
ISSN 0103-9741

Monografias em Ciência da Computação

no 16/11

Entropy-Guided Feature Generation

for Large Margin Structured Learning

Eraldo Luı́s Rezende Fernandes

Ruy Luiz Milidiú

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 16/11 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena December, 2011

Entropy-Guided Feature Generation
for Large Margin Structured Learning ∗

Eraldo Luı́s Rezende Fernandes Ruy Luiz Milidiú

efernandes@inf.puc-rio.br , milidiu@inf.puc-rio.br

Abstract. Structured learning consists in learning a mapping from inputs to structured
outputs by means of a sample of correct input-output pairs. Many important problems
fit in this setting. For instance, dependency parsing involves the recognition of a tree
underlying a sentence. Feature generation is an important subtask of structured learn-
ing modeling. Usually, it is partially solved by a domain expert that builds complex
and discriminative feature templates by conjoining the available basic features. This is a
limited and expensive way to generate features and is recognized as a modeling bottle-
neck. In this work, we propose an automatic method to generate feature templates for
structured learning algorithms. We denote this method entropy guided since it is based
on the conditional entropy of local output variables given some basic features. We have
evaluated our method on four computational linguistic tasks. We compare the proposed
method with two important alternative feature generation methods, namely manual tem-
plate generation and polynomial kernel functions. Our results show that entropy-guided
feature generation outperforms both alternatives and, furthermore, presents additional
advantages. The proposed method is cheaper than manual templates and much faster
than kernel methods. Furthermore, the developed systems present state-of-the-art com-
parable performances and, particularly on Portuguese dependency parsing, remarkably
reduces the previous smallest error by more than 15%. We further propose to model two
complex natural language processing problems that, as far as we know, have never been
approached by structured learning methods before. Namely, quotation extraction and
coreference resolution.

Keywords: structured learning, feature generation, entropy, natural language process-
ing

Resumo. Aprendizado estruturado consiste em aprender um mapeamento de variáveis
de entradas para saı́das estruturadas através de exemplos de pares entrada-saı́da. Vários
problemas importantes podem ser modelados desta maneira. Por exemplo, parsing de
dependência envolve o reconhecimento de uma árvore a partir de uma frase. Geração
de atributos é uma sub-tarefa importante da modelagem em aprendizado estruturado.
Geralmente, esta sub-tarefa é realizada por um especialista que constrói gabaritos de

∗ This work was partially funded by grants from CNPq (557.128/2009-9) and FAPERJ (E-
26/170028/2008). The first author was suported by a CNPq doctoral fellowship, a CAPES doctoral intern-
ship grant, and by Instituto Federal de Educação, Ciência e Tecnologia de Goiás.

atributos complexos e discriminativos através da combinação dos atributos básicos dispo-
nı́veis. Esta é uma forma limitada e cara para geração de atributos e é reconhecida
como um gargalo de modelagem. Neste trabalho, propomos um método automático
para geração de atributos para problemas de aprendizado estruturado. Denotamos este
método como guiado por entropia já que ele é baseado na entropia condicional de variáveis
locais de saı́da dados alguns atributos. Nós avaliamos nosso método em quatro tarefas
de linguı́stica computacional. Comparamos o método proposto com dois métodos alter-
nativos para geração de atributos: geração manual e funções de kernel polinomial. Estes
resultados mostram que o método de geração de atributos guiado por entropia é melhor
do que os dois métodos alternativos e ainda apresenta vantagens adicionais. O método
proposto é mais barato do que o método manual e mais rápido que o método baseado em
kernel. Além disso, os sistemas desenvolvidos apresentam resultados comparáveis com
os melhores sistemas atualmente e, particularmente para parsing de dependência para
Português, obtivemos uma redução de erro de mais de 15% comparado com o melhor re-
sultado até o momento. Ainda propomos a modelagem de duas tarefas de processamento
de linguagem natural que, até onde podemos dizer, nunca foram modeladas através de
métodos de aprendizado estruturado. Estas tarefas são extração de citações e resolução
de coreferência.

Palavras-chave: aprendizado estruturado, geração de atributos, entropia, processa-
mento de linguagem natural

iii

In charge of publications :

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

iv

Contents

1 Introduction 1

2 Structured Perceptron 4
2.1 Large Margin Training . 4
2.2 Kernelization . 5

3 Related Work 6

4 Entropy-Guided Feature Generation 6

5 Task Modeling 8
5.1 Sequence Labeling . 8
5.2 Fixed Nodes Tree . 9
5.3 Sequence Segmentation . 9
5.4 Variable Nodes Tree . 10
5.5 Clustering . 10

6 Experimental Results 11
6.1 Feature Generation Approaches . 11
6.2 State-of-the-art Systems . 12

7 Concluding Remarks 12

References 13

v

1 Introduction

In the last decades, machine learning has been successfully applied on many fields from
natural language processing and information extraction to computer vision and compu-
tational biology. Many important machine learning problems involve the prediction of
complex structures that comprise interdependent variables. Dependency parsing (DP),
for instance, is to derive a syntactic structure that identifies the syntactic head of each to-
ken in a given input sentence. This structure is called dependency tree and is a rooted tree
whose nodes are the sentence tokens. Let x = (x0, x1, . . . , xT) be an input sentence, where
xi is the i-th token and x0 is a dummy token which is always the root of the dependency
tree. We define Y(x) as the set of all rooted trees whose nodes are tokens in the sentence
x and the root node is x0. For any dependency tree y ∈ Y(x), we say that (i, j) ∈ y
whenever token xi is the head of token xj in the tree y. Figure 1 shows the sentence “John
saw Mary”, the dependency tree y = {(0, 2), (2, 1), (2, 3)}, and the corresponding token
heads.

y
i 0 1 2 3
x root John saw Mary

Head – 2 0 2

Figure 1: Dependency tree of a sentence

Most of the best performing systems for such structured problems are complex ma-
chine learning systems that combine several binary classifiers. Additionally, in order to
consider the natural interdependencies among output variables, the binary classifiers are
trained by task specific strategies that share information or enforce constraints among
the basic classifiers. For instance, [1] propose a DP system that relies on a left-to-right
deterministic parsing algorithm. Four support vector machines (SVM) are trained to pre-
dict parsing actions given features that represent the parser history and previous edge
predictions are used to consider some interdependency between token heads.

In the last few years, machine learning methods that directly solve structured prob-
lems have emerged. [2] proposed an SVM formulation for multiclass problems that jointly
trains some linear functions, one for each class. Then, these functions are also jointly used
to perform predictions. Before that, such problems had been solved by independently
trained binary classifiers. Additionally, some voting scheme enforces the constraint that
only one class has to be chosen for a given input. [2] showed that their approach out-
performs this ensemble one. Next, [3] proposed the structured perceptron algorithm for
sequence labeling problems. This algorithm is a generalization of the binary perceptron
and learns the parameters of a linear discriminant function that, given an input sequence,
discriminates the correct tag sequence from the alternative ones by means of a dynamic
programming algorithm. Following [2] and [3], [4] proposed an SVM-based formulation
for sequence labeling and [5] developed a related approach for sequence alignment.

In the same line of these previous methods, [6] proposed MSTParser, an online al-
gorithm to train a dependency parser that recast the parsing problem as a maximum
branching problem [7]. They propose to learn a scoring function s(i, j) over all candidate
head-dependent edges (i, j) such that the prediction problem F(x), that is to predict a
dependency tree for an input sentence x, is to find the maximum-score tree among the

1

valid rooted trees:
F(x) = arg max

y∈Y(x)
s(y), (1)

where s(y) = ∑(i,j)∈y s(i, j) is the score of a candidate tree y ∈ Y(x), i.e., the sum of its
edges scores. This is the well studied maximum branching problem that can be efficiently
solved by Chu-Liu-Edmonds’ algorithm [8,9]. There is also an improved implementation
of this algorithm by [7].

Obviously, the scoring function is key for MSTParser and has to generalize over any
possible input sentence. For a sentence x and a candidate edge (i, j), MSTParser deter-
mines s(i, j) by means of M real-valued feature functions (or, simply, features) denoted by
φm(x, i, j), for m = 1, . . . , M. These features describe the candidate edge from token xi to
token xj in a meaningful and general way. MSTParser uses several features like, for in-
stance, the i-th word, the j-th word, the part-of-speech of the i-th word, the distance from
xi to xj, the relative order between xi and xj, among others. Then, the scoring function is
defined as a weighted sum of the edge features:

s(i, j) =
M

∑
m=1

wm · φm(x, i, j),

where w = (w1, . . . , wM) comprises the model parameters that have to be learned. In
that way, the learning problem is to determine a parameter vector w such that the dis-
criminant F(·) has small empirical risk, which is given by R(D, w) = ∑(x,y)∈D 1[y 6=F(x)],
where D = {(x, y)} is the training dataset with correct sentence-tree pairs; and 1[p] is 1 if
p is true and 0 otherwise.

Eventually, researchers have realized that these mentioned task-specific structured
learning methods were highly related and could be unified into a general framework.
This generalized framework for structured machine learning is based on a prediction
function that is formulated as a discriminant optimization problem. The objective func-
tion of this optimization problem is a linear function on a joint feature vector Φ(x, y) =
(φ1(x, y), . . . , φM(x, y)), for given input x and output structure y ∈ Y(x). Thus, for an
input x, the discriminant problem is defined as:

F(x) = arg max
y∈Y(x)

〈w, Φ(x, y)〉, (2)

where Y(x) is the set of all feasible output structures for the input x and 〈·, ·〉 is the scalar
product operator. Regarding dependency parsing, we can rewrite (1) in the form of (2)
by letting φm(x, y) = ∑(i,j)∈y φm(x, i, j) be the global feature function that combines the
feature m on all edges into a unique value. In that way, we have that

s(y) = ∑
(i,j)∈y

M

∑
m=1

wm · φm(x, i, j) =
M

∑
m=1

wm ∑
(i,j)∈y

φm(x, i, j) =
M

∑
m=1

wm · φm(x, y),

which is equal to 〈w, Φ(x, y)〉.

The power of this framework relies mainly on the freedom to define the feature map-
ping Φ(x, y), the output space Y(x), and how the features are decomposed along the out-
put structures y ∈ Y(x). In MSTParser, for instance, the output space comprises rooted
trees and the features are decomposed along the candidate edges. Thus, the discriminant
problem is reduced to the maximum branching problem that can be efficiently solved.
Task modeling through this framework involves a trade-off between feature meaning-
fulness and feature simplicity. Features shall be representative enough w.r.t. the task at

2

hand, but, conversely, they shall also be local or well behaved enough w.r.t. the output
space, to avoid intractable discriminant problems.

There are some training algorithms that learn the parameter vector w from a given
training dataset D = {(x, y)} of correct input-output pairs. For instance, [3] proposed
the structured perceptron algorithm, a generalization of the well known binary percep-
tron algorithm for sequence labeling problems. The structured perceptron can be easily
applied to any structured problem. [3] also proved that the structured perceptron con-
verges to a zero-error solution, if one exists. [10] proposed the margin infused relaxed
algorithm (MIRA), an online algorithm to train structured models for multiclass prob-
lems. MIRA can be extended for virtually any structured problem and, for instance, is
the MSTParser’s training algorithm. [10] also proved some mistake bounds for an al-
gorithm class called ultraconservative. This class includes MIRA and structured percep-
trons. [11] formulated the structured learning problem through a regularized maximum-
margin framework, inspired on the binary SVM formulation. They also proposed a cut-
ting plane method to efficiently solve this problem. However, this method still requires
more computational power and memory than online algorithms like structured percep-
tron and MIRA. Additionally, the online algorithms are simpler to implement than the
SVM-based one.

Feature generation is an important subtask of structured learning modeling. Usu-
ally, it is partially solved by a domain expert that generates complex and discriminative
feature templates by conjoining the available basic features. This is a limited and ex-
pensive way to obtain feature templates and is recognized as a modeling bottleneck. A
common alternative is to employ a kernel function, when the learning algorithm allows
so. However, one drawback of kernels is related to overtraining since it is difficult to
finely tune the trade-off between representation power and unseen data generalization.
We propose an automatic method to generate feature templates for structured learning
algorithms. The method receives as input the training dataset with basic features and
produces a set of feature templates by conjoining basic features that are highly discrim-
inative together. We denote this method entropy-guided feature generation (EFG) since it
is based on the conditional entropy of local output variables given some basic features.
Preliminary results on some natural language processing (NLP) problems indicate that
EFG outperforms manually created templates and kernel-based methods. We report on
experiments on four datasets involving three NLP tasks and two languages.

We further propose to model two complex natural language processing problems that,
as far as we know, have never been approached by structured learning methods before.
Namely, quotation extraction and coreference resolution. We plan to model different
discriminant problems for these two problems and also for more basic problems. For
instance, text chunking and named entity recognition are two tasks that have been recur-
rently recast as sequence tagging problems, even not being so. The aim, on both tasks, is
to identify chunks of words that have a specific meaning in the sentence. Another pro-
posed contribution of this work consists in modeling these two tasks through the well
known weighted interval scheduling problem. In this way, we will be able to use more
powerful features.

In this work, we make use of a generalization of Collins’ structured perceptron with
large margin strategy in order to train our models. In Section 2, we describe this algo-
rithm and its kernelized version that is important to understand the proposed entropy-
guided feature generation approach. Two main alternative approaches to feature gener-
ation are presented in Section 3, namely manual feature generation and kernel methods.
In this section, we also discuss previous work based on these alternative approaches. In
Section 4, we present the proposed entropy-guided feature generation method. The pro-

3

posed contributions related to task modeling are described in Section 5. Finally, prelim-
inary results are discussed in Section 6 and concluding remarks are presented in Section
7.

2 Structured Perceptron

The structured perceptron algorithm [3] is analogous to its binary counterpart. Given
a training sample D of correct input-output pairs, the algorithm generates a sequence
w0 = 0, w1, . . . , wK of models. At each iteration k = 0, . . . , K, a training instance (x, y) is
drawn from D and two major steps are performed, that is:

(1) Prediction: ŷ← F(x), using the current model wk,

(2) Model Update: wk+1 ← wk + Φ(x, y)−Φ(x, ŷ).

Note that, when a correct prediction is made, that is ŷ = y, the model does not change,
that is wk+1 ← wk. When the prediction is wrong, the update rule favors the correct
output y over the predicted one ŷ. Regarding binary features, for instance, the update
rule increases the weights of features that are present in y but missing in ŷ and decreases
the weights of features that are present in ŷ but not in y. The weights of features that are
present in both y and ŷ are not changed. A simple extension of Novikoff’s theorem [12]
shows that the structured perceptron is guaranteed to converge to a zero loss solution, if
one exists, in a finite number of steps [4, 13]. [10] further prove some mistake bounds for
the structured perceptron algorithm.

2.1 Large Margin Training

The structured perceptron algorithm finds a classifier with no concern about its margin.
However, it is well known that large margin classifiers provide better generalization per-
formance on unseen data. MIRA [10], which is MSTParser’s training algorithm, is an
generalization of the structured perceptron algorithm that generates a large margin clas-
sifier. However, in this work, we use another large-margin generalization of the struc-
tured perceptron that is based on the margin rescaling technique for structured support
vector machines [14]. For a training instance (x, y) ∈ D, instead of the ordinary discrimi-
nant problem F(x), we use the following loss-augmented discriminant problem in the step
(1) of the structured perceptron algorithm:

F`(x) = arg max
ỹ∈Y(x)

〈w, Φ(x, ỹ)〉+ `(y, ỹ),

where `(·, ·) ≥ 0 is a given loss function that measures the difference between a candi-
date tree and the correct one. For instance, the most common loss function for depen-
dency trees just counts how many tokens have been assigned for an incorrect head, that
is `(y, ỹ) = ∑T

i=1 1[y(i) 6=ỹ(i)], where y(i) is the head of the i-th token in y.

By using the loss-augmented discriminant, a training instance (x, y) implies a model
update whenever the current model does not respect the following margin constraint:

s(y)− s(ỹ) ≥ `(y, ỹ), ∀ỹ ∈ Y(x).

If a model respects this constraint then the current discriminant function F(x) separates
the correct output y from every alternative ỹ ∈ Y(x) by a margin as large as the loss

4

`(y, ỹ) between them. In that way, the training algorithm incorporates some information
about the structured empirical riskR(D, w) of the current model, defined as

R(D, w) = ∑
(x,y)∈D

`(y, F(x)).

2.2 Kernelization

Analogously to the binary perceptron algorithm, its structured generalization can easily
be kernelized. Given the sequence (x1, y1, ŷ1), . . . , (xk, yk, ŷk) of inputs, correct outputs
and predicted outputs considered by the training algorithm up to time k, the parameter
vector at this point can be defined as

wk = 0 +
k−1

∑
j=1

[
Φ(xj, yj)−Φ(xj, ŷj)

]
.

The algorithm can keep track of how many times each alternative output ŷ has been pre-
dicted instead of the correct output y for each example pair (x, y) by means of counters
αx,y,ŷ. Thus, the parameter vector can be rewritten as

w = ∑
x,y,ŷ

αx,y,ŷ · [Φ(x, y)−Φ(x, ŷ)] , (3)

which is called the dual model representation. For many structured problems, the output
space Y(x) is huge – exponential on the input size – or even infinity. Thus, the dual model
representation may comprise an intractable number of parameters. However, these pa-
rameters are initially zero for all x, y, ŷ and only need to be instantiated once the respective
triplet is actually seen.

Using (3), the objective function of the discriminant problem can also be rewritten as

〈w, Φ(x′, y′)〉 = ∑
x,y,ŷ

αx,y,ŷ ·
[
〈Φ(x, y), Φ(x′, y′)〉 − 〈Φ(x, ŷ), Φ(x′, y′)〉

]
,

which depends only on inner products of feature vectors of the form 〈Φa, Φb〉, where Φa

and Φb are shortcuts to, respectively, Φ(xa, ya) and Φ(xb, yb) for any input-output pairs
(xa, ya) and (xb, yb). Following the kernel trick [15], the inner products of feature vectors
can then be replaced by appropriate kernel functions

K(Φa, Φb) = 〈Ψ(Φa), Ψ(Φb)〉,

where Ψ(·) expands elements from the original feature vector space Φ(·, ·) to a much
higher dimensional space. The kernel trick relies on the kernel function K(·, ·) to ef-
ficiently compute inner products in the high dimensional space of Ψ with no need to
explicitly expand the original space of Φ.

The most successful kernel type for NLP problems is the polynomial kernel. Regarding
binary features, a polynomial kernel of degree d expands the original feature space by
conjoining original features through all possible combinations with up to d features. The
polynomial kernel of degree d can be efficiently computed by

Kd(Φ
a, Φb) =

(
〈Φa, Φb〉+ 1

)d
,

which involves only an inner product in the original feature space, a sum of a constant,
and an exponentiation. For instance, if d = 2 and the original space has exactly 3 binary

5

features, then the explicit polynomial kernel expansion of Φ(x, y) = (φ1, φ2, φ3) corre-
sponds to Ψ(Φ(x, y)) = (1, φ1, φ2, φ3, φ1φ2, φ1φ3, φ2φ3).

In general, just like features, kernel functions are also decomposed along the output
structures. Thus, the dual model representation can be even more sparse by using α
counters for each individual element that appears in (x, y) but not in (x, ŷ), or vice-versa.
This decomposition is task dependent, and, e.g., the individual elements of dependency
trees are edges.

3 Related Work

In this section, we discuss previously proposed approaches to perform feature genera-
tion for structured problems. We focus on two main approaches: manually generated
templates and polynomial kernel functions.

Transformation based learning (TBL) was proposed by [16] for part-of-speech tagging.
TBL is a machine learning algorithm tailored for sequence labeling problems and has
been applied to several NLP problems. For instance, part-of-speech tagging [16], text
chunking [17], and named entity recognition [18]. TBL learns a sequence of transfor-
mation rules that iteratively correct errors in the training corpus by means of a set of
rule templates given as input. These templates are manually created by conjoining ba-
sic features to form a discriminative, compound feature. Entropy guided transformation
learning (ETL) [19] generalizes TBL by automatically generating the required templates.
ETL employs the information gain measure, which is based on entropy, in order to se-
lect feature combinations. In this work, we apply this strategy to structured learning
algorithms.

TBL is never applied without feature templates. Conversely, many other machine
learning algorithms, like SVM and Winnow for instance, do not require feature tem-
plates and can be directly applied on basic features. However, many systems based on
these algorithms also employ templates to improve their performances. Some of the best
performing systems for text chunking [20, 21], dependency parsing [22], among several
others, make use of simple, manually created feature templates. This is a limited and
expensive way to obtain feature templates and is recognized as a modeling bottleneck.

One alternative to manually created templates is the use of polynomial kernel func-
tions. Kernel functions allow the efficient computation of all possible feature combina-
tions with a given maximum number of features d. Many NLP tasks have been suc-
cessfully approached by kernel methods with polynomial kernel functions. Just to name
a few, [20] for text chunking, [23] for named entity recognition, and [1] for dependency
parsing are all SVM-based systems with 2nd-degree polynomial kernel that achieve state-
of-the-art performances. However, a key issue with polynomial kernel functions is the
difficult to finely tune the trade-off between model representation power and overtrain-
ing. The user has no control on which feature combinations are used, i.e., the kernel
function always computes all possible feature combinations. The greater the degree of
the kernel, the greater its representation power but also its overtraining sensitivity.

4 Entropy-Guided Feature Generation

Feature generation is an important subtask of structured learning modeling. Usually, a
task dataset includes some basic features that are either naturally included in the very

6

phenomenon of interest, like words for NLP tasks; simply derived from other basic fea-
tures, like capitalization information; or automatically generated by external systems,
like part-of-speech tags. However, using basic features independently is not enough
to achieve state-of-the-art results. Thus, it is necessary to conjoin basic features to im-
prove performance. Frequently, a domain expert manually generates feature templates
by conjoining the given basic features. MSTParser, for instance, uses 21 feature templates
that were manually created from basic features given in the input dataset. In this sec-
tion, we describe the proposed entropy-guided feature generation method for structured
learning, that automatically create feature templates by conjoining basic features that are
highly discriminative together. The method uses decision tree induction to incorporate
the conditional entropy of local decision variables given input features.

Decision tree (DT) learning is one of the most widely used machine learning algo-
rithms. It performs a partitioning of the training set using principles of information the-
ory. The learning algorithm executes a general to specific search of a feature space. The
most informative feature is added to a tree structure at each step of the search. Informa-
tion gain, which is based on the data entropy, is normally used as the informativeness
measure. The objective is to construct a tree, using a minimal set of features, that effi-
ciently partitions the training set into classes of observations. Usually, after the tree is
grown, a pruning step is carried out in order to avoid overfitting.

Information gain is based on entropy and is a key strategy for feature selection. The
most popular decision tree learning algorithms [24, 25] use this measure. Hence, they
provide a quick way to obtain entropy guided feature selection. We propose a new au-
tomatic feature generation method for structured learning algorithms. The key idea is to
use decision tree induction to obtain new features by conjoining the given basic features.
One of the most used algorithms for DT induction is C4.5 [24]. We use Quinlan’s C4.5 sys-
tem to obtain the required entropy guided selected features. The same strategy has been
used for automatic template generation in entropy guided transformation learning [19]
that generalizes transformation based learning [16].

The first step of our method is to train a decision tree on a dataset where each exam-
ple comprises the basic features of one local decision variable of the discriminant problem.
Regarding dependency parsing, for instance, the local decision variables correspond to
edges, since the discriminant problem is to choose some edges from all possible edges
between tokens. Thus, for each sentence in the input dataset, we generate an example for
each pair of tokens. Local decision variables coincide with the decomposition of the fea-
ture vectors along the output structure. These local variables will be predicted by the DT
algorithm and are also the individual decision variables in the discriminant algorithm.
In dependency parsing, for instance, there is a decision variable for each candidate edge,
that is for each example, and it is a binary variable that indicates whether an edge is in-
cluded in the solution or not. Hence, the DT algorithm will learn a decision tree to predict
whether an edge is valid or not.

From the learned DT, our method uses a very simple tree decomposition scheme to
extract templates. The decomposition process is based on a depth-first traversal of the
DT and thus can be recursively described as in the following. For each visited node, a
new template is created by conjoining the node feature with its parent template. To limit
the maximum template length, we use pruned trees. Figure 2 illustrates our method
applied to the DP task. The tree in the left side of the figure uses four basic features
(rectangular nodes): dist is the absolute distance between the head and the dependent
token, side is the side of the head token relative to the dependent token, dep-pos and
head-pos are the part-of-speech tag of the dependent and the head token, respectively.
The round nodes are the decision variable values. The generated templates are listed in

7

Decision Tree Templates

• dist
• dist, side
• dist, dep-pos
• dist, dep-pos, head-pos
• dist, dep-pos, side

Figure 2: Feature generation from a decision tree

the right side of the figure. In other words, we create a template for each path from the
root to every other DT node, ignoring the feature values at the DT edges, thus using only
the node features.

5 Task Modeling

In this work, we propose machine learning systems based on structured perceptron for
several NLP problems. In this section, we describe the structured modeling for these
tasks. Some modeling strategies are applied to more than one task, thus we describe only
the general modeling approach and, later in Section 6, we describe the specific details for
each task.

5.1 Sequence Labeling

Sequence labeling learning [26] is to find a mapping from an input sequence x = (x1, . . . ,
xT) to a sequence of labels y = (y1, . . . , yT), where yi ∈ Σ. That is, each element of x is
annotated with an element of the output alphabet Σ which denotes the set of labels. As
before, we denote the set of all possible labellings for x by Y(x).

In order to model the sequence labeling task through the structured learning frame-
work, we need to define the feature vector Φ(x, y) and its decomposition along the se-
quence y, so that the discriminant problem F(x) = arg maxy∈Y(x)〈w, Φ(x, y)〉 can be effi-
ciently solved. We use the decomposition scheme from [3], which relies on a Markov-like
property. The best scoring label of any token is determined by parameters that depend
only on the constant input sequence x, the token label itself and the previous token la-
bel. In that way, the discriminant problem can be solved by a dynamic programming
algorithm that is equivalent to Viterbi decoding for hidden Markov models.

In that way, the feature vector Φ(x, y) comprises two feature subsets: Φobs(x, y) for
observation features that depend only on the input x and individual token labels; and
Φtrans(y) for transition features that depend on two consecutive labels. For each possible
pair of labels σ, τ ∈ Σ, the transition feature φtrans

στ (y) indicates how many label pairs
within y are consecutively labeled σ and τ. So, this feature is decomposed along y as

φtrans
στ (y) =

T

∑
i=1

(
1[yi−1=σ] · 1[yi=τ]

)
.

Thus, we have that Φtrans(y) = (φtrans
στ (y))σ,τ∈Σ.

8

The observation features are defined by means of M binary features. Each token com-
prises a subset of such features. For instance, we can have the following binary features:
“the token word is light”, “the token part-of-speech is verb”, “the word of the previous token is
the”, and so on. Hence, we usually have millions of such features in the training corpus,
but just a small fraction of them occur in each token. We represent a binary feature by
its index m ∈ {1, . . . , M}. Each binary feature corresponds to |Σ| observation features,
one for each state σ ∈ Σ. The observation feature denoted by φobs

σ,m(x, y) determines how
many times within (x, y) the feature m occurs in a token labeled as σ. Therefore, by letting
π(xi) be the set of binary features in the i-th token of x, we can express the decomposition
of an observation feature along y by

φobs
σ,m(x, y) =

T

∑
i=1

(
1[yi=σ] · 1[m∈π(xi)]

)
.

We then define the observation feature vector as Φobs(x, y) = (Φobs
σ (x, y))σ∈Σ, where

Φobs
σ (x, y) = (φobs

σ,1 (x, y), . . . , φobs
σ,M(x, y)). And, finally, the complete feature vector is

Φ(x, y) =
(
Φobs(x, y), Φtrans(x, y)

)
.

For sequence labeling, we use the loss function `(y, ỹ) = ∑T
i=1 1[yi 6=ỹi]

that counts the
number of mislabeled tokens.

5.2 Fixed Nodes Tree

Dependency parsing consists in predicting a rooted tree underlying a given sentence.
The nodes of this tree are always fixed, they are the tokens within the sentence. Thus,
we name this type of structure fixed nodes tree, in contrast to other structure, which we
discuss later, whose nodes must be determined by the discriminant problem. Since we
have already presented this modeling approach in the context of DP, in this section, we
just summarize it using more general designations.

Let x = (x0, x1, . . . , xT) be an input sequence, where xi is the i-th token and x0 is a
dummy token which is always the root of the tree. We define Y(x) as the set of all rooted
trees whose nodes are tokens in x and the root node is x0. A tree y ∈ Y(x) is represented
as a set of directed edges (i, j), where i and j are token indexes in x. Each edge (i, j) is
defined by M real-valued features denoted by φm(x, i, j), for m = 1, . . . , M. These local
features are combined into global features by letting

φm(x, y) = ∑
(i,j)∈y

φm(x, i, j).

Therefore, the complete joint feature vector is given by Φ(x, y) = (φ1(x, y), . . . , φM(x, y)).
The loss function is given by `(y, ỹ) = ∑T

j=1 1[y(j) 6=ỹ(j)], where y(j) is the unique token i
such that (i, j) ∈ y.

5.3 Sequence Segmentation

Text chunking and named entity recognition are some examples of tasks that comprise
the identification of segments within a sentence. Named entity recognition, for instance,
is to identify mentions of real-world entities and to classify them on categories like per-
son, location, and company. Text chunking consists in identifying chunks of tokens that
present strong syntactic relation and classifying them according to its syntactic function
in the sentence.

9

Usually, segmentation tasks like those are recast as sequence labeling problems by
means of the so called IOB tagging style. The IOB tagging style specifies three types of
tags: B for tokens that start a segment; I for tokens that continue a segment; and O for
tokens that are not part of any segment. Furthermore, the IOB2 tagging style extends IOB
by attaching a type to B and I tags, so that one can segment a sequence and simultane-
ously classify the segments.

These tagging styles have been proposed to allow the application of ordinary classifi-
cation approaches to sequence segmentation tasks. However, it is clear that segmentation
is quite different from labeling. Thus, in this work, we propose to solve segmentation
tasks through structured learning in a more natural way. We can model this problem by
somehow generating segment candidates and reducing the discriminant problem to the
weighted interval scheduling problem (WIS). If it is not possible to filter which segments
are valid candidates, one can generate all |T|2 possible candidates. Since, for many prob-
lems, sequences are short and WIS can be solved in linear time for ordered segments, this
approach is perfectly feasible.

Quotation extraction consists in identifying quotes and their authors within a given
document. Quotes cannot overlap among them and each quote must be associated to ex-
actly one author. We also propose to model quotation extraction through sequence seg-
mentation. Again, we can generate candidates for quotes by means of heuristics or sim-
ply by generating all possible segments. Furthermore, for each pair of candidate quote
and author (authors are given), we generate a candidate quotation whose segment cor-
responds to the span of the quote in the document. In that way, the WIS algorithm will
choose at most one quotation among all candidates for one specific quote. Moreover, the
discriminant algorithm will never choose overlapping quotes, since this is a constraint in
the algorithm.

5.4 Variable Nodes Tree

Some NLP problems consist in identifying a tree structure underlying a sentence such
that tokens are tree leaves and the internal nodes need be determined. This type of struc-
ture is substantially different from dependency trees. Full parsing and clause identifi-
cation are some examples of such tasks. Usually, there are specific algorithms for each
task. For clause identification, for instance, a dynamic programming algorithm has been
proposed by [21]. We propose to apply the EFG approach to clause identification for the
English and Portuguese languages.

5.5 Clustering

Coreference resolution [27] consists in, given a set of entity mentions within a document,
identifying which subsets of mentions are related to the same real-world entity. This
problem can be naturally modeled as clustering of mentions. However, the number of
clusters is unknown and the optimization problem is NP-hard. On the other hand, sev-
eral authors [28–31] have reported that structured learning is feasible even with approx-
imate discriminants. These studies have shown that the learning algorithm is able to
adjust the feature parameters so that an approximate algorithm can still correctly solve
the discriminant problem. This occurs because the feature parameters are adjusted ac-
cording with the mistakes of the discriminant algorithm. Thus, we propose to tackle
coreference resolution through a clustering approach with approximate discriminant.

10

6 Experimental Results

We have already developed two modeling approaches based on structured perceptron,
namely sequence labeling and fixed nodes tree. We have also applied the sequence label-
ing approach to three tasks: English part-of-speech tagging (POS), English text chunking,
and Portuguese text chunking. Furthermore, we have developed a system for Portuguese
dependency parsing based on the fixed nodes tree approach. In this section, we summa-
rize the obtained results and compare them to other systems.

We split our report into two subsections. In the first subsection, we compare the pro-
posed entropy-guided feature generation to two other feature generation approaches –
namely, manual templates and polynomial kernels. For this comparison, we set equiv-
alent conditions, i.e., same datasets and basic features. In the second subsection, we
compare the best performances obtained by our systems to the best performing available
systems. In this case, we eventually compare systems that use different basic features,
however they are always evaluated on the same dataset.

6.1 Feature Generation Approaches

We argue that entropy-guided feature generation solves a structured ML modeling bot-
tleneck, that is the need to manually create feature templates. However, many authors
have proposed successful systems based on manually generated templates. We use the
CoNLL’2006 corpus [32] for Portuguese dependency parsing to compare the proposed
entropy-guided feature generation method and a state-of-the-art, manually created tem-
plate set. [22] proposed MSTParser and currently this is the best performing system for
DP on the Portuguese corpus from CoNLL’2006. MSTParser is based on 21 manually cre-
ated feature templates that conjoin basic features in order to form more discriminative,
compound features. We use these templates to train a structured perceptron model and
evaluate it on the CoNLL’2006 Portuguese corpus. The performance measure for this task
is the unlabeled attachment score (UAS) that expresses the percentage of tokens attached
to their correct heads. The performances of this system and the system with entropy-
guided templates can be found in Table 1 (first row). We can observe that EFG reduces

Other System EFG
Task Language Algorithm Features F1 F1

DP Portuguese S-Perceptron Manual Templates 90.06 90.28
Chunking English SVM Kernel 93.48 94.12
Chunking Portuguese S-Perceptron Kernel 86.70 87.50

Table 1: Feature generation methods comparison

by 2.2% the error of the manual templates system. That is not a great improvement, but it
is more than enough to show the value of EFG. Manual templates require the expensive
work of a domain expert. On the other hand, EFG is totally automatic.

Another alternative approach to feature templates are kernel functions. More specifi-
cally, polynomial kernels can be used to efficiently generate all possible feature combina-
tions. [33] reported that quadratic kernels produce the best performance for English text
chunking. Thus, we compare EFG to 2nd-degree polynomial kernels on two text chunk-
ing corpora: the CoNLL’2000 English corpus [34] and the Portuguese corpus from [35].
We can see from Table 1 that EFG outperforms the kernel-based approaches, reducing
the prediction error by 9.8% for English (second row) and 6% for Portuguese (third row).

11

These are substantial improvements.

Moreover, the use of kernel functions implies a great increase on training and test
time. [36] reported that training time using a quadratic kernel was 34 times greater than
using no kernel function for the same English corpus used here. NLP data is usually very
sparse, thus such problems imply a very large number of support vectors. Since kernel
methods training time is proportional to the number of support vectors, these methods
are specially problematic on NLP data.

6.2 State-of-the-art Systems

We have additionally developed another system based on EFG for part-of-speech tagging
for the English language. We report on Table 2 the results for English POS tagging on the

State-of-the-art EFG Error
Task Language System F1 F1 Reduction
POS English ETL 96.83 96.72 −3.5%

Chunking English SVM 94.17 94.12 −0.9%
Chunking Portuguese ETL 86.22 87.50 7.3%

DP Portuguese MSTParser 91.36 92.66 15.0%

Table 2: State-of-the-art performances comparison

Brown corpus [37], and also for other three widely used corpora. For each corpus, we
also report the best known performing system. The last column of the table reports the
error reduction achieved by our EFG based systems. Negative values indicate a greater
error of our system. We can see that we achieve good results for English POS tagging and
state-of-the-art comparable results for English text chunking. Moreover, we substantially
reduce the current state-of-the-art error on Portuguese text chunking and dependency
parsing. Our best result for DP is achieved by directly including two new basic features
in the CoNLL’2006 corpus: text chunking and clause information. This result illustrates
the easiness of use of EFG, when adding new basic features to our modeling. When using
manually generated templates, the domain expert has to design new feature templates
considering the available features.

7 Concluding Remarks

We propose an automatic feature generation approach for structured learning that is
based on the conditional entropy of local decision variables given input basic features.
We evaluate this technique on four NLP datasets and experimentally show its value
by comparing its performances with two important alternatives to feature generation,
namely manual template generation and polynomial kernel functions. Our experimental
results show that the proposed entropy-guided feature generation approach outperforms
both alternative methods and, furthermore, presents additional advantages. EFG is faster
than kernel methods and avoid the overtraining issue, very common in this alternative
method. Compared to manually created feature templates, the fact that EFG bypasses do-
main experts is highly valuable. Furthermore, the developed EFG-based systems present
state-of-the-art comparable performances on the evaluated datasets. Moreover, on Por-
tuguese dependency parsing, our system remarkably reduces the previous smallest error
by more than 15%.

12

As future work, we also propose to model two complex NLP tasks that, as far as
we know, have never been approached by structured learning methods before. Namely,
quotation extraction and coreference resolution. We plan to model different discriminant
problems for these two problems and also for more basic problems. For instance, text
chunking and named entity recognition are two tasks that have been recurrently recast
as sequence tagging problems, even not being so. The aim, on both tasks, is to identify
chunks of words that have a specific meaning in the sentence. Another proposed contri-
bution of this work consists in modeling these two tasks through the weighted interval
scheduling problem. In this way, we expect to use more powerful features.

References

[1] NIVRE, J.; HALL, J.; NILSSON, J.; ERYIǦIT, G. ; MARINOV, S.. Labeled pseudo-
projective dependency parsing with support vector machines. In: PROCEEDINGS
OF THE TENTH CONFERENCE ON COMPUTATIONAL NATURAL LANGUAGE
LEARNING, CoNLL-X ’06, p. 221–225, Stroudsburg, PA, USA, 2006. Association for
Computational Linguistics.

[2] WESTON, J.; WATKINS, C.. Multi–class support vector machines. Technical Report
CSD-TR-98-04, Department of Computer Sciences, Royal Holloway, University of
London, 1998.

[3] COLLINS, M.. Discriminative training methods for hidden Markov models: the-
ory and experiments with perceptron algorithms. In: PROCEEDINGS OF THE
ACL-02 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE
PROCESSING, p. 1–8, 2002.

[4] ALTUN, Y.; TSOCHANTARIDIS, I. ; HOFMANN, T.. Hidden Markov support vec-
tor machines. In: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON
MACHINE LEARNING, 2003.

[5] JOACHIMS, T.. Learning to align sequences: A maximum-margin approach. Tech-
nical report, Cornell University, 2003.

[6] MCDONALD, R.; CRAMMER, K. ; PEREIRA, F.. Online large-margin training of
dependency parsers. In: PROCEEDINGS OF THE 43RD ANNUAL MEETING ON
ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL’05, p. 91–98, 2005.

[7] TARJAN, R. E.. Finding optimum branchings. Networks, 7:25–25, 1977.

[8] CHU, Y. J.; LIU, T. H.. On the shortest arborescence of a directed graph. Science
Sinica, 14:1396–1400, 1965.

[9] EDMONDS, J.. Optimum branchings. Journal of Research of the National Bureau
of Standards, 71B:233–240, 1967.

[10] CRAMMER, K.; SINGER, Y.. Ultraconservative online algorithms for multiclass
problems. Journal of Machine Learning Research, 3:951–991, 2003.

[11] TSOCHANTARIDIS, I.; HOFMANN, T.; JOACHIMS, T. ; ALTUN, Y.. Support vec-
tor machine learning for interdependent and structured output spaces. In: PRO-
CEEDINGS OF THE INTERNATIONAL CONFERENCE ON MACHINE LEARN-
ING, 2004.

13

[12] NOVIKOFF, A. B.. On convergence proofs on perceptrons. In: PROCEEDINGS OF
THE SYMPOSIUM ON THE MATHEMATICAL THEORY OF AUTOMATA, 1962.

[13] COLLINS, M.. Ranking algorithms for named-entity extraction: Boosting and
the voted perceptron. In: PROCEEDINGS OF THE ANNUAL MEETING OF THE
ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, 2002.

[14] TASKAR, B.; GUESTRIN, C. ; KOLLER, D.. Max–margin Markov networks. In:
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS, 2004.

[15] VAPNIK, V.. Statistical Learning Theory. Wiley, 1998.

[16] BRILL, E.. Transformation-based error-driven learning and natural language pro-
cessing: a case study in part-of-speech tagging. Comput. Linguist., 21:543–565,
Dec. 1995.

[17] RAMSHAW, L.; MARCUS, M.. Text chunking using transformation-based learn-
ing. In: PROCEEDINGS OF THE THIRD WORKSHOP ON VERY LARGE COR-
PORA, p. 82–94, 1995.

[18] MILIDIÚ, R. L.; DUARTE, J. C. ; CAVALCANTE, R.. Machine learning algorithms
for portuguese named entity recognition. In: FOURTH WORKSHOP IN INFOR-
MATION AND HUMAN LANGUAGE TECHNOLOGY, 2006.

[19] DOS SANTOS, C. N.; MILIDIÚ, R. L.. Entropy guided transformation learning. In:
FOUNDATIONS OF COMPUTATIONAL INTELLIGENCE (1), p. 159–184. Springer,
2009.

[20] KUDO, T.; MATSUMOTO, Y.. Chunking with support vector machines. In: PRO-
CEEDINGS OF THE SECOND MEETING OF THE NORTH AMERICAN CHAPTER
OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS ON LANGUAGE
TECHNOLOGIES, NAACL’01, p. 1–8, Stroudsburg, PA, USA, 2001. Association for
Computational Linguistics.

[21] CARRERAS, A. X.; MÀRQUEZ, B. L. ; CASTRO, C. J.. Filtering-ranking perceptron
learning for partial parsing. Machine Learning, 60:41–71, 2005. 10.1007/s10994-
005-0917-x.

[22] MCDONALD, R.; LERMAN, K. ; PEREIRA, F.. Multilingual dependency analysis
with a two-stage discriminative parser. In: IN PROCEEDINGS OF THE CONFER-
ENCE ON COMPUTATIONAL NATURAL LANGUAGE LEARNING (CONLL, p.
216–220, 2006.

[23] ISOZAKI, H.; KAZAWA, H.. Efficient support vector classifiers for named entity
recognition. In: PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE
ON COMPUTATIONAL LINGUISTICS - VOLUME 1, COLING’02, p. 1–7, Strouds-
burg, PA, USA, 2002. Association for Computational Linguistics.

[24] QUINLAN, J. R.. C4.5: Programs for Machine Learning (Morgan Kaufmann Series
in Machine Learning). Morgan Kaufmann, 1 edition, 1992.

[25] SU, J.; ZHANG, H.. A fast decision tree learning algorithm. In: PROCEEDINGS
OF THE 21ST NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, p.
500–505, 2006.

14

[26] DIETTERICH, T.. Machine learning for sequential data: A review. In: PROCEED-
INGS OF THE JOINT IAPR INTERNATIONAL WORKSHOP ON STRUCTURAL,
SYNTACTIC, AND STATISTICAL PATTERN RECOGNITION, 2002.

[27] PRADHAN, S.; RAMSHAW, L.; MARCUS, M.; PALMER, M.; WEISCHEDEL, R. ;
XUE, N.. Conll-2011 shared task: Modeling unrestricted coreference in ontonotes.
In: PROCEEDINGS OF THE FIFTEENTH CONFERENCE ON COMPUTATIONAL
NATURAL LANGUAGE LEARNING SHARED TASK, p. 1–27, Portland, USA,
2011. ACL.

[28] MCDONALD, R.; PEREIRA, F.. Online learning of approximate dependency pars-
ing algorithms. In: IN PROC. OF EACL, p. 81–88, 2006.

[29] COLLINS, M.; ROARK, B.. Incremental parsing with the perceptron algorithm.
In: PROCEEDINGS OF THE 42ND ANNUAL MEETING ON ASSOCIATION FOR
COMPUTATIONAL LINGUISTICS, ACL’04, Stroudsburg, PA, USA, 2004. Associa-
tion for Computational Linguistics.

[30] MOORE, R. C.. A discriminative framework for bilingual word alignment. In:
PROCEEDINGS OF THE CONFERENCE ON HUMAN LANGUAGE TECHNOL-
OGY AND EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING,
HLT’05, p. 81–88, Stroudsburg, PA, USA, 2005. Association for Computational Lin-
guistics.

[31] DAUMÉ, III, H.; MARCU, D.. Learning as search optimization: approximate large
margin methods for structured prediction. In: PROCEEDINGS OF THE 22ND
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, ICML’05, p. 169–
176, New York, NY, USA, 2005. ACM.

[32] BUCHHOLZ, S.; MARSI, E.. CoNLL-x shared task on multilingual dependency
parsing. In: PROCEEDINGS OF THE TENTH CONFERENCE ON NATURAL
LANGUAGE LEARNING, p. 149–164, 2006.

[33] KUDO, T.; MATSUMOTO, Y.. Fast methods for kernel-based text analysis. In:
PROCEEDINGS OF THE 41ST ANNUAL MEETING ON ASSOCIATION FOR
COMPUTATIONAL LINGUISTICS - VOLUME 1, ACL’03, p. 24–31, Stroudsburg,
PA, USA, 2003. Association for Computational Linguistics.

[34] TJONG KIM SANG, E. F.; BUCHHOLZ, S.. Introduction to the conll-2000 shared
task: chunking. In: PROCEEDINGS OF THE 2ND WORKSHOP ON LEARNING
LANGUAGE IN LOGIC AND THE 4TH CONFERENCE ON COMPUTATIONAL
NATURAL LANGUAGE LEARNING - VOLUME 7, ConLL ’00, p. 127–132, Strouds-
burg, PA, USA, 2000. Association for Computational Linguistics.

[35] FERNANDES, E. R.; DOS SANTOS, C. N. ; MILIDIÚ, R. L.. A machine learning
approach to portuguese clause identification. In: Pardo, T. A. S.; Branco, A.; Klau-
tau, A.; Vieira, R. ; de Lima, V. L. S., editors, PROCEEDINGS OF THE 9TH INTER-
NATIONAL CONFERENCE ON COMPUTATIONAL PROCESSING OF THE POR-
TUGUESE LANGUAGE, volumen 6001 de Lecture Notes in Computer Science, p.
55–64. Springer, 2010.

[36] WU, Y.-C.; CHANG, C.-H. ; LEE, Y.-S.. A general and multi-lingual phrase chunk-
ing model based on masking method. In: Gelbukh, A., editor, COMPUTATIONAL
LINGUISTICS AND INTELLIGENT TEXT PROCESSING, volumen 3878 de Lecture
Notes in Computer Science, p. 144–155. Springer Berlin / Heidelberg, 2006.

15

[37] FRANCIS, W. N.; KUCERA, H.. Frequency analysis of english usage: Lexicon and
grammar. Houghton Mifflin, Boston, 1982.

16

	Introduction
	Structured Perceptron
	Large Margin Training
	Kernelization

	Related Work
	Entropy-Guided Feature Generation
	Task Modeling
	Sequence Labeling
	Fixed Nodes Tree
	Sequence Segmentation
	Variable Nodes Tree
	Clustering

	Experimental Results
	Feature Generation Approaches
	State-of-the-art Systems

	Concluding Remarks
	References

