
 

PUC 
 

ISSN 0103-9741 

 

Monografias em Ciência da Computação 

n° 18/11 

 

Semiotic Relations and Proof Methods 
 

Antonio L. Furtado       

  

  

Departamento de Informática 

 

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900 

RIO DE JANEIRO - BRASIL 
 

 

 



   

 

 



   

 

 

Monografias em Ciência da Computação, No. 18/11                                   ISSN 0103-9741 

Editor: Prof. Carlos José Pereira de Lucena                                                Decemberr,  2011 

 

Semiotic Relations and Proof Methods 
 

Antonio L. Furtado 
 

furtado@inf.puc-rio.br 

 

Abstract: When a direct proof of a statement S seems hard or even impossible to obtain, 

there may exist another statement (or set of statements) S*, somehow related to S, on the 

basis of which S can be proved. In order to investigate what options can be used to move 

from S to S*, four kinds of semiotic relations inspired on the four master tropes of semiotic 

research are briefly reviewed. Specifically, our syntagmatic, paradigmatic, antithetic and 

meronymic relations correspond, respectively, to metonymy, metaphor, irony and 

synecdoche. It is suggested that these four semiotic relations determine the options to move 

from S to S*, leading to proof by inference, proof by analogy, proof by contradiction, and 

proof by cases.  
 

Keywords: Semiotic Relations, Rhetorical Tropes, Proof Methods. 
 

Resumo: Quando uma prova direta de uma afirmação S parece difícil, senão impossível de 

obter, pode existir outra afirmação (ou conjunto de afirmações) S*, de algum modo 

relacionada com S, com base na qual S pode ser provada. Afim de investigar quais opções 

podem ser usadas para passar de S a S*, quatro tipos de relações semióticas inspiradas nos 

quatro tropos mestres pesquisados em semiótica são brevemente revistos. Especificamente, 

nossas relações sintagmáticas, paradigmáticas, antitéticas e meronímicas correspondem, 

respectivamente, a metonímia, metáfora, ironia e sinédoque. Sugere-se que estas quatro 

relações semióticas determinam as opções para a passagem de S a S*, levando a prova por 

inferência, prova por analogia, prova por contradição, e prova por casos. 
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veritas est adæquatio rei et intellectus 
St. Thomas Aquinas quoting Isaac Israeli, 

 Summa Theologica, I, q. 16; a. 2, ad 2. 

 

µηδείς αγεωµέτρητος εισίτω  
written over the entrance of Plato's Academy. 

 
 

 

1. Introduction 

 

The objective of this paper is to investigate what options one has to move from a statement 

S that does not seem to be directly provable to some related statement (or set of statements) 

S*, which could be shown to be true and to imply that S itself must be true. We suggest that 

there are four basic ways to move from S to S*, enabled by what we have categorized as 

semiotic relations. These relations have been drawn from the so-called four master tropes, 

a topic of major interest in the area of semiotic research [Chandler]. It is no coincidence 

that 'trope' comes from the Greek 'τροποσ' from 'τρεπειν', 'to turn', akin to the notion of 

moving that underlies the present discussion.  

 Our four semiotic relations, together with their intuitive meaning, associated logical 

connectives, and corresponding tropes are listed below:   

 

      relation   meaning      connective      trope____ 
syntagmatic  contiguity, sequence   and        metonymy 

paradigmatic  similarity, alternatives  or         metaphor 

antithetic   opposition, negation   not        irony 

meronymic  hierarchy, details    part-of       synecdoche 
 

 These four tropes were characterized as fundamental, among the numerous rhetorical 

tropes popular in Greco-Roman antiquity [Quintilian], first in the XVI
th

 century [Ramus] 

and again in the XVIII
th

 century [Vico]. In modern times they were revived in a seminal 

study [Burke]. Their universality has been repeatedly emphasized, with the indication that 

they may constitute "a system, indeed the system, by which the mind comes to grasp the 

world conceptually in language" [Culler]. Applications to several topics have been 

reported, for instance to worldviews and ideologies [White] and, in our own work, to digital 

interactive composition of story-plots [Ciarlini-2]. 

 With respect to the names we assigned to the proposed semiotic relations, the terms 

'syntagmatic' and 'paradigmatic' correspond to the two linguistic axes of [Saussure]. The 

term 'antithetic' reflects the fact that, according to [Burke], the perspective induced by the 

irony trope is associated with dialectic, which features antithesis as a key concept 

expressing negation. Finally, in [Winston], wherein six types of part-of links are 

distinguished, one reads: "We will refer to relationships that can be expressed with the term 

'part' in the above frames as 'meronymic' relations after the Greek 'meros' for part". 

 Informally speaking, the preferred strategy to apply when S is not directly provable is to 

look for other statements, in the same domain, from which S could be deduced. If no clues 

are offered by the original domain, one may try to locate an analogue to S in another 

domain, which may be more amenable to a successful treatment. Especially when S is an 

assertion that something cannot hold, an often convenient option is to assume the contrary 
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and then show that the assumption leads to an inconsistency. Finally, if a general proof of S 

is unfeasible, one may break down the problem into an exhaustive list of cases, to be 

handled separately one by one. The main thrust of this paper is that these four options to 

prove a statement S in connection with a statement (or set of statements) S* – namely proof 

by inference, proof by analogy, proof by contradiction, and proof by cases – are determined 

by the four semiotic relations mentioned before. 

 The paper is organized as follows. Section 2 deals with the application of the four proof 

methods, relying on examples to illustrate the connection of each method with the 

respective enabling semiotic relation. Sections 3 and 4 discuss a few problems arising from 

the complementary processes of finding a proof and expressing it convincingly. Section 5 

contains concluding remarks. 

      

2. Applying the semiotic relations 

 

Certain statements are obviously true by definition, or are verifiable through a simple 

inspection. Direct proof that something exists merely requires to exhibit an instance, even 

though some work may be required to construct it, as with the statement that there exist 

irrational numbers a and b such that a
b is rational ─ which is usually evidenced by 

producing some series of equalities (which, curiously, can only be checked symbolically 

since the first two cannot be computed over the domain Q of rational numbers): 
                                    _ 

                            a = √2 , b = log29, a
b
 = 3 

 

but it often happens that no such direct proof is feasible. 

 To prove a statement S in such circumstances, we can move to some other statement (or 

set of statements) S*, which must be preliminarily shown to be linked to S by a semantic 

relation, and then try, recursively, to prove S*. There are (at least) four such "moves", each 

of them corresponding to one of the rhetorical master tropes. 

 We say that a syntagmatic relation holds between S and S* if S is a logical consequence 

of S*. The associated trope is metonymy. The resulting method is proof by inference. 

 A paradigmatic relation holds between S and S* if after suitable mappings the relevant 

features of S can be converted into features of S*. The associated trope is metaphor. The 

resulting method is proof by analogy. 

 An antithetic relation holds between S and S* if S* could be shown to be inconsistent if 

~S were true. The associated trope is irony. The resulting method is proof by contradiction 

(also called reductio ad absurdum).  

 A meronymic relation holds between S and S* if S* is a set of statements into which S 

can be decomposed exhaustively. The associated trope is synecdoche. The resulting method 

is proof by cases.    

  

2.1. Proof by inference 

 

Example 1: "Socrates is mortal". This time-honoured example recognizes that mortality is a 

human condition, as expressed by the rule: ∀x (human(x) → mortal(x)). Since Socrates is 

known as a human being, the rule applies and the statement follows as a consequence. 

 

Example 2: "Harry, who was born in Bermuda, is a British subject". Stephen Toulmin has 

argued convincingly that the conventional syllogism structure must be expanded to deal 
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with reasoning in the domain of justice [Toulmin]. So it is not enough to consider what he 

calls the data (Harry was born in Bermuda), the claim (Harry is a British subject) and the 

warrant (a man born in Bermuda is a British subject). To these three elements he adds a 

modality or, to use his own terms, a qualifier (presumably), given that the rule admits 

exceptions that constitute a possible rebuttal (unless both his parents were aliens, or he has 

become an American citizen, or ...). But, even more characteristic of legal argument, is the 

warrant (statutes and other legal provisions); indeed the judicial system is governed by 

positive law (as opposed to natural law), which must have been officially established, and 

which may differ for different countries (e.g. notice among the exceptions the prevalence of 

ius sanguinis over ius soli, in contrast to Brazilian norms). Toulmin's scheme can best be 

comprehended under the form of a diagram: 

 
 To Toulmin's remarks one must add that the existence of what he calls the 'data' may not 

be recognized in justice if not officially registered as well (e.g. via a birth certificate). In 

database terminology this corresponds to the 'closed world assumption' [Casanova]. Also 

recall the assumption in criminal law that a defendant is judged 'not guilty' (thus avoiding 

the term 'innocent') unless proved responsible for the alleged offense, which in turn must 

have been exactly specified by a previous law (nullum crimen sine prævia lege pœnale). All 

these considerations bring to mind the principle of 'negation as finite failure', also explained 

in [Casanova] ─ ~S holds whenever S neither resides in the database nor can be derived 

from the stored data and the rules that have been explicitly defined. 

 

2.2. Proof by analogy 

 

Example 3: "There can be no efficient algorithm to determine the minimum number of 

schedules for tests of a group of students, so that no student will miss a test because its 

schedule coincides with that of some other course in which the student is enrolled". 

Establishing non-conflicting schedules has an analogue in graph theory, if courses are 

mapped into nodes, and the fact that two courses c1 and c2 have one or more students in 

common is mapped into an edge connecting the nodes labeled c1 and c2. Then the original 

problem is converted into the problem of finding the chromatic number of a graph, which 

has been shown to be np-complete (and hence of intractable computational complexity) 

[Karp]. 

 

Example 4: "A Buddhist monk begins at dawn one day walking up a mountain, reaches the 

top at sunset, meditates at the top overnight until, at dawn, he begins to walk back to the 
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foot of the mountain, which he reaches at sunset. Make no assumptions about his starting or 

stopping or about his pace during the trips. Is there a place on the path which the monk 

occupies at the same hour of the day on the two trips?" The solution given in [Turner] 

involves a close analogue for which, rather surprisingly, no mathematical treatment is 

required, and in fact the answer is immediately evident. The mappings involve blending the 

scene of the monk climbing with that of his return. The action takes place in a single day, 

with the monk and his double walking in opposite directions – and so inevitably meeting 

himself at some intermediate place.    

 

2.3. Proof by contradiction 

 

Example 5: "There exists an infinity of prime numbers". Assume, on the contrary, that the 

primes form a finite set L = {p1, p2, ..., pn}. The proof dates from ancient times [Euclid]. 

Taking all the primes in L, one can obtain: P = p11× p2 × ... × pn + 1. The number P calculated in 

this way is either a new prime, in which case we already have a contradiction, or a multiple 

decomposable into prime factors: P = q1 × q2 × ... × qm. But the qi should be different from the 

prime numbers in L, since P is not divisible by any of them (the division would always yield 

1 as remainder). So the qi would be new primes, again contradicting the ~S assumption. 

 

2.4. Proof by cases 

 

Example 6: "The absolute value of the sum of two non-zero numbers is less than or equal to 

the sum of their absolute values". In formal notation: |a + b| ≤ |a| + |b|. There seem two be four 

cases, which can be easily treated by elementary arithmetic: 

case 1. if a and b are positive, the left side is equal to the right side; 

case 2. if a is positive and b negative, the left side is less than the right side; 

case 3. if a is negative and b positive, the left side is less than the right side; 

case 4. if both a and b are negative, the left side is equal to the right side. 

 Actually the four cases are reducible to three, by collapsing cases 2 and 3 in view of the 

commutative property of addition. 

 

Example 7: "The sum of all natural numbers from 0 to n is equal to n × (n + 1) / 2". To show 

case by case that this holds for any value of n would lead to an infinite process. Fortunately, 

thanks to a technique known as finite induction, the problem can be reduced to the 

following cases: 

case 1. for n = 0, the result of computing the formula is 0, which is obviously correct; 

case 2. assume that for n = i the formula works correctly, i.e.: 0 + 1 + ... i =  i × (i + 1) / 2; 

case 3. for n = i +1, it must be shown that the formula yields (i + 1) × ((i + 1) + 1)/2. This last 

case, called the induction step, can be established by using the assumption for n = i and then 

performing a series of simple algebraic transformations: (0 + 1 + ... + i ) + (i + 1) = i × (i + 1) / 2 + 

(i + 1) = (i × (i + 1) + 2 × (i + 1))/2 = (i + 1)  × (i = 2) / 2 = (i + 1) × ((i + 1) + 1)/2. 

 

Example 8: "Four colours are enough to colour a geographical map so that no two adjacent 

political units have the same colour". This is the so-called four colours conjecture, which 

defeated the attempts of many researchers for a long time, until being finally established as 

a proven theorem by two researchers working together in 1976 [Appel]. They  first 

managed to identify an exhaustive list of cases, corresponding to 1936 "irreducible 
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configurations". To handle such an overwhelming number of cases, they were forced to 

appeal to computer support. Subsequent efforts were made to reduce this number, but to our 

knowledge it still remains quite large. 

 

3. A preliminary step 

 

Finding the proof to a statement S and expressing the proof are more often than not two 

sharply different processes. In particular, to find a proof by inference, a person must start in 

a backward direction by applying a reasoning strategy called abduction [Peirce]. Its 

purpose is to search some hypothesis S* that may be used next to justify S. To perform 

abduction, one assumes that S holds and then looks for some existing rule of the form S* 

→ S relating S and S*. In a sense, abduction involves traversing the rule in a right-to-left 

direction, inversely therefore to how we handle deduction, on which the process of 

expressing a proof by inference is based. Recall that medical doctors are relying on 

abduction while they try to trace back the observed symptoms to diseases that may have 

caused them, and that differential diagnosis becomes necessary if more than one disease is 

hypothesized.  

 The rules themselves should have been formulated beforehand, typically by induction, 

i.e. by observing that S occurs whenever S* does, and that this can be attributed to logical 

implication or at the very least to probabilistic evidence, rather than to fortuitous 

coincidence (the post hoc ergo propter hoc fallacy). After the advent of computers, data 

mining runs [Han] (involving statistical correlation and several other techniques) began to 

be routinely performed over large data repositories to discover such useful rules.  

 For proof by analogy, the preliminary search is even trickier. One must be able to look 

for analogues in domains other than that of the statement on hand, and abstract the 

essentials from knowledge expressed in a widely distinct formalism. Perhaps the required 

competence hinges on the access to a repertoire of well-structured and well-indexed mental 

forms, either characterized as ideas [Plato], or archetypes [Jung], or basic metaphors 

[Lakoff], or scripts [Schank], etc. Whether they are inborn or acquired is the topic of 

endless debate.  

 Children are very early stimulated in school to answer analogy questions in the form "A 

is to B as C is to what?". Indeed proportionality is a helpful criterion to formulate the 

mappings between the features of the original statement and the candidate analogue. A 

modern discipline, case-based reasoning [Kolodner], attempts to automate the search for 

analogues, ideally working on some rich computer-accessible library. One technique to 

construct such libraries involves extracting patterns from the observed detailed descriptions 

through most specific generalization [Ciarlini-1, Furtado].  

 For proof by contradiction, determining S* can sometimes be almost immediate. In 

example 5, in opposition to the notion of an infinity of numbers with the property of being 

prime, one promptly perceives, without leaving the original domain, that a contrary notion 

is that the existing primes form a finite set – and from that follows the idea of using the 

members of this set to construct the statement that will lead to a contradiction. But other 

problems are not so simple. We shall look at the famous Fermat's Last Theorem (proposed 

in 1637, just before his death), which was expressed by a simple algebraic equation, but 

was proved by contradiction much later [Wiles], using a rather advanced geometry result 

about the modularity of elliptic curves. So it combines analogy with contradiction (plus 

long series of inferences) and, on top of all that, it illustrates how crucial it is to restrict the 
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cases to be covered in a proof by cases to precisely what is required to prove the statement 

– it became eventually clear that it suffices to consider semistable elliptic curves. Once 

again as in example 8, I shall only provide a very brief and very informal note, due to my 

absolute lack of familiarity with this level of mathematics.  

 

Example 9: "No three positive integers a, b, and c can satisfy the equation an
 + b

n
 = c

n for any 

integer value of n greater than two". Thanks to the effort of a number of researchers from 

1637 to 1995 (when Wiles's paper was published), it was proved, case by case, that any 

solution to this deceptively simple equation could be used to generate a non-modular 

semistable elliptic curve, whereas it was also proved that all such elliptic curves had to be 

modular – a contradiction that implies that there can be no solutions to the equation, thus 

finally transforming the conjecture into a theorem.  

 

4. Choosing how to express a proof 

 

Let us now turn to the second process mentioned at the beginning of the previous section, 

namely, having succeeded in proving that a sentence is true by a judicious application of 

methods such as those exemplified in section 2, how to suitably express the demonstration 

to other people. To realize what is involved it is convenient to view this as a 

communication process, requiring  our attention to at least the six items contained in the 

diagram below [Jakobson]: 

 

 
 

 In words: the researcher (sender) who devised the proof formulates the demonstration  

(message) in some formal or informal language (code) and passes it through some medium 

(channel) to an interested person (receiver) who should be able to understand it. The 

cultural environment prevailing at a given place and time (context) imposes conditions that 

may exert a favourable or unfavourable influence on the outcome of the process.  

 Of course the sender must make sure that the proof is correct with respect to both 

contents and form, but the effort can ultimately succeed only if the receiver can decode the 

demonstration to the point of effectively learning it and taking maximum advantage from 

the new knowledge thus acquired. The choice of a formalism is sometimes crucial to this 

end. For instance, the use of finite induction for example 7 above is considered in 

[Chateaubriand] as inappropriate for teaching to beginning students. Even if the algebraic 

manipulations can be followed by them, the stepwise argument would not "relate 

meaningfully" to the students, whereas a more intuitive presentation relying on a pictorial 

sketch would have a better chance of eliciting a reaction of "dawning understanding".  

 More generally, the correct connection from sender to message in Jakobson's 

communication scheme is just one prerequisite of the process. It corresponds to the 

adequacy of the signifier to the signified in [Saussure]. But communication must reach its 
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final destination, the receiver, bringing to mind the three-element view – object, 

representamen, interpretant – advocated in [Peirce]. It is through this path that the human 

intellect can, although incompletely and imperfectly, grasp a glimpse of the real, as in the 

epigraph that opens this paper. 

 Let us examine two kinds of misunderstanding that may result from an undue 

application of a simple principle: "if a statement S involving a is true and a = b, the 

substitution of b for a yields a statement that is also true".  

 First, take the true statement "the expression 3 + 1 + 2 contains three terms", and note that 

3 + 1 + 2 = 5 + 1. By substitution, "the expression 5 + 1 contains three terms" should be true, 

but it is patently false. Clearly the substitution could not have been done, since this 

particular statement is an argument de dicto, whereas the value equality is a de re 

consideration. Or we might say, perhaps, that the statement referred to a signifier and the 

comparison to a signified, in Saussure's terminology. 

 The second case is a little less trivial. Suppose the statement "Gottlob believes that 

Venus is a planet" is true, and consider the relatively well-known equality Venus = Evening 

Star. The substitution, giving "Gottlob believes that the Evening Star is a planet" is not 

necessarily true, however. Even if Gottlob is aware of the equality, he may have never 

taken the trouble to perform the substitution, and therefore the maximum that we could say 

in this case, introducing a modality, is that "Gottlob possibly believes that the Evening Star 

is a planet". The full-fledged substitution would only be warranted if both the equality and 

the substitution took place in Gottlob's head, i.e. at the level of Peirce's interpretant.  

 

5.  Concluding remarks 

 

It must be stressed that the over-simplified semiotic-based model proposed in this paper is 

far from complete, as all models are by definition. Much work remains to be done, which 

should equally be said about heuristics to present demonstrations with enough intuitive 

appeal and clarity. Theorems such as the four-colours theorem (mentioned in example 8) 

and Fermat's last theorem (example 9) still come in extremely lengthy reports and require 

proficiency in a variety of domains.  

 In our times many such examples can be listed in which we are compelled to accept 

some results on the authority of a few top specialists. Occasionally they try, albeit with 

doubtful results, to enlighten the non-initiated. If you want to understand Fermat's Last 

Theorem, have a look at the honest attempt in [Faltings], who a little bit optimistically 

declares: "I have tried to present the basic ideas to a wider mathematical audience, and in 

the process I have skipped over certain details, which are in my opinion not so much of 

interest to the nonspecialist". 

 In conclusion, it is the present author's duty to confess his own perplexity vis-a-vis the 

arcanes of logical and mathematical formalisms, and, above all, the apparently 

unsystematic flashes of intuition that guide researchers to see how to solve what would 

have seemed unsolvable. Obedient to the lemma in epigraph, he must humbly stand by the 

entrance of Plato's Academy.  
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