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Abstract. Property mapping is a fundamental component of ontology matching and 
yet hardly any technique goes beyond the identification of single property matches. 
However, real data often requires some degree of composition, trivially exemplified by 
the mapping of FirstName, LastName to FullName. Genetic programming offers an alter-
native, but the solution space is so large that the required computation effort would be 
prohibitive.  

This paper proposes a two-phase instance-based technique for complex datatype prop-
erty matching. In the first phase, the technique computes the estimate mutual informa-
tion matrix of the property values to (1) find simple, 1:1 matches, and (2) compute a list 
of possible complex matches. In the second phase, it applies genetic programming to a 
much reduced search space to find complex matches. The paper concludes with expe-
rimental results that illustrate how the technique works and indicate that the technique 
obtains better results that those achieved by separately using the estimate mutual in-
formation matrix or genetic programming.  

Keywords: Ontology Matching, Genetic Programming, Mutual Information. 

Resumo. Mapeamento entre propriedades é um componente fundamental no 
alinhamento de ontologias. No entanto, existem poucas ferramentas que vão além de 
mapeamentos simples entre propriedades. Porém, dados reais muitas vezes requerem 
algum grau de composição, que vão de mapeamentos triviais como, por exemplo, da 
composição de Nome e Sobrenome para Nome Completo. Programação genética oferece 
uma alternativa, mas o espaço de soluções é tão grande que o esforço computacional 
necessário seria proibitivo.  

Este trabalho propõe uma técnica, dividida em duas fases, para o mapeamento de 
propriedades complexas baseada em instâncias. Na primeira fase, calcula-se a matriz 
de informação mútua estimada dos valores das propriedades para (1) encontrar 
mapeamentos simples e biunívocos, e (2) computar uma lista de possíveis 
mapeamentos complexos. Na segunda fase, já com o espaço de busca reduzido na 
primeira fase, aplica-se programação genética para encontrar mapeamentos complexos. 
Por fim, este trabalho apresenta resultados experimentais que ilustram a técnica e 
indicam que ela leva a resultados melhores do que aqueles obtidos utilizando-se 
separadamente a matriz de informação mútua estimada e programação genética.  

Palavras-chave: Mapeamento de Ontologias, Programação Genética, Informação Mú-
tua. 
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1  Introduction 
Ontology matching is a fundamental problem in many applications areas [6]. Using 
OWL concepts, by datatype property matching we mean the special case of matching da-
tatype properties from two classes. 

Very briefly, an instance of a datatype property p is a triple of the form (s,p,l), where 
s is a resource identifier and l is a literal. A datatype property matching from a source class 
S to a target class T is a partial relation μ between sets of datatype properties of S and 
sets of datatype properties of T. We say that a match (A,B)∈μ is m:n iff A and B contain 
m and n properties, respectively. A match (A,B)∈μ should be accompanied by one or 
more datatype property mappings that indicate how to construct instances of the proper-
ties in B from instances of the properties in A. A match (A,B)∈ μ is simple iff it is 1:1 and 
the mapping is a simple translation; otherwise, it is complex. 

In this paper, we introduce a two-phase, instance-based datatype property matching 
technique that is able to find complex n:1 datatype property matches and to construct 
the corresponding property mappings. The technique extends the ontology matching 
process described in [9] to include complex matches between sets of datatype proper-
ties and is classified as instance-based since it depends on sets of instances.  

In more detail, given two sets, s and t, that contain instances of the datatype proper-
tie

 
La

datatype proper-
tie

e. The main 
con

s of the source class S and the target class T, respectively, the first phase of the tech-
nique constructs the Estimated Mutual Information matrix [8,9] of the datatype proper-
ty instances in s and the datatype property instances in t, which intuitively measures 
the amount of related information of the observed property instances. This phase pos-
sibly identifies simple datatype property matches. For example, it may detect that the 
eMail datatype property of one class matches the ElectronicAddress datatype property of 
the other class. The first phase may also suggest, for the second phase, sets of datatype 
properties that may match in more complex ways, thereby reducing the search space.   

The second phase uses a genetic programming approach [7] to find complex 
n:1datatype property matches. For example, it may discover that the FirstName and

stName datatype properties of the source class matches the FullName datatype prop-
erty of the target class, and return a property mapping function that concatenates the 
values of FirstName and LastName (of the same class instance) to generate the FullName 
value. The reason for adopting genetic programming is two-fold: it reduces the cost of 
traversing the search space; and it may be used to generate complex mappings be-
tween datatype property sets. 

We also present an example of the technique using real-world data. The results 
show that the technique is useful in finding matches between sets of 

s with high accuracy, and that it improves the Estimated Mutual Information and 
the Genetic Programming approaches, when they are separately applied.  

The problem of finding complex matches between sets of datatype properties 
should not be underestimated since the search space is typically quite larg

tribution of this paper lies in proposing a two-phase technique that deals with the 
problem of finding complex matches by: (a) using the Estimated Mutual Information 
matrix (in Phase 1) as a pre-processing stage in which to limit the sets of properties that 
are candidates for complex matches; (b) adopting a genetic programming strategy to 
generate complex property mappings. Furthermore, we show empirical evidence that 
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the combination of both approaches, EMI and genetic programming yields better re-
sults than using either technique in separate.  

As for related work, Wang et. al. [14] address two significant Web database schema 
ma

ction, they address the schema matching problem. 
Ho

ver complex matches. Other ap-
pr

Following Leme et al. [9], we decompose the problem of OWL ontology matching into 
the problem of vocabulary matching and the problem of concept mapping. In this sec-
tion, we briefly review these concepts and extend them to account for complex proper-
ty matching. In what follows, let S and T be two OWL ontologies, and VS and VT be 
their vocabularies, respectively. Let CS and CT be the sets of classes and PS and PT be 
the sets of properties in VS and VT, respectively.  

tching problems: inter-site and intra-site. However, their approach does not handle 
complex matches over Web database schema properties. Nguyen et. al. [13] address the 
schema matching problem in Web forms using a hybrid approach, based on correlation 
and clustering. Because the approach is cluster-based, it does not perform data 
transformations, making it impossible to generate complex mappings. Dhamankar et. 
al. [3] describe the iMap system to semi-automatically discover 1:1 and complex 
matches between relational schemas. The iMap system is very similar to our approach, 
in the sense that it also transforms the matching problem into a search problem. Fur-
thermore, it has a predefined module of functions, which can be integrated with our 
genetic programming approach. However, our technique features a first phase in 
which we reduce the search space, thus improving the accuracy and run time perfor-
mance during the second phase of the technique, based on genetic programming. 

Carvalho and Frade [2] propose a technique to identify replicas in two different re-
positories through a deduplication function, created using genetic programming. Us-
ing the same deduplication fun

wever, their approach is expensive and tries to find matches between all combina-
tions of the available properties of both schemas. By contrast, the first phase of our 
technique reduces the search space of the genetic programming strategy used on the 
second phase, resulting in a faster and more accurate algorithm, as already pointed 
out. A recent technique, proposed by Blanco et. al. [1], is based on redundancy and, for 
a specific domain, searches the Web for similar data and uses the data found to create 
matches between multiple sources. The technique contributes to deduplication and da-
ta integration, but it does not deal with complex matches. 

Wang et. al. [15] propose a flexible framework that is able to add new approaches 
for matching entities at the schema level and at the instance level. In this sense, our 
two-phase instance-based approach could be added to the framework and combined 
with schema-based matching approaches to disco

oaches adopt machine learning techniques, such as LSD [4], GLUE [5] and Semint 
[10,11]. Although most of the machine learning techniques shows good results, their 
accuracy sometimes depends on a non-trivial manual effort, which we avoid by adopt-
ing genetic programming. 

The remainder of the paper is structured as follows. Section 2 summarizes basic re-
sults that we use in the next sections. Section 3 introduces the technique. Section 4 con-
tains an example of the technique. Finally, Section 5 presents the conclusions. 

2  Background 

2.1  Vocabulary Matching and Concept Mapping 
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An instance of a cl
property p is a triple of the form 

ass c is a triple of the form (s,rdf:type,c), an instance of an object 
(s,p,o) and an instance of a datatype property d is a 

triple of the form (s,d,l), where s and o are resource identifiers and l is a literal.  

⊆  VS×VT. Given (v1,v2)∈μ, we 

operties 
in 

ame,f), v = n // f 
ind

e the following abbreviated form 
for mapping rules with the above syntax

In out

(4) Use the class matching obtained in Step (2) and the instance matching obtained 

“two schema elements match iff 
re similar 

A vocabulary matching between S and T is a finite set μ 
say that (v1,v2) is a match in μ and that μ matches v1 with v2; a property (or class) matching 
is a matching defined only for properties (or classes).  

A concept mapping from S to T is a set of transformation rules that map instances of 
the concepts of S into instances of the concepts of T.  

In this paper, we extend vocabulary matchings to also include pairs of the form 
(A,B) where A and B are sets of datatype properties in P  and P , respectively. We say S T

that (A,B) is an m:n match iff A and B contain m and n properties, respectively. In this 
case, a match (A,B) must be accompanied by datatype property mappings, denoted 
μ[A,Bi], such that μ[A,Bi] is a transformation rule that maps instances of the pr

A into instances of the property Bi, for i=1,…,n, where B={B1,…, Bn}. Using “//” to 
denote string concatenation, the following transformation rule  

(s,fullName,v) ← (s,firstName,n), (s,lastN
icates that the value of the fullName property is obtained by concatenating the val-

ues of properties firstName and lastName. We will us
: 

μ[{firstName, lastName}, fullName] = “fullName ← firstName // lastName” 

As an abuse of notation, when A is a singleton {A1}, we simply write μ[A1,Bi], rather 
than  μ[{A1},Bi]. Finally, a match (A,B) is simple iff it is 1:1, that is, of the form ({A1},{B1}), 
and the mapping μ[A1,B1] is the identity transformation rule, defined as “(s, B1 , l) ← (s, 
A1, l)”; otherwise, the match is complex. 

2.2  An Instanc c

In this section, we very briefly summarize the instance-based process to create vocabu-
lary matchings introduced in [9].  

e-Based Pro ess for Vocabulary Matching 

line, the process goes as follows: 
(1) Generate a preliminary property matching using similarity functions. 
(2) Use the property matching obtained in Step (1) to generate a class matching. 
(3) Use the property matching obtained in Step (1) to generate an instance match-

ing. 

in Step (3) to generate a refined property matching. 

The final vocabulary matching is the result of the union of the class matching ob-
tained in Step (2) and the refined property matching obtained in Step (4). 

The intuition used in all steps of that process is that 
they have many values in common and few values not in common”, i.e. iff they a
above a given similarity threshold. 

Step (1) generates preliminary 1:1 property matchings based on the intuition that 
two properties match iff their instances share similar sets of values. In case of string 
properties, their values are replaced by the tokens extracted from their values. Step (1) 
provides evidences on class and instance matchings, explored in the next two steps. 
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Step (2) generates class matchings based on the intuition that two classes match iff 
their sets of properties are similar. This step uses the property matchings generated in 
St

ies are similar. However, equivalent instances from 
di

In

 comprises two 
ph

3.1  Phase 1: Computing Simple Datatype Property Matches with 
Estimated Mutual Information 

nce matrix of p and q 

ep (1). 

Step (3) generates instance matchings based on the intuition that two instances 
match iff the values of their propert

fferent classes may be described by very different sets of properties.  

Therefore, extracting values from all of their properties may lead to the wrong con-
clusion that the instances are not equivalent. Therefore, Leme et al. [9] propose to ex-
tract values only from the matching properties of the instances. 

3  The Two-Phase Property Matching Technique 

 this section, we introduce a technique to partly implement and extend Step 4 of the 
ontology matching process of Section 2.2 to compute complex n:1 datatype property 
matches (the technique does not cover n:m matches). The technique

ases: Phase 1 uses Estimated Mutual Information matrices, defined in Section 3.1, to 
compute 1:1 simple matches, while Phase 2 uses genetic programming to compute 
complex n:1 matches, based on the information returned by Phase 1. 

Let p=(p1,…,pu) and q=(q1,…,qv) be two lists of sets. The co-occurre
is defined as the matrix [mij] such that mij = | pi ∩ qj |, for i∈[1,u] and j∈[1,v]. The Esti-
mated Mutual Information matrix (EMI) [8,9] of p and q is defined as the matrix [EMIpq] 
such that 

⎟⎟⎜⎜ ∑∑ iqpj mm * = =i j1 1
(1) 

hase 1 of the datatype property matching 

rence matrix [mij], Phase 1 computes [mij] using set comparison functions that take 
two sets and return a non-negative integer. Such functions play the role of flexibilization 
points of Phase 1, as illustrated in Section 4.1.  

The set comparison functions depends on the types of the values of the datatype 
properties as well as on whether the functions take advantage of instance matches. For 
example, given a pair of datatype properties Ai and Bj, mij may be defined as the num-
be

ed on the co-occurrence matrix, 
as in Eq. (1). Next, it computes a 1:1 matching, μEMI, between the properties in 
A={A1,…,Au} and those in B={B1,…,Bv} such that, for any pair of properties Ap and Bq, 

⎟
⎟
⎟
⎟
⎞

⎜
⎜
⎜
⎜
⎛

= uv
pqpq

pq
m

M
M

m
EMI log  , where ∑∑=

u v

ijmM  

⎠⎝ == ij 11

We now adapt these concepts to define P
process. Let S and T be two classes with sets of datatype properties A={A1,…,Au} and 
B={B1,…,Bv}, respectively. Let s and t be sets of instances of the properties in A and B, 
respectively (s and t therefore are sets of RDF triples). 

Rather than simply using the cardinality of set intersections to define the co-
occur

r of pairs of triples (a,Ai,b) in s and (c,Bj,d) in t such that instances a and c match (or 
are identical) and the literals b and d are equal (or are considered equal, under a literal 
comparison function defined for the specific datatype of b and d).  

Phase 1 proceeds by computing the EMI matrix bas
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(Ap,Bq)∈ μEMI iff EMIpq > 0 and EMIpj ≤ 0, for all j∈[1,v], with j≠q, and EMIiq ≤ 0, for all 
i∈[1,u], with i≠p. Furthermore, Phase 1 assumes that the property mappings, μEMI[Ar 

,Bs], are always the identity function. 

Finally, Phase 1 also outputs a list of datatype properties to be considered for com-
plex matching in Phase 2. For the kth column of the EMI matrix, it outputs the pair 
(Ak,Bk) as a candidate n:1 complex match, where Bk is the property of T that corres-
ponds to the kth column and Ak is the set of properties Ai of S such that EMIik > 0. In-
deed, if EMIik ≤ 0, then Ai and Bk have no information in common. However, note that 
this heuristics does not indicate what is a candidate property mapping μ[Ak,Bk]. This 
problem is faced in Phase 2. 

3.2  Phase 2: Computing Complex Property Matches with Genetic 
Programming 

The second phase of the technique uses genetic programming to create mappings be-
tween the properties that have some degree of correlation, as identified in the first 
phase. Briefly, the process goes as follows. 

Recall that genetic programming refers to an automated method to create and evolve 
programs to solve a problem [7]. A program, also called an individual or a solution, is 
represented by a tree, whose nodes are labeled with functions (concatenate, split, sum, 
etc) or with values (strings, numbers, etc). New individuals are generated by applying 
genetic operations to the current population of individuals. Note that genetic program-
ming does not enumerate all possible individuals, but it selects individuals that should 
be bred by an evolutionary process. The fitness function assigns a fitness value to each 
individual, which represents how good the individual is compared to others, i.e., the 

 carried out just once. First, certain pa-

, the second configuration step is to deter-
mi

Bk], if one exists; otherwise it discards the candidate match.  

survival probability of the individual in the genetic process. 

The process requires two configuration steps,
rameters of the process must be properly calibrated to prevent overfitting problems, to 
avoid unnecessary runtime overhead, and to help finding good solutions (see also Sec-
tion 4). Once the parameters are calibrated

ne the stop criterion. We opted to stop after a predetermined maximum number of 
generations and return the best-so-far individual to limit the cost of searching for indi-
viduals.  

We now show how to use genetic programming to compute complex datatype 
property matches. As in the previous section, let S and T be two classes with sets of da-
tatype properties A={A1,…,Au} and B={B1,…,Bv}, respectively. Let s and t be lists of sets 
of instances of the properties in A and B, respectively.  

The genetic programming phase receives as input the candidate matches that Phase 
1 outputs and the sets s and t. For each input candidate match, it outputs a property 
mapping μ[Ak,

Let (Ak,Bk) be a candidate match output by the first phase, where Ak is a set of prop-
erties in A and Bk is a property in B. The genetic programming phase first generates a 
random initial population of candidate property mappings. In each iteration step, it 
creates new candidate property mappings using genetic operations. It keeps the best-
so-far individual, and returns it when the stop criterion is reached.  

The process depends on the following specifications (see also Table 2 in Section 4.2 
for a concrete example), which should be regarded as flexibilization points. 
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A candidate property mapping μ[Ak,Bk] (the individual in this case) is represented as 
a tree whose leaves are labeled with the properties in Ak and whose internal nodes are 
lab

n. Each tree 
ha

to 
cre

perty map-
pin

ame // (firstName //middleName))” 

eled with primitive mapping functions. 

The maximum population size, σpopulation, is a parameter of the process. The initial 
population consists of n randomically generated trees, where n = σpopulatio

s a maximum height, defined by the parameter σheight, each leaf is labeled with a 
property from Ak and each internal node is labeled with a primitive mapping function. 

The reproduction operation simply preserves a percentage of the property map-
pings from one generation to the next, defined by the parameter σreproduction.  

The crossover operation exchanges subtrees of two candidate property mappings 
ate new candidate mappings. For example, suppose that Ak={firstName, middleName, 

lastName} and Bk=fullName and consider the following two candidate pro
gs (which use the concatenation operation, “//”, and are represented using the nota-

tion adopted in Section 2.1): 

μ1[Ak, Bk] = “fullName ← (lastN
μ2[Ak, Bk] =“fullName ← ((

Finally, r  A and B, 
res

urring in t. As in Section 3.1, 
the exact na  datatype 
properties a atches or 
not (which is possible when implementing Step (4)). 

4.1  Phase 1 d Mutual 
Information 

middleName //firstName) // lastName)” 

The crossover operation might generate the following two new candidate property 
mappings (by swapping the sub-expressions in boldface) 

μ3[Ak, Bk] = “fullName ← (lastName // (middleName // firstName))” 
μ4[Ak, Bk] = “fullName ← ((firstName // middleName) // lastName)” 

The mutation operation randomly alters a node (labeled with a property or with a 
primitive mapping function) of a candidate property mapping. For example, the node 
labeled with “middleName” of μ4[Ak, Bk] can be mutated to “firstName”, resulting in a 
new candidate property mapping (which is acceptable, but not quite reasonable, since 
it repeats firstName): 

μ5[Ak, Bk] = “fullName ← ((firstName // firstName) // lastName)” 

ecall that s and t are lists of sets of instances of the properties in
pectively. The fitness value of μ[Ak,Bk] is computed by applying μ[Ak,Bk] to the in-

stances of the properties in Ak occurring in s, creating a new set of instances for Bk, 
which is then compared with the set of instances of Bk occ

ture of fitness function depends on the types of the values of the
s well as on whether the function takes advantage of instance m

4  An Example 

: Computing Simple Property Matches with Estimate

With the help of an example, we illustrate how to implement the two-phase technique. 
We assume that the implementation is in the context of Step (1) of the process de-
scribed in Section 2.2, that is, we will not use instance matches. We start with Phase 1, 
described in Section 3.1. 
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Table 1. Example Schemas. 

P Q 
A1 FirstName B1 FullName  

(FirstName // LastName) A2 LastName 
A3 eMail B2 eMail 
A4 MaritalStatus B3 MaritalStatus 
A5 Address B4 FullAddress  

(Address // AddressNumber // Address-
Complement // Neighborhood) 

A6 AddressNumber 
A7 AddressComplement 
A8 Neighborhood 
A9 City B5 Place  

(City // State // Country) A10 State 
A11 Country 
A1

T
by class P . We artificially m g a 
new class s. Table 1 shows operties or 
sets of properties match. For example, {A1 } matches B1. 

R l ection 3.1 that an implemen ires defining set 
com so ns used to compute the co-occurrence matrix [mij]. We discuss this 
poin  w s, w h the help of the nn ple.  

We assume that all property values 
samples, p instances of properties of y (each with 
500 instances). 

eme et al. [9] adopt the cosine similarity function to compare two strings: 

he example contains 6,000 real-world records with personal information, modeled 
, with 25 properties
Q, with 17 propertie

odified the original dataset, creatin
classes P and Q and which pr

, A2

ecal from S tation of Phase 1 requ
pari n functio
t in hat follow it  ru ing exam

are string literals and that we are given two 
 and q, of classes P and Q, respectivel

L

ts
tstsCosSim

.
),( •

=  (2) 

where s and t are the vectors of tokens obtained from the strings; m  is then computed 
as the number of (string) values of triples for property A  in 

ij

p whose cosine distance to 

ust described. Note that 
m43

cab

rity function proved to be appropriate, 

rity function turned out not to be appropriate when 
using the co-occurrence matrix to suggest complex atches to Phase 2 of the techni . 
We therefore adopted a different similarity function, BagSim, to compute the co-

i

values of instances for property Bj in q is above a given threshold (α = 0.8 in [9]). 

Figure 1 shows the co-occurrence matrix computed as j
=164,826, which is high because the values of A4 and B3 come from a controlled vo-
ulary with a small number of terms (not indicated in Table 1). By contrast, m32=500, 

which is low because A3 and B2 are keys (also not indicated in Table 1).  

To compute simple matches, the cosine simila
especially if the strings to be compared have approximately the same number of to-
kens. However, the cosine simila

 m que

occurrence matrix, defined as 

)()(),( yBagxBagyxBagSim ∩=  (3) 

which counts the number of tokens that strings x and y have in common.  

2 ZIPCode B6 ZIPCode 
… … … … 
A  PhoneNumber B17 FullPhoneNumber  

(AreaCode // PhoneNumb
24

er) A25 AreaCode 
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Given two properties Ai and Bj, mij is computed as the sum of BagSim(x,y), for all 
pairs of strings x and y such that there are triples of the form (a,Ai,x) in p and (b,Bj,y) in 
q (see Fig. 2). Once the co-occurrence matrix [mij] is obtained, we compute the EMI ma-
trix [EMIij], as in Section 3.1 (see Fig. 3).  

The result of Phase 1 therefore is the matching μEMI between the sets of properties 
{A1,…,Au} and {B1,…,Bv}, computed as in Section 3.1 (which we recall is 1:1), assuming 
that, for each (Ai,Bj )∈μEMI, the property mappings μ[Ai,Bj] is always the identity func-
tion. 

 B1 B2 B3 B4 B5 B

 

 B1 B2 B3 B4 B5 … 
… … 
A5 5500 0 5 3 44

… 

0 572 30  
A6 0   0  0 726 0
A7 797 0 8527 1363 0 
A8 750 0 9 6 15 0 57 10
A9 0 2 0 671083  0 69 141
… … 

Fig. 2. Co-occurrence matrix using BagSim. 

 B1 B2 B3 B4 B5 B6 … B14 B15 B16 B17 
A1 0,0055 0,0 0,0 0,0004 -0,0004 0,0

…

0,0026 0,0067 0,0 0,0 
A2 0,0138 0,0 0,0 0,0020 -0,0009 0,0 0,0110 0,0135 0,0 0,0 
A3 0,0 0,0020 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 
A4 0,0 0,0 0,1493 0,0 0,0 0,0 0,0  0,0 0,0 0,0
A5 0,0024 0,0 ,0 0 0,0677 0,0003 0,0 0,0028 0,0022 0,0 -0,0002 
A6 0,0 0,0 ,0 0 0,00  0,0 0,0 09 0,0 0,0 0,0 0,0001 
A7 0,0002 0,0 ,0 0 0,00 -0,000894 0,0 0,0001 0,0002 0,0 -0,0004 
A8 0,0002 0,0 ,00  0,01 -0,000714 0,0 0,0003 0,0002 0,0 -0,0008 
A9 0,0002 0,0 ,00  0,0008 0, 0 004 0,0 0,0002 0,0004 0,0 -0,0001 
… … 
A24 0,0 0,0 0,0 -0,0001 -0,0001 …0,0 0,0 0,0 0,0 0,0406 
A  25 0,0 0,0 0,0 0,0001 -0,0007 0,0 0,0 0,0 0,0 0,0007 

Fig. 3 I rey s rep nt ple m es ig ey
h p ive e se ossi om x ma s fo  p rty

. EM matrix: dark g  cell rese  sim atch and l ht gr  cells  
(wit osit  valu s) repre nt p ble c ple tche r the rope  in the 

column. 

6 … B14 B15 B16 B17 
A1 4 1 0 0 0 0 

… 

0 0 0 0 
A2 0 0 0 0 0 0 0 0 0 0 
A3 1 500 0 0 0 0 0 0 0 0 
A4 0 0 164,826 0 0 0 0 0 0 0 
A5 0 0 0 0 0 0 0 0 0 0 
… … 
A24 0 … 0 0 0 0 
A25 0 0 0 0 

Fig. 1. Co-occurrence matrix using the cosine similarity function for 500 instances. 
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4.2  Phase 2: Computing Complex Property Matches with Genetic 
Programming 

The second phase of the technique was implemented using a genetic programming 
toolkit [12], with the parameters shown in Table 2 (the discussion on calibration is 
omitted for brevity).  

The fitness function used is based on the Levenshtein similarity function, norma-
lized to fall into the interval [0,1], where 1 indicates that a string is exactly equal to the 
other and 0 that the two strings have nothing in common. 

Recall that we are given two samples, p and q, of instances of properties of classes P 
and Q, respectively. Construct the set X of strings that occur as literals of instances of 
Bk obtained by applying μ[Ak,Bk] to p, and the set Y of strings that occur as literals of 
instances of Bk in q. The fitness score for a candidate property mapping is: 

fitnessScore (μ[Ak,Bk]) ∑
∈∈

=
YyX,x

y)n(x,Levenshtei1
n

 (4) 

where n is the number of pairs in X × Y. 

For example, recall that the first phase of the technique outputs a candidate match 
between properties A5, A9, A10 and A11 (Address, City, State and Country, respectively) 
and property B5 (Place). Table 3 summarizes the search for a property mapping. It indi-
cates that the process stops with an expression that represents a property mapping that 
maps the concatenation of the properties A9, A10 and A11 (that is, the expression ((City 
// State) // Country)) into property B5 (that is, Place). 

Table 2. Adjusted genetic parameters. 

Parameter Adjusted Values 
40 Population Size (σpopulation) 
3 Maximum height (σheight) 
50 Number of Generations (σgenerations) 
2% Mutation Rate (σmutation) 
60% Crossover Proportion (σcrossover) 
40% Reproduction Proportion (σreproduction) 

Table 3. Representation of the possible mappings to the property B5 (Place). 

Suggested 
Properties Possible Expressions Expected Mapping 

{(Address), (City), (State), (Country)} 
{(Address // City), (Address // State), (Ad-
dress // Country), (City // State), …, (State 
// Country)} Address, City, 

State, Coun-
try 

Place ←  {((Address // City) // (State)),  ((City // State) // Country) ((Address // City) // (Country)), …,  
((City // State) // (Country))} 
{((Address // State) // (City // Country)), 
…, ((Country // State) // (City // Address))}
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4.3  Results 

The first result in this paper is the comparison of the two approaches, Estimated Mu-
tual Information and genetic programming, when separately evaluated. 

Column EMI of Table 4 indicates that, using only the Estimated Mutual Information 
approach, we obtained a precision of 1.0, which indicates that none of the matches 
were mistakenly found; the rate of recall was low, 0.35, indicating a high rate of missed 
property matches; and the F-Measure was 0.52, hinting that this approach is insuffi-
cient to find simple and complex matches. Indeed, out of the 12 simple matches ex-
pected, this approach correctly obtained 6 matches only. 

However, according to the discussion at the end of Section 3.1, as well as by observ-
ing Fig. , there are 11 candidate complex matches that were suggested to the genetic 
programming phase. Note that among those are the exact remaining matches not 
found by the EMI technique. This is an indication that, although not sufficient in itself, 
the EMI approach doubles as a very effective preprocessing stage to the genetic 
programming approach, by reducing the complexity of the search space while 
providing a high quality list of candidate complex matches. 

Column GP of Table 4 indicates that, using genetic programming alone, the F-
Measure obtained was higher, and that all simple mappings were found. However, 
precision was 0.81, which indicates that some matches were mistakenly suggested. 

Table 4 shows that our two-phase technique resulted in a considerable improvement 
over the independent use of the EMI and genetic programming approaches when used 
independently. This improvement is related to the fact that the first phase, using the 
EMI matrix, correctly found all simple matches and suggested correct complex matches 
to the second phase.  

The fact that the EMI matrix suggests correlated properties helps reduce the solu-
tion space considered by the genetic programming algorithm, thus improving its over-
all performance. In our tests, the run time of the combined approach showed an im-
provement of approximately 36% when compared with the run time of the genetic 
programming approach alone. 

The only mapping not found by our technique was that from properties Address, 
AddressNumber, AddressComplement and Neighborhood of class P to property FullAddress 
of class Q (see Table 1). In fact, property AddressNumber was the only one not included 
in any mapping generated by the genetic programming phase, possibly because most 
values were mistakenly found in the property Address, leaving empty many values of 
the property AddressNumber.  

Table 4. Mapping results from schema P to schema Q. 

Correct Matches Measures EMI GP Two-Phase Approach 

 

1:1 6 12 12 12 
n:1 11* 1 5 4 
F-Measure 0.52 0.78  0.96 
Recall 0.35 0.76  0.94 
Precision 1.0 0.81  1.0 

(*) Complex matches suggested by EMI. 
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5  Conclusion and Future Work 

In this paper, we described an instance-based, property matching technique that fol-
lows a two-phase strategy. The first phase constructs the Estimated Mutual Informa-
tion matrix of the property values to identify simple property matches and to suggest 
complex matches, while the second phase uses a genetic programming approach to 
detect complex property matches and to generate their property mappings. Our early 
experiments suggest that the technique is a promising approach to construct complex 
property matches, a problem rarely addressed in the literature.  
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