

PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 01/12

The Talisman

C++ Unit Testing Framework

Arndt von Staa

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO – BRASIL

 i

Monografias em Ciência da Computação, No. 01/12 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena January, 2012

The Talisman C++ Unit Testing Framework

Arndt von Staa1
arndt@inf.puc-rio.br

Departamento de Informática
Pontifícia Universidade Católica
22453-900 Rio de Janeiro, Brasil

Resumo

Neste documento descrevemos resumidamente a arquitetura do arcabouço de apoio ao teste
de unidades redigidas em C++ utilizado no projeto Talisman 5. Detalhes podem ser
encontrados na documentação de cada módulo (arquivos .h). O arcabouço foi construído
sem fazer uso de bibliotecas ou arcabouços voltados para o ambiente Windows. Tampouco
faz uso de templates do C++. O arcabouço pode ser integrado com aplicações, permitindo,
assim, o teste de uma ou mais unidades ou funcionalidades no contexto de produção. O
arcabouço utiliza uma linguagem script muito simples para redigir os testes. A linguagem
assemelha-se a assembler, no sentido que cada comando corresponde a uma ação a realizar e
um ou mais parâmetros. Em geral o comando corresponde a uma função a testar e os
parâmetros dados para esta função e o resultado esperado ao executá-la come esses dados.

Palavras chave: Arcabouço de apoio a testes, C++, teste de unidades, teste de
integração, script de teste, biblioteca de apoio.

Abstract

This document describes, in a very abridged way, the organization, tools, usage and
conventions of the Talisman C++ unit test framework. Further details about the framework,
as well as details about each module, class and method can be found in the corresponding
header files. The present framework uses a very restricted set of C++ capabilities. It uses
neither templates, nor MFC – Microsoft Foundation Classes or other class libraries. It may be
integrated with an executable application, allowing to test modules in a production setting. It
interprets a very simpleminded script language instead of coding the test cases directly in
C++. The script language is similar to assembler, in the sense that it is line oriented and each
executable or declarative line contains a command followed by a list of zero or more
parameters. Usually the test command corresponds to the method to be tested and the
parameters correspond to the parameters to be used when calling this method as well as
values that will be compared with the outcome of the method execution.

Keywords: Test support framework, C++, unit test, integration test, test script
language, support library.

1 Trabalho apoiado por: CNPq, Bolsa de Produtividade 306802-2008-2, e Auxílio 479344-2010-8

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
e-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

Table of Contents
1. Introduction ... 1

1.1. Context, the Talisman 5 project ... 2

2. System architecture overview .. 3

3. Run-time support, utilities ... 5

3.1. Modules ... 6

3.2. Classes ... 7

3.3. String table construction and access tools ...11

4. Test support framework ..12

4.1. Modules ..13

4.2. Classes ..13

5. Test script structure..15

6. Tools ..16

6.1. Test build composition ..16

6.2. Configuration parameters ...17

6.3. Test run support tools ...18

6.4. DLL building tools ..18

6.5. Batch files ...18

7. Process...19

7.1. Directory Structure ..19

7.2. Development process ..20

References ...22

 iv

 The Talisman C++ Unit Testing Framework

 1

1. Introduction

This document describes, in a very abridged way, the organization of the Talisman 5 test
support framework. Details of each module and method can be found in the corresponding
header files.

Talisman 5 [Staa, 2011] is a software engineering meta-environment. Its infra-structure
is being developed in C++. The test environment requires a support library that will be part
of the meta-environment. Talisman 5 is being designed and developed using Talisman 4.4
[Staa, 1993]. This is a rudimentary software engineering meta-environment written in C for
MS-DOS and that allows, among others, structured editing as well as code generation and
editing from models. It allows also the generation of code fragments that will be interspersed
with written code. This feature provides means to insert test support code into the modules
under test. Furthermore, given the header file of the module to be tested, it allows generating
the specific test commands list, as well as the test script interpreter skeleton. Talisman 4.4 can
be seen as a prototype of Talisman 5.

Parts of the code have been written before 1998, i.e. before the C++ standard was
available. To assure portability considering different compilers, a very restricted subset of
the C++ language has been used to implement the framework. The code contains no
templates, makes no use of the Microsoft Foundation Classes and uses only the C language
library. Hence, the framework has still very a strong C flavor. A new version is being
planned to be implemented using the C++ 2011 [ISO/IEC 14882:2011] standard once
compliant compilers show up.

Several unit test frameworks exist for C++ [see Tools in the reference section]. Almost
all of them use the full set of capabilities of the C++ language. The present framework
deliberately uses a restricted set of capabilities:

• Tests are written in a very simpleminded script language instead of coding the test
cases in C++.

• The script language is similar to assembler, in the sense that it is line oriented and each
executable or declarative line contains a command followed by a list of zero or more
parameters. Usually a test command corresponds to the method to be tested or
executed and the parameters correspond to the parameters to be used when calling this
method as well as values that will be compared with the outcome of the method
execution.

• It allows script commands to be extended by a list of one or more parameter
commands. These commands allow the use of tabular data as part of a script
command.

• It allows testing modules in the context of the component to which they belong. Hence,
the test script language may use methods of classes that have already been accepted
and are needed to provide context for the module under test.

• It allows test support modules to be integrated with the application, in other words,
the framework does not impose the use of its own main module.

• The testing environment provides means to control recompilation and retesting of all
modules that constitute a given component.

 The Talisman C++ Unit Testing Framework

 2

• The test framework is tested using itself. This provides maintenance support for the
framework itself.

One of the goals of the testing environment is to provide means for developing a
maintenance subsystem as a byproduct of the development.

1.1. Context, the Talisman 5 project

The Talisman 5 project aims at developing a software engineering meta-environment. It
supports among others: model checking; transformations from one representation to another,
even if written in different representation languages; various forms of generation; and
maintenance involving models, code and scripts. Its main characteristics are:

• Talisman stores all elements as hyper-objects.

• Talisman hyper-objects contain several attributes (e.g. names, strings, text fragments,
relations, text fragments containing references to other hyper-object attributes, record
structures), each of which corresponds to an OO programming language object.

• Attributes are stored in a proprietary object oriented data base, called attribute base,
storing very small granularity data elements.

• All references between objects are virtual addresses. The attribute base provides means
to convert these addresses to real addresses when manipulating objects corresponding
to attributes.

• Attributes and references may be versioned. Versioning is controlled directly by the
attribute base.

• The attribute base may be partitioned into several different, distributed and
interdependent bases. Each one of them may possibly be shared by several projects.
Finally the collection of attribute bases may be geographically distributed.

• The set of attributes, including relations, defined for a given hyper-class may be
changed dynamically, even while development of one or more target systems is in
progress.

• Representations may share hyper-objects.

• Hyper-objects and attributes that compose graphical or textual representations may be
generated, verified, validated and transformed into other hyper-objects and attributes.

• Code may be generated and/or composed directly from the contents of the attribute
base.

• Representations, graphical or textual, are rendered each time they are accessed. No
physical representation image is saved.

• The set of representations form a hyper-document.

• Maintenance and test support are part of the environment’s software system.

• One of Talisman’s 5 goals is to support reverse engineering as well as reengineering.

• Each software component (collection of modules each of which implements exactly one
single purpose) of the meta-environment must have its own specific testing module
Furthermore, a reconstruction sequence must have been defined that recompiles and
tests incrementally each partial build of the component.

 The Talisman C++ Unit Testing Framework

 3

2. System architecture overview

We are studying the development of systems that implement not only their required
functionality, but implement also a maintenance sub-system that supports complex
evolution. The goal is to develop highly portable, maintainable1 and dependable code.
Furthermore, code should pay specific attention to testability, diagnosticability2, and
debuggability3. Hence, for the purpose of allowing the use of standard debuggers we require
the ability to run tests in a strict C++ environment. We also require the ability to run tests in
a mixed language environment, assuming that the C++ code is almost correct. The mixed
language testing environment is necessary to assess the dependability of the system when
operating in a hybrid environment. Finally, when evolving a system, it should be possible to
test parts of it while using the system.

Module
under test

Module
under test

Already developed
and accepted

application modules

Console
driver C++

(main)

Generic
tester

Specific
tester

Test
script

Application
C++ or other

Leakage
control

Counter

Tracer

Test
support

Command
reader

Closed test
component

OR

Utilities
and run

time
support

Accepted
component
increment

new
addition

Component
API

Figure 1. Overview of the test support framework

Another goal of our study is the development of self checking code. Self checking is
achieved using specifically designed redundancy, as well as highly instrumented code
[Deveaux et al, 1999; Staa, 2000]. Since instruments might interfere with performance, our
aim is to develop self checkers that eventually run in a separate low priority thread that is
unaware of the processing state of the system. This obliges programmers to follow a defined

1 Maintainability – involves both the elimination of defects, as well as the evolution of the system. When

evolving a system sometimes a major restructuring may be needed to remove design deterioration defects.

2 Diagnosticability – is the ability of providing effective support to identify the causes of a detected failure.

3 Debuggability – is the ability of providing effective support to completely remove the causes of a detected
failure.

 The Talisman C++ Unit Testing Framework

 4

discipline. It also requires control over all allocated dynamic data spaces. A side effect of this
goal is the ability to control memory and other resource leaks.

We assume that the application development follows an incremental path. Hence,
tested modules are accreted to the set of accepted modules as they are readied. However, we
do not test always module units in total isolation. Possibly, as shown in Figure 1, more than
one module might be tested at a given time. Furthermore, they may interact with already
accepted modules. That means that modules under test might interact with stubs or mock
modules [Hunt and Thomas, 2003], as well as with already accepted modules and other
modules under test. When retesting, the build used to test a given module must be
reconstructed. Therefore, all required stubs and mock modules must be available when
rebuilding a specific test build. However, when the system or component under test is fully
developed, it is usually better to use production modules instead of mocks or stubs. This
reduces the need to maintain development support modules. Obviously, after accepting a
production module that replaces a stub or mock, all tests of builds that have used the stub or
mock to be eliminated should be reviewed allowing the corresponding production module
to participate in the build instead of the eliminated stubs or mocks. Thus only mock modules
that perform test specific actions, as for example throwing exceptions whenever required by
the test script, will have to remain available.

The goal of this approach is to create a maintenance environment as a complementary
component while developing the production component. Hence incremental integration
control tools and scripts, as well as the testing tools and scripts are part of the final delivered
product. Detailed testing may be performed using code compiled for debugging, and less
detailed tests may be used to test optimized production code. Of course, in several cases
mock objects will still be needed to establish a faster or more precise testing context.

An example of test support created together with the production component is the test
environment which now is tested using itself. Initially, while developing the bootstrap
framework, it was tested using ad hoc testing methods. After the bootstrap version had been
finished, specific test modules and much more accurate test scripts were developed.
Currently, the test builds encompass the collection of modules that compose the testing
framework and specific test modules, one for each of the modules comprising the
framework. In some cases, though, the module under test must be factored out, since tests
might interfere with the working of the framework if the module under test contains a
defect. For example, modifying the hash table module must be performed on a factored out
version of it, since if the new version is part of the framework and contains a defect, the
framework would cease to work rendering all testing useless.

The standard test run driver is a simple command line C++ main program that reads
test control command line arguments, constructs the specific test control object and triggers
the start of the test. Thus it might easily be substituted by other modules as complex as
whished. The test framework does not depend on the test run driver; it requires only that the
specific test control object is created before the test begins.

The generic and the specific test modules, as well as the test support modules compose
the test framework. The generic tester is an abstract class and, among other functions, acts as
a façade for the test framework. To be able to use the generic tester, the specific tester must
inherit from it and must be constructed before actual testing begins. The generic tester
provides the usual comparison methods (assertions as they are called in CPPUNIT, and other
*Unit test frameworks). The test framework provides dynamic memory control, passage
counting and script command reader.

 The Talisman C++ Unit Testing Framework

 5

The script command reader reads test script lines and decomposes them into their
lexical elements. The lexical rules of the test command tokens are similar to the C++ lexical
syntax.

Dynamic memory control is used to control memory leakage as well as incorrect usage
and deletion sequences. This module redefines the new and the delete operators.
Furthermore, if specific instrumentation is added, it can verify the type correctness data
space type and the implied type of pointers that refer to it.

Passage counting is used to perform a very simpleminded form of test coverage, and
might be used to control path execution. To perform true test coverage control, more
enhanced tools should be used.

The tracer provides several tools to generate execution traces and also runtime stack
evolution traces. These tools depend on instrumentation inserted into the code, which is
easily performed when developing with the aid of Talisman 4.4.

The test framework requires several utilities and support modules. These establish a
virtual machine that provides a standard way of handling exceptions, strings, messages,
BCD arithmetic, and simple auto-verifiable containers such as hash tables and doubly linked
lists. If desired, this virtual machine might be used by an application that does not require
the presence of the test framework.

3. Run-time support, utilities

EXC_Exception

MSG_Message MSG_MessageItem

STR_String

LOG_Logger SIO_SequentialIO

MSG_ItemString

MSG_ItemInteger

MSG_ItemBCD

EXC_ProgramEXC_Assertion

EXC_Usage

BCDArit Module

n
Disaster Module

GLB_Global
RandGen Module

SMT_SymbolTable

SLS_SimpleList

MSG_ItemTime

CFG_ConfigurationList

EXC_Enforce

ENV_Environment
BUF_Buffer

EXC_Platform

Housekeeping
module

Figure 2. Architecture of the run-time support classes and modules

 The Talisman C++ Unit Testing Framework

 6

In this section we describe the run-time support library required by the test framework. This
library may be used independently of the test framework. It has been designed to provide
support to the Talisman 5 meta-environment. It establishes a run-time environment that
shields applications from platform details, as well as providing generic services that almost
all applications will need. The organization of the run-time support is depicted in figure 2.

A quick note about the diagram. Modules might contain classes and/or global
functions whenever these are convenient. Some modules contain only global functions.
These modules are identified by the text fragment “Module” in the name. When a module
contains classes, only the classes are displayed in the diagram.

3.1. Modules

BCDArit Module1 - this module implements binary coded decimal (BCD) arithmetic
operations. For portability purposes it does not use assembly code. A
BCD number is essentially an ASCII number where the first 4 bits have
been removed from the character. This allows packing two decimal
digits into a single byte. BCD numbers are portable since they are
machine and persistence layout independent. Furthermore, performing
a few BCD arithmetic operations may prove less expensive than
converting an ASCII string to a binary integer, performing the operation
in binary, and converting the result back to an ASCII string. The
encoding of the BCD numbers is signed magnitude. The size, in bytes of
a BCD number may be chosen from 1 byte (1 BCD digit) to up to 6 bytes
(11 BCD digits). The size (number of bytes used) of the number is part of
the encoding, allowing mixed size operations. The module controls
arithmetic and conversion overflows, assuring size correctness of its
operations, even when mixed sizes are being used.

Disaster Module - this module implements a standard disaster handling function.
Disasters correspond to unrecoverable failures. When such failures are
observed the application must be canceled.
To be implemented: a standard way of registering rollback actions to be
performed when a disaster is observed. Disaster handling might be
issued by a call to the disaster handling function, as well as by throwing
an exception. The disaster module attempts to roll back to some stable
state (if defined), cancelling execution afterwards.

Housekeeping Module - this module implements several functions that record and
destruct actions to be performed when cancelling the execution of the
program. For example, when rolling back to a previous correct state is
needed these actions establish how to perform this. (To be
implemented.)

RandGen Module - this module contains functions that generate random numbers in
accordance with a few distribution functions. It also contains a function
that computes random permutations. This module has been designed to
aid generating random test data.

1 All tools and modules have been developed using Talisman 4.4, which is a MS-DOS application and hence

restricts the module names to be in an 8.3 format.

 The Talisman C++ Unit Testing Framework

 7

3.2. Classes

 MSG_Message - This class implements standard message objects. Message objects
contain string ids instead of pointers to the strings or literal string
values. These string ids identify the message. Hence it is possible to
determine the meaning of a message by examining its string id and, if
necessary, change it, adapting low abstraction level messages to the
higher abstraction level ones as needed by human users or recovery
functions. The strings referred to by messages must be contained in a
string table, see the STR_String class below. Messages may contain up
to 20 parameters. Parameters, called message items, are inserted in fields
contained in the message string. Fields are identified by the sequence
%n, where n is a number between 0 and 19. Items may be added to a
message object at any time and in any order. Items may be inserted more
than once into a same message string, and the order of the items in the
string is independent of the order of the items in the message object.
Finally, there may be more items than are fields in a message. However,
missing items will be signaled as errors when rendering the message.
The association between items and message fields is established by the
item index. The type and formatting of an item is defined by the item
class. Implemented in module MESSAGE.

MSG_MessageItem - This is an abstract class defining a message item. Each message item
contains an item-id, a value type id and a value. The item-id is the index
of the item in the item table of the corresponding message object. The
index is used to indicate where it should be expanded in the message
string, or to provide access by methods that examine the content of a
specific message item. The value type id allows implementing a data
driven object factory that always constructs objects that are consistent
with the value part of the message item. Another method defines how
the item value is converted to an ASCII string. More item types may be
defined as needed. For example, when developing recovery oriented
software, exceptions must carry adequate information to allow correct
recovery. Actual message items must specialize this abstract class.
Implemented in module MESSAGE.

 MSG_ItemBCD - This class specializes a message item to a BCD integer item.
Implemented in module MSGBCD.

MSG_ItemInteger - This class specializes a message item to a binary integer item.
Implemented in module MSGBIN.

MSG_ItemString - This class specializes a message item to a character string item.
Implemented in module MSGSTR.

 MSG_ItemTime - This class specializes a message item to a date and time item. Date and
time are displayed in a format similar to 2007/11/24-15:50:37.
Implemented in module MSGTIME.

 STR_String - This class implements self-verifying ASCII character string objects. It
also provides methods that allow accessing strings defined in a string
table. String tables are generated by the GENSTRTB tool. The
corresponding string identifiers (string access keys) are generated by the

 The Talisman C++ Unit Testing Framework

 8

GENSTRID tool. The input data for both tools are STR_xxx.STR files
related to module xxx, and whose format is described by comments
contained in the tool’s code. The string table is partitioned into a
memory resident part and a file (segment) resident part. Using string
tables consistently throughout the application instead of string literals is
a simple way of constructing easily localizable programs. Such
programs might be converted to different locales without the need of
recompilation, except for the STRING module, since it includes the
memory resident part of the table. Implemented in module STRING.

EXC_Exception - This abstract class defines the standard Talisman 5 exception classes. It
must be specialized by specific exception types. The programming
standard used by the Talisman 5 project requires that exceptions should
correspond only to abnormal events (i.e. when the occurrence
probability of the event is zero or almost zero). However, exceptions
may also be used when it is known that the distance (number of nodes
in the call graph) from the detector (throw) to the handler (catch) will
certainly be long (3 or more). The distance is measured in terms of the
number of methods to be unraveled on the stack, starting at the method
that detects the problem and ending at the method that handles it. If an
event is expected, even if it occurs rather seldom (e.g. end of file, or
illegal file name, incorrect data in an input field), return conditions
should be used instead of exceptions. Every exception object points to a
message object, which contains the message id and the set of message
items (parameters) that should explain the cause of the exception.
Exception objects always contain the source code line number and the
module name where the exception was thrown. Finally, exception
objects contain a context id. An exception is identified by the triple
<exception object type, context id, message-id>. The context id and the
message id allow a catcher to determine whether it should handle the
exception or not. In this way it is possible to establish a strict binding
between the thrower and the handler. Use the MayBeHandled(…)
method to verify if a given catcher should handle the caught exception
or not. The EXC_Exception class contains also methods to access the
message id and to change it if necessary. The Exceptn module contains
the function EXC_LogError(…) used for logging problems without
throwing an exception. Implemented in module EXCEPTN.

EXC_Assertion - This class implements the standard Talisman 5 assertion exception.
Assertions exceptions are thrown by the EXC_ASSERT macro, which is
similar to the C++ assert function, but generates an exception instead
of canceling the execution. However, these exceptions do not provide an
explanation of the detected error. Since assertions are debugging tools,
they should not be part of the production code; hence EXC_Assert
throwers should always be enclosed in an #ifdef _DEBUG block. If
production code should contain an active assertion, use the
EXC_Enforce exception instead, see below. Assertion exceptions
inform only the failing expression, the module name and the source line
number containing the EXC_ASSERT macro call. Assertion exceptions
may be caught by a catch EXC_Assertion * pExc handler.
Implemented in module EXCEPTN.

 The Talisman C++ Unit Testing Framework

 9

 EXC_Enforce - This class serves a purpose similar to EXC_Assertion, the difference
being that the code throwing EXC_Enforce exceptions should remain
active in the production code. EXC_Enforce exceptions are thrown by
the EXC_ENFORCE macro. EXC_Enforce exceptions allow triggering
roll back functions or even recovery functions, in which case they should
be caught by an appropriate try … catch block. EXC_Enforce
exceptions may be caught by a catch EXC_Enforce * pExc handler.
Use EXC_Enforce when controlling errors that, in principle, should
never occur, even when considering that programs could still contain
defects, or be subject to user error or platform malfunction. Such
controls serve the purpose of preventing the propagation of errors to
persistent structures. Enforce exceptions inform only the failing
expression, the module name and the source line number containing the
EXC_ENFORCE macro call, thus they provide little help for maintainers.
If, for the purpose of helping to diagnose failures, detailed information
should be provided, use one of the EXC_Program, EXC_Platform or
EXC_Usage exceptions instead. Implemented in module EXCEPTN.

 EXC_Usage - This class implements the standard Talisman 5 exceptions that are due
to incorrect usage of the system. An EXC_Usage exception is an unusual
or unexpected event that is usually due to some usage error. Different
from EXC_Enforce handlers, EXC_Usage handlers (catch
EXC_Usage * pExc) should provide adequate explanation to the user
and attempt to recover, possibly with the assistance of the user, and
continue execution in a valid state. Implemented in module EXCEPTN.

 EXC_Platform - This class implements the standard Talisman 5 exceptions that are due
to platform malfunction, such as I/O errors, memory and message
system errors. Different from EXC_Enforce handlers, EXC_Platform
handlers (catch EXC_Platform * pExc) should provide adequate
explanation to the user and attempt to recover and continue execution.
Implemented in module EXCEPTN. Unfortunately, due to C++ standard
restrictions, many platform exceptions can only be caught by a catch all
catcher.

 EXC_Program - This class implements the standard Talisman 5 implementation error
exception. An EXC_Program exception is an event that corresponds to
the detecting of an error generated by a software defect. In a sense it
corresponds to a broken assertion. Different from EXC_Assertion and
EXC_Enforce exceptions, failure exceptions must provide detailed data
to help diagnosing and, if possible, recovering from the cause of the
detected failure. Code that throws EXC_Program exceptions should
remain active in production code. Otherwise, prefer throwing
EXC_Assert exceptions instead. Implemented in module EXCEPTN.

ENV_Environment - This class provides access to environment variables. Environment
variables may be used for several installation dependent purposes. For
example, an environment variable may tell where the configuration files
and workstation state files are stored. The default implementation
requires the TALISMAN environment variable to be set. This variable
should contain a parameter -config: <configuration file name> that
informs where the main configuration file is stored. An environment

 The Talisman C++ Unit Testing Framework

 10

variable may define several parameters. All parameter names must start
with a hyphen (‘-‘). Implemented in module ENVIRON.

 GLB_Global - This class implements the application context initialization. The class
contains methods that assure establishing the necessary startup context.
The class creates the main ENV_Environment object that accesses data
contained (usually) in the TALISMAN environment variable. When
additional context should be established for a specific application, a class
that inherits from GLB_Global should be implemented. This class
should specialize the BuildGlobal(…) method, but should still call the
parent (super) BuildGlobal(…) method. The standard class starts the
event logger used by the test support classes. It also creates a safety
blanket to be used if memory overflow should occur. Finally, it saves the
session starting time. Implemented in module GLOBAL.

 LOG_Logger - This class implements the standard log file handler. Logging may be
directed to the console or to a file. There may be several different loggers
active at any given instant. Implemented in module LOGGER.

SIO_SequentialIO - This class implements a standard sequential file handler. It
provides safe file reading and writing that assuredly do not provoke
buffer overruns, while still following the line based approach of the C
I/O handling library. Implemented in module SIOCTRL.

CFG_ConfigurationList - This class accesses configuration parameter files.
Configuration parameters may save several workstation specific data,
such as installation characteristics and platform state data that should be
persisted from one execution instance to another. Examples of
installation characteristics are names of parameter files. Examples of
persistent parameters are: the list of the last n accessed files, and user
preferences. Configuration files are ASCII files written in a
representation language that is simpler than XML when considering
human interaction with such files. Since it is not expected that these files
be shared with other software, using a specific format does not imply
restrictions. Implemented in module CONFIGFL.

SLS_SimpleList - This class implements a self-verifying generic doubly linked list
container. Contents of the list are generic; however they must be
homogeneous for a given list and must specialize the
SLSE_ListElementValue class. Implemented respectively in module
SIMPLIST and SLS_ELEM.

SMT_SymbolTable - This class implements a self-verifying generic hash container. The
size of the hash table must be defined when constructing a table object.
The collision resolution is performed by a collision list. Contents of a
table entry are generic; however, they must be homogeneous for a given
table and must specialize the SMTE_SymbolTableElement abstract
class. Implemented in module SYMBTAB.

 The Talisman C++ Unit Testing Framework

 11

3.3. String table construction and access tools

String tables collect all strings needed by the application using the run-time support library,
except strings that are used only by the test framework. Talisman’s programming convention
dictates that the code must not contain any literal string; all string literals (except those
needed to tell that the string table is absent or mal formed) should be contained in the string
table. This applies even to I/O formatting rules. To reduce string table pollution, the test
framework uses string literals in its code. However, the run time support modules must
strictly refer to strings contained in the string table. This rule is valid for all kinds of strings,
such as messages, format descriptors, cultural aspects of the locale and default names.

When writing a module, a string definition file should be written too. This file defines
string elements stating: a symbolic name, a numeric id, a table id (in which table should the
string be stored) and the string itself. When using Talisman 4.4 to develop modules, strings
may be edited at the point where they are used. A file generator (linearizer) tool generates
the corresponding .str file. Figure 3 displays some string descriptors. The first is a format
to be used by a sprintf or similar function. The second will be referred to by a message
object.

<Offset> 525

LSP_Format02 4 m "%s Num elements: min %d max %d total %d"

LSP_ErrorAttr 7 m "ERROR - page. idPag: %1 Line: %2 File: %3"

Figure 3. Example of string descriptors.

pMsg = new MSG_Message(LSP_ErrorAttr) ;

pMsg->AddItem(2 , new MSG_ItemInteger(__LINE__)) ;
pMsg->AddItem(3 , new MSG_ItemString(__File__)) ;

pMsg->AddItem(1 , new MSG_ItemInteger(idPag)) ;

Figure 4. Example of message object creation.

As mentioned when describing the MSG_Message class, strings may contain
parameters. Parameters are identified by %n entries in the string body, where n is a number
between 0 and 19. These parameters will be filled by message items associated with the
message that will display the string. The numeric order of the parameters in the string is
irrelevant; furthermore a same parameter may be referenced more than one time in a string.
Figure 4 shows how to construct a message object that contains a string with several fields.

String values are placed in a memory resident table or in a parameter file. String ids
must be unique. For this purpose each module has a unique numeric id. In figure 3 its value
is defined by the <Offset> parameter. Numeric module ids must be sufficiently separated
one from the other to accommodate all strings defined in each module. According to the
Talisman 5 programming standard, all modules have unique ASCII and numeric ids.
Numeric module ids are used as an offset when computing the effective string id. Modules
also possess an ASCII id, usually composed of two or three letters. This id is used to prefix
external names (e.g. class names, global external functions, and global external constants)
assuring name uniqueness considering the whole project1. The TalismanModuleIds.xls
table contains the module names, ids and other information.

 GENSTRID - This tool generates the string id table for a given string declaration file -
.inc file. String declaration files have names similar to STR_xxx.STR,
where xxx is the ASCII id of the corresponding module. String ids are

1 Another convention would use name spaces instead of module id letters.

 The Talisman C++ Unit Testing Framework

 12

used by STR_String and MSG_Message methods to access strings
contained in a string table.

 GENSTRTB - This tool generates the memory resident string table. It receives a
yyy.makeup file that contains a reference to each of the string
declaration files to be used - #include STR_xxx.str. In this case yyy
is related to the component that uses the string table. This parameter file
must be updated whenever a new string declaration file is developed.

4. Test support framework

CNT_Counters

Dynspac module

Main module

TST_TestGeneric

TST_TestSpecific

GLB_Global

SIO_Sequential_IO

RDT_ReadTestScript

EXC_Exception

Module / class
under test

Existing
accepted
modules

and classes

Breakpnt Module

Module Tracer

Figure 5. Test support framework class model

The test framework uses the utilities and run-time support classes described in the previous
sections. Only the more relevant relations are shown in the diagram (figure 5).

The specific test class TST_TestSpecific specializes (inherits from) the
TST_TestGeneric class. Usually a specific test class is geared towards testing a single
module under test. A specific test class must be developed for each test build. Test builds
usually test a single specific module; however, they may also be set up to test components, or
several strongly interdependent modules. Thus specific test modules may interpret
commands that exercise methods or functions of already accepted modules. Components
and interdependent modules may be developed and tested incrementally; however, when
finished the collection may be tested in detail using one single build capable of testing all
modules. As mentioned before, the module under test might interact with already accepted
modules, mock modules and stubs.

At test time the module under test might have been instrumented with tracing and test
coverage control by means of passage counting. It might also interact with the dynamic
space control module by means of global overwriting the new and delete operators.

 The Talisman C++ Unit Testing Framework

 13

4.1. Modules

 Main Module - The main module receives and verifies the command line parameters. If
correct, it constructs the test driver by constructing the specific test class
that inherits from the generic test class. Each test build contains only one
specific test class. Hence, when compiling a test build only the required
specific test module must be included. See the build composition script
described later on. Once the test driver object has been created, the main
program activates the generic test control driver. At end of test it
performs memory leakage control. The programming standard used
requires the deletion of all data spaces allocated by the application and
by the test drivers before returning to the main function. Any remaining
allocated data space will be considered being memory leakage.

Dynspac Module - The Dynspac module implements several function to help controlling
dynamic memory usage. It replaces the standard new and the delete
operators. The replacement occurs by simply including the
Dynspac.hpp header file in the module to be controlled. No further
coding is necessary. To allow replacement to occur only in debug mode,
place the include command in an #ifdef _DEBUG conditional
compilation block. Data spaces allocated with the use of the Dynspac
module contain the name of the source module and the line number
where the space has been allocated. These attributes are listed in the
messages involving dynamically allocated spaces. This reduces the effort
of discovering the code fragments responsible for the incorrect dynamic
memory usage. The module permits also to simulate memory overflow
events for the purpose of testing memory overflow exception handlers.
Several test script commands directed to the Dynspac module are
interpreted by the INT_DSP.CPP module.

Breakpnt Module - This module implements a function containing a dummy source
command that might be marked by a debugger breakpoint. If this is
done, when interpreting the test script command =Breakpoint the test
interpreter yields control to the debugger. This allows starting the
debugger only when execution of the script is close to the point where a
failure has been observed during a previous run of the test.

 Tracer Module - This module implements several functions that trace execution and/or
the run-time stack usage. Tracing requires instrumenting the code with
calls to trace functions. When using Talisman 4.4 to develop the
program, trace function calls are placed under control of a
#ifdef _TRACE block. Hence, to activate tracing modules must be
compiled with this flag set. Tracing may be turned on or off, allowing
tracing to occur only at the points of the test script that are involved in
diagnosing failures found during testing.

4.2. Classes

TST_TestGeneric - This class is the standard test driver. It is an abstract class that must
be extended by a TST_TestSpecific class. It controls the
interpretation of the test script file. It also contains the comparison

 The Talisman C++ Unit Testing Framework

 14

methods used to verify whether the computed result is equal to the
expected one. In addition it contains several methods that display error
and information messages in a standard way. The generic test class
catches all exceptions. If an exception handling test script command has
been provided, the unraveling process might be interrupted or not,
depending on the command content. If unraveling is not interrupted,
execution of the program will be canceled by the disaster handler.
Implemented in the GNRCTEST module.

TST_TestSpecific - This is the specific test driver for the module under test. It
extends the TST_TestGeneric class. It must contain the
PerformSpecificTest(…) interpreter method that interprets the test
commands used in the test script. Usually a test command will be
available for each of the methods and functions of the modules under
test. It might also contain additional test commands that provide set up
and tear down actions, as well as calling methods of already accepted
classes. A TST_TestSpecific class must be specifically written for
each test build. The build composition script provides means to
including just the specific test module required by a given test build.

RDT_ReadTestScript - This class implements the test script command reader. Reading
test command lines is similar to the C scanf function in that it is
capable of reading n > 0 parameters as defined in an input format string.
Different from scanf though, the format string contains only an
indication of the data types of the parameters to be read. Buffer overflow
is controlled, and parameter types are controlled too. While reading,
strong type checking of the fields being read is performed. Thus, if the
type of the data field to be read does not match the expected type, an
error message will be issued and the interpretation of the command is
canceled. Furthermore, data elements read might be literals or declared
constants. If the name of a constant is read, the value of the constant is
returned as long as it is typewise correct with the parameter type
definition. Finally, different from scanf, the syntax of a field to be read
is the same as that of a literal in C/C++ code. For example, strings must
be enclosed in double quotes and single characters in single quotes.
Strings and characters may contain escape and hexadecimal character
definitions, including \x0 characters. String data is read into two
parameters. The first will contain the length of the string considering
only the characters contained in the string after conversion (i.e. no
quotes, and a single character per special character input by means of an
escape sequence), and the second will contain the converted string itself.
This allows strings to contain special characters, including the null
character ('\0'). Implemented in the READTEST module.

 CNT_Counter - This class contains methods and functions that support a simpleminded
test coverage control. This control is performed by means of passage
counting. This requires that the module be marked up including calls to
a passage counting function wherever necessary according to the
measurement strategy used. Although inefficient, counters are identified
by a symbolic name. This reduces the complexity of marking up the
program since no other rule than name uniqueness is required. When
using Talisman 4.4, counters may be inserted automatically into the code

 The Talisman C++ Unit Testing Framework

 15

by the code composition tools. The INT_CNT.CPP module interprets
several standard test script commands that are directed CNT_Counter
objects. The CNT_Counter class is implemented in the COUNTER
module.

5. Test script structure
// Script: Tst-bcd-01.script

// Author: Arndt von Staa

// Date: 15/set/2007

// Purpose: Test bcd arithmetic

== Define constants

=DeclareParameter less int 0

=DeclareParameter equal int 1

=DeclareParameter greater int 2

=DeclareParameter num00 int 0

=DeclareParameter num01 int 1

== Save status of the dynamic memory

=Reset // deletes all allocated test spaces

=AllocSaveNum 0 // saves the status of dynamic memory

== Add numbers of different size

=ConvertIntToBCD num00 3 -49246

=GetBCDNumber num00 "B49246" // first hexa encodes size

=ConvertIntToBCD num01 1 -3

=GetBCDNumber num01 "93" // gets the memory immage

=Add num00 num01

=GetBCDNumber num00 "B49249"

== Generate and add random numbers

=SetExceptionVerbose .false // prevents immediate throw messages

=RandAdd 100000 // number of adds to perform

+Distribution 10 15 15 25 35 // percent, must add to 100

== Verify if the dynamic memory has been reset.

=Reset

=AllocCompareNum 0 // compares the status of dynamic memory

Figure 6. Example of a test script file

Test scripts are written in a simple language that resembles assembler. Figure 6 displays an
example of a test script file. Each line corresponds to a statement, a blank line or a comment
line. Comments start with a “//” and go until the end of the line. Blank lines may contain
zero or more blank characters.

Each test case starts with a test case header statement. Test case header statements
contain a “==” as the first characters of the line, the remaining characters are treated as
comments.

After a test case header come one or more test command statements. Test command
statements have the generic syntax:

=command parameters

where command identifies the test action to be performed. All command lines should start
with a single ‘=’ character followed immediately by the command name. Usually commands

 The Talisman C++ Unit Testing Framework

 16

correspond to calling some method. The parameters field contains zero or more parameters
that depend on how the interpreter expects parameters for that command. The syntax of
parameters is similar to the syntax of C/C++ literals. It is possible to define symbolic names
for parameter values.

After a test command it is sometimes necessary to provide extra lines containing
additional parameters. For example when describing how test data should be generated
several parameters are needed. Parameter lines have the generic syntax:

+parameterLineName parameters

where parameterLineName identifies the set of parameters to be read. All parameter lines
should start with a single ‘+’ character followed immediately by the parameter line name.
The parameters field follows the same syntax as the command line. If a varying number of
parameter lines are to be read, the last useful line of each group should be followed by a line
containing:

+ParameterListEnd

Test scripts are interpreted by the specific test class that specializes the generic test
class. The generic organization of the interpreter is an if else if selector that selects the
command to be interpreted. Each command interpreter fragment reads the parameters,
verifies whether they are valid, performs the desired action and compares the result with the
expected result.

6. Tools

This section describes the tools used while developing modules to be tested using the
Talisman C++ Test Framework.

6.1. Test build composition

 GMake - This tool generates make script files from a file that defines the
composition of a build. The script defines the directory structure to be
used, and lists the components that make up the build. Components
might be C++ modules, and also files that will be handled by specific
user defined tools. It also tells whether the build should be linked, or
whether a library, static or dynamic, should be composed instead. When
defining a test build, the specific test module name must be assigned to
the SPECTEST variable. This assures that the correct test object will be
constructed by the Main module. The file GMAKE-v6-00.pdf contains
the documentation of this tool (in Portuguese). The GMAKE tool requires
a parameter file that establishes the rules to be used when generating the
MAKE script file. The parameter file MS-CPP.parm is geared to generate
script files to be used when compiling with the MS Visual Studio C++
compiler. It also establishes the specific rules required for the Talisman
project conventions. By changing the parameter file, a variety of
conventions and compilers can be properly addressed.

 Generate - This tool generates a file from a string contained in a MAKE command
line argument. When following the Talisman 5 project convention, the
tool generates the include file (Specific-test.hpp) used by the Main

 The Talisman C++ Unit Testing Framework

 17

module. This generated file contains an #include command
referencing the specific test module header file. The header file to be
used is identified by the SPECTEST variable defined in the build
composition script (see GMAKE above). The SPECTEST variable, the
composition parameter rules and the way Main has been coded,
establish a variant of an object factory design pattern aiming at
constructing the specific test object required by the build.

Compilebanner - This tool displays a separator line between successive compilation steps.
This makes it easier to read the compilation log generated while
recompiling the collection of all test builds.

RunTestSuite.lua - This lua program automates of the whole test process. It has
been written for the Lua 5.1.1 or more recent version. The lua
program requires a suite file (as an example see
TestFramework.suite) that describes how the test should be
performed. The suite file defines the directory structure used by the
project as well as which builds should be constructed and which script
files should be submitted for a given build. Using the build composition
files it regenerates all make script files. Afterwards all test builds and
library builds are recompiled and then all test scripts are applied to the
corresponding test builds. While performing these actions, the tool
monitors the progress and generates log files about the overall process
and also for each test script. It allows defining test runs that have been
designed to end in expected failure conditions or disaster conditions.
These test runs are considered to be correct iff the expected failure is
reported.

TestFramework.suite - This test suite reconstructs and retests the whole test
framework and all support modules it requires. It also regenerates the
TalismanTestDll.dll and TalismanTestLib.lib dynamic and
static libraries. Use the DoAll.bat file to control the whole test
framework reconstruction and retesting.

GenTestLibraries.suite - This test suite reconstructs and retests only the dynamic
(.dll) and the static (.lib) test framework libraries. To perform this
test suite, use the TestSuite.bat batch file with the /A command line
parameter. It is assumed that the GenDllExp.bat batch file has been
run prior to executing this suite generating the TalismanTestDll
control (.def) file.

6.2. Configuration parameters

Configuration parameters store user preferences, platform state data and installation specific
data. This allows giving the user the impression that the system memorizes its execution
state from one usage instance to another. Usually configuration parameters are stored in
XML files. Although such files are excellent means to interchange data between applications,
they tend to be awkward for humans. Since these parameters tend to be application and user
specific, we do not expect that they will be interchanged between different machines, hence
we use the traditional section/parameter format instead. The configuration file to be used
may be defined directly, by means of a parameter passed to the list builder, or may be
defined in an environment parameter. Furthermore, the environment variable might be

 The Talisman C++ Unit Testing Framework

 18

given by parameter or used by default. The default environment variable is TALISMAN. The
value of the environment variable may contain several fields. Each field should start with a
‘-’ and be separated from the preceding field by at least one blank character. The test
framework defined field is:

-config:<configuration file name> - the name identifies the file that contains the
configuration parameters. For automatic testing of the framework it is
required to define:

set TALISMAN= /config:talisman

Without this environment variable declaration the testing configuration module using the
test script TST-CFG-01 will report testing failures.

6.3. Test run support tools

 DISPLAYSTATS - This tool displays the contents of the accumulated test statistics file.
When running several test scripts in a row for a same build, each one
produces its own test statistic. These statistics may be accumulated (see
line parameter /a of the main module) in an accumulated statistics file,
which is then displayed by this tool.

6.4. DLL building tools

 GRDLLEXP - This tool generates the .def file required when generating a dynamic
library (.dll). As input it receives a text file generated by the DUMPBIN
tool contained in MS Visual Studio. See the batch file GenDllExp.bat
for the way of calling this tool.

6.5. Batch files

 CleanAll.bat - This batch file deletes all files that are generated and which are
contained in a Talisman 5 component project.

 Compile.bat - This batch file compiles a component test build. It requires the name of
the .make file as a parameter. Note: this is a generated file.

 Delobj.bat - This batch file deletes all .obj files. It should be used before
recompiling a build with different compilation parameters whenever the
source code has not been changed.

 DoAll.bat - This batch file reconstructs and retests the test framework, all utilities,
all support modules and all libraries. When stated as DoAll it will
recompile all programs for debugging, i.e. with the _DEBUG key set.
Stated as DoAll P (upper case ‘P’) it will recompile all programs for
production, i.e. with maximum code optimization and without the
_DEBUG key set.

GenDllExp.bat - This batch file controls the generation of the .def file required when
building the dynamic library. It receives the name of the file to be
generated.

 The Talisman C++ Unit Testing Framework

 19

 GenMake.bat - This batch file generates the .make script file from a given build
composition script (a .comp file). It requires the name of the
composition build script file.

 Test.bat - This batch file runs a given test build using a given test script. According
to the Talisman 5 project file naming conventions used, all test builds
have a name similar to TST-xxx, where xxx is the character string id of
the module under test. Furthermore, all test script files have a name
similar to TST-xxx-nn, where xxx is the id of the build under test and
nn is the index of the test script file. The batch file requires the
parameters xxx and nn. Example: test rdt 01 tests the command
reader module using the script file tst-rdt-01.script.

TestSuite.bat - This batch file runs a test suite file using the RunTestSuite.lua
program. This batch file requires a suite script file. Use also the /A
parameter to assure that compilation is performed even if errors were
found while generating the make files. These errors occur due to string
id files not having been found when the make file is being generated.
More detailed documentation can be found in the source code of the
RunTestSuite.lua program.

7. Process

This section describes briefly the recommended development process and standards to be
used while developing.

7.1. Directory Structure

The system is being developed using the MS-Visual Studio compilers. The standard
Windows directory structure is:

• xxx – the project directory, usually \Talisman

♦ Documents – contains all documents regarding the Talisman 5 project.

♦ Drawings contains pictures usually in .cdr (Corel Draw) and .wmf (Windows
metafile) formats.

♦ Exec – contains the Talisman 4.4 meta-environment instantiated for the Talisman
5 project.

♦ Global – contains common files for several applications. Sub-directories:

� Comp – contains common composition descriptors. More specifically,
contains the module id control file TalismanModuleIds.xls. Use this
file to keep track of the module name, location, and its ASCII and numeric
ids.

� Consts – contains global constants.

� Lib – contains the library files.

� Tables – contains common tables.

♦ Test – contains the test framework, support and utility files.
� Batches

 The Talisman C++ Unit Testing Framework

 20

� Bsw – contains the Talisman 4.4 software bases used to develop the source
code files of the test framework.

� Comp – contains the build composition (.comp) files needed for testing the
test framework, support and utility files. Contains also the generated
.make and .list files. The latter contain statistics regarding the
corresponding program. Finally, it contains the compilation logs generated
while compiling the test suite.

� Docs – contains the test framework documentation,

� Obj – contains the object (.obj) and executable (.exe) files as well as
generated libraries (.lib and .dll). It contains also the link script files
(.build) that describe the composition of a given build. See the GMake
tool documentation for details.

� Sources – contains the .cpp and .hpp files as well as the .count files
needed when counting passages. See the COUNTERS module for details.
Finally, it contains also .err files that contain the error reports generated
by the compiler.

� Tables – contains the tables, especially the string tables, used by the
support and utility modules.

� TestCase – contains the test script files needed for testing the test
framework and utility modules. Contains also the test log files.

♦ Component_XXX – contains a structure similar to the Test directory. Each
component_XXX should be kept in its own directory.

♦ Tools – contains the tools used to develop Talisman components
� Batches

� Bsw – contains the Talisman software bases used to develop the
development support tools. It contains also the Talisman form programs
that instantiate the Talisman 4.4 meta-environment for this project. Finally,
it contains the Talisman 4.4 documentation.

� Programs – contains the source and executable code of the development
support tools used, as well as parameter files and documentation files
required by these tools.

7.2. Development process

When using Talisman 4.4 while developing a new module mmi the name, ASCII id and
numeric id should be registered in the TalismanModuleIds.xls file. Then the definition
module mmi.hpp (header file) should be designed and coded using Talisman 4.4. This file
usually contains the interface specification, documentation and declarations of module mmi.
Afterwards the implementation module mmi.cpp should be designed and coded too. If
strings are required by the module, a str_mmi.str file should be generated. This can be
done using Talisman 4.4, writing the string definition in the String list field of the block code
form. Later on the str_mmi.str file must be generated (linearized). Do not forget to insert an
“#include "str_mmi.str"” command in the .makeup file that will be used when
generating the string table for the test build.

When developing modules in an incremental way, the mmi.hpp file should be designed and
coded as completely as possible. However, considering the mmi.cpp implementation file,

 The Talisman C++ Unit Testing Framework

 21

only the functions and methods required by the increment should be designed and coded.
The remaining may be left without code, or otherwise should be filled with stub code.

LINKLIB

MAKE

Compiler

Text
editor

Text
editor

Talisman

Generate
string ids

Generate
strings

or

Software
base

Parameter
base

yyy.LIB

tst_xxx.comp tst_xxx.make

tst_xxx.build

tst_xxx.exe

ms-cpp.parm

GMake

mm .OBJi

string.tabstr str_mm .inci

str_mm .stri

Generate
string table

or

Debugger

generate file

edit using Talisman

edit using text editor
use file

execute tool

tst_xxx.hpp

tst_xxx.cpp

mm .cppi

mm .hppi

test script

test log

Figure 7. Talisman project programming process

Define test
command

syntax

Implement
test command

interpreters

Write script Perform
test

Generate
command table

and documentation

while more to be tested

Test is complete
and accepted

Definition
module xxx.hpp

Implement
functions to be

tested

Generate
test module

skeleton

whenever commands were added

Figure 8. Specific test module development when using Talisman 4.4

Once the mmi.hpp file exists, the tst_xxx.hpp and tst_xxx.cpp source code files
may be generated. The xxx in the name correspond to the ASCII id letters of the module to
be tested (usually module mmi). The generated code implements the specific test module for

 The Talisman C++ Unit Testing Framework

 22

module xxx. However, all command interpreter fragments are commented out with #if 0
commands and result in not implemented errors.

If Talisman 4.4 is being used, a prototype of the specific test module may be generated
once the header file (.hpp) exists. Use the “Gerar modulo teste” transformation when
placed on the name of the module to be tested. This transformation generates a compilable
initial version (stub) of the specific test module (tst-xxx). It also generates unique test
script command names, which are not mnemonic. Edit the command name in the
precondition field of each block of the interpreter method “!P Perform specific test
action”. While editing, establish the parameters required by the command and, if not
obvious, document them.

Test script commands must be unique. Placing again the current object cursor on the
name of the module to be tested, do the transformation “Regerar tabela commandos
teste” to regenerate the test script command table contained in the tst-xxx.cpp file.
Afterwards, do the transformation “Regerar documentacao teste” to generate the
documentation of the test script commands. The documentation will be inserted in the tst-
xxx.hpp file.

Create and compose the build script. The standard name format is tst-xxx.comp.
Assure that the [MacrosApos] section of the .comp file contains “SPECTEST =

tst_xxx”. This will assure that the proper specific test control object will be created by the
main program. Using GMAKE with the .comp file generate the corresponding .make and link
(.build) scripts. You can now compile and start testing the build.

It is strongly recommended that the development of each module be performed in an
incremental way. Implement some constructors and destructors and test, possibly using a
simplified test. Implement a few more methods and test. Repeat until no more method,
function, constructor or destructor needs to be implemented. If desired refactor the modules
to get better engineering quality.

Once everything seems to be working, review, strengthen the test and measure
coverage. Try to follow the recommendations of good test case selection criteria.

References

Tools

C++Test; ParaSoft Corporation; http://www.parasoft.com/

CTA++ (C++ Test Aider); http://www.testwell.fi/ctadesc.html

CppUnit; SourceForge; http://cppunit.sourceforge.net/

csUnit; "Complete Solution Unit Testing" for Microsoft .NET; csUnit.org;
http://www.csunit.org/

CUT; SourceForge; http://sourceforge.net/projects/cut/

unit++; SourceForge; http://unitpp.sourceforge.net/

Cantata++; IPL; http://www.ipl.com/tools

.TEST; ParaSoft Corporation; http://www.parasoft.com/

 The Talisman C++ Unit Testing Framework

 23

Text

[Deveaux et al, 1999] DEVEAUX, D.; JÉZÉQUEL, J-M.; TRAON, Y.L.; “Self-testable
components: from pragmatic tests to design-for-testability
methodology”; Proceedings of the (TOOLS 1999) Technology of Object
Oriented Languages and Systems; Los Alamitos, CA: IEEE Computer
Society; 1999; pags 96-10

[Hunt and Thomas, 2003] HUNT, A.; THOMAS, D.; Pragmatic Unit Test: in Java with
JUnit; Sebastopol, CA: O'Reilly; 2003; pags 65-78

[Staa, 1993] STAA, A.v.; Ambiente de Engenharia de Software Assistido por
Computador - TALISMAN; versão 4.4; Rio de Janeiro, RJ: Staa
Informática Ltda.; 1993 (in Portuguese)

[Staa, 2000] STAA, A.v.; Programação Modular; Rio de Janeiro, RJ:
Elsevier/Campus; 2000 (in Portuguese)

[Staa, 2011] STAA, A.v.; Overview of the Talisman Version 5 Software Engineering
Meta-Environment; Monografias em Ciência da Computação MCC,
Rio de Janeiro: Departamento de Informática, PUC-Rio; 2011

