV,

 (arg(I,E2,V),

 nonvar(V),

 arg(I,Tab,C),

 concat(C,' = ',CV1),

 38

 concat(CV1,V,CV)),

 Ps),

 conc_w1(Ps,S2),

 concat(' set ',S2,S3),

 S = [S1,S3,S5].

notsel_cond((not select(E)),S) :-

 E =.. [T|L],

 concat(' from ',T,S1),

 where_cl(E,T,S2),

 S = [' select count(*) into found ',S1,S2,' if found > 0 then return;',' end

if;'].

notexists_cond((not select(E)),S) :-

 E =.. [T|L],

 concat(' from ',T,S1),

 where_cl(E,T,S2),

 S = [' select count(*) into found ',S1,S2,' if found = 0 then '],

 assert(not_exs_flag).

exists_cond((select(E)),S) :-

 E =.. [T|L],

 concat(' from ',T,S1),

 where_cl(E,T,S2),

 S = [' select count(*) into found ',S1,S2,' if found > 0 then '],

 assert(not_exs_flag).

op_notexists_cond((select(E); not select(E), Op),S,Op) :-

 notexists_cond((not select(E)),S).

op_exists_cond((not select(E); select(E), Op),S,Op) :-

 exists_cond((select(E)),S).

where_cl(E,T,W) :-

 E =.. [T|_],

 db_tab(T,Tab),

 findall(CV,

 (arg(I,E,V),

 nonvar(V),

 arg(I,Tab,C),

 concat(C,' = ',CV1),

 concat(CV1,V,CV)),

 Ps),

(Ps == [],W = Ps;

 not (Ps == []),

 conc_w(Ps,S1),

 concat(' where ',S1,S2),

 concat(S2,'; ',W)).

conc_w([X],X) :- !.

conc_w([X|R],Y) :-

 conc_w(R,S),

 concat(X,' and ',T),

 concat(T,S,Y).

conc_w1([X],X) :- !.

conc_w1([X|R],Y) :-

 conc_w1(R,S),

 concat(X,', ',T),

 concat(T,S,Y).

 39

% compiles and displays the stored procedures on screen

print_procs :-

 forall(operation(O),print_proc(O)).

print_proc(O) :-

 operation(O),

 compile_proc(O,P),

 nl,

 forall(on(Cl,P), (write(Cl),nl)),

 nl.

% compiles and registers the stored procedures on a text file

print_procs_txt :-

 prep,

 reset_teste,

 forall(operation(O),

 (compile_proc(O,P),

 nl(text),

 forall(on(Cl,P), (write(text,Cl),nl(text))),

 nl(text))),

 close(text).

print_proc_txt(O) :-

 operation(O),

 compile_proc(O,P),

 open_append,

 nl(text),

 forall(on(Cl,P), (write(text,Cl),nl(text))),

 nl(text),

 close(text).

prep :-

 (stream_property(S,alias(text)),stream_property(S,input),!,close(text);

 true),

 open('c:/Documents and Settings/furtado/Desktop/teste.txt',

 write,P,

 [alias(text)]).

reset_teste :-

 set_stream_position(text,'$stream_position'(1,1,1,0)).

open_append :-

 (stream_property(S,alias(text)),stream_property(S,input),!,close(text);

 true),

 open('c:/Documents and Settings/furtado/Desktop/teste.txt',

 append,P,

 [alias(text)]).

 40

/* SMALL ACADEMIC EXAMPLE */

:- set_prolog_flag(verbose,silent).

:- style_check([-singleton,-discontiguous]).

:- dynamic student/1,credits_won/2,

 program/1,requirement/2,graduated_in/2,

 course/1,credits/2,takes/2,has_finished/2,has_dropped/2.

:- dynamic offer/2, enroll/2, transfer/3, cancel/1, change_cr/3,

 pass/4, create_program/2, receive_degree/2.

:- set_prolog_flag(clpfd_goal_expansion,false).

% static schema - classes of facts

entity(student,student_name).

attribute(student,credits_won).

entity(program,program_name).

attribute(program,requirement).

entity(course,course_name).

attribute(course,credits).

relationship(takes,[student,course]).

relationship(has_finished,[student,course]).

relationship(has_dropped,[student,course]).

relationship(graduated_in,[student,program]).

% dynamic schema - operations to produce events

added(X,Y) :- /added(X,Y).

deleted(X,Y) :- /deleted(X,Y).

/added(nil,dummy).

/deleted(nil,dummy).

operation(offer(C,N)).

added(course(C),offer(C,N)).

added(credits(C,N),offer(C,N)).

precond(offer(C,N),/(not(course(C)))).

operation(enroll(S,C)).

/added(student(S),enroll(S,C)).

/added(credits_won(S,0),enroll(S,C)) :-

 not credits_won(S,_).

added(takes(S,C),enroll(S,C)).

precond(enroll(S,C),

 (course(C),

 /(not has_finished(S,C)),/(not has_dropped(S,C)))).

operation(transfer(S,C1,C2)).

deleted(takes(S,C1),transfer(S,C1,C2)).

added(has_dropped(S,C1),transfer(S,C1,C2)).

added(takes(S,C2),transfer(S,C1,C2)).

precond(transfer(S,C1,C2),

 (course(C2),/takes(S,C1),

 /(not has_finished(S,C2)),/(not has_dropped(S,C2)))).

operation(cancel(C)).

deleted(course(C),cancel(C)).

deleted(credits(C,N),cancel(C)).

precond(cancel(C),

 not takes(S,C):(student(S),takes(S,C))).

operation(change_cr(C,N1,N2)).

deleted(credits(C,N1),change_cr(C,N1,N2)).

 41

added(credits(C,N2),change_cr(C,N1,N2)).

precond(change_cr(C,N1,N2),credits(C,N1)).

operation(pass(S,C,T1,T2)).

deleted(credits_won(S,T1),pass(S,C,T1,T2)).

deleted(takes(S,C),pass(S,C,T1,T2)).

added(has_finished(S,C),pass(S,C,T1,T2)).

added(credits_won(S,T2),pass(S,C,T1,T2)).

precond(pass(S,C,T1,T2),(credits_won(S,T1),takes(S,C))) :-

 credits(C,N),

 T2 #= T1 + N, T1 #>= 0.

operation(create_program(P,R)).

added(program(P),create_program(P,R)).

added(requirement(P,R),create_program(P,R)).

precond(create_program(P,R),/(not program(P))).

operation(receive_degree(S,P)).

added(graduated_in(S,P),receive_degree(S,P)).

precond(receive_degree(S,P),

 (requirement(P,T),credits_won(S,T),/(not takes(S,_)))).

% templates for the update operations of the example

op_template(offer(Co,Cr),['course ',Co,' created with ',Cr,' credits.']).

op_template(enroll(S,Co),['student ',S,' enrolled in course ',Co,'.']).

op_template(transfer(S,Co1,Co2),['student ',S,

 ' transferred from course ',Co1,

 ' to course ',Co2,'.']).

op_template(cancel(Co),['course ',Co,' cancelled.']).

op_template(change_cr(Co,Cr1,Cr2),['number of credits of course ',Co,

 ' changed from ',Cr1,' to ', Cr2,'.']).

op_template(pass(S,C,T1,T2),

 ['student ',S,', having passed course ',C,', has a total of ',T2,' credits.']).

op_template(create_program(P,R),

 ['program ',P,' is open, requiring a total of ',R,' credits.']).

op_template(receive_degree(S,P),['student ',S,' has graduated in program

',P,'.']).

% possible initial state to be tried in memory

course('Art').

credits('Art',2).

course('Semiotics').

credits('Semiotics',3).

course('Design').

credits('Design',1).

program('Alpha').

requirement('Alpha',5).

program('Beta').

requirement('Beta',4).

