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Resumo. Em muitas ocasiões do nosso cotidiano queremos interagir espontanea-
mente com pessoas desconhecidas próximas para compartilhar ideias, conversar, econ-
omizar tempo/dinheiro ou ajudar um ao outro. Para este fim, é necessário identificar
situações de contexto compartilhado que dependem de fontes distribuı́das de contextos
locais de usuários. Até o momento, a maioria dos trabalhos que investigam mecanis-
mos para suportar a descoberta espontânea e a interação entre usuários móveis, ainda
não exploraram meios para detecção automática de Estados Globais de Contexto (EGC)
comuns. Neste artigo propomos uma abordagem para raciocı́nio distribuı́do e um al-
goritmo que determina um estado global distribuı́do de contexto entre nós/pares que
potencialmente interagem entre si. Também avaliamos a complexidade do algoritmo -
através de simulações - e identificamos que a convergência do algoritmo depende muito
dos padrões de mobilidade dos usuários e da quantidade mı́nima de nós que contribuem
para o raciocı́nio, em vez da volatilidade dos contextos locais.

Palavras-chave: raciocı́nio, contexto, algoritmo, distribuı́do, cooperativo

Abstract. In many occasions of our daily lives, we want to spontaneously interact
with nearby strangers for sharing ideas, chatting, saving time/money, or helping each
other. For that purpose, it is necessary to identify shared context situations that depend
on distributed sources of users’ local context. So far, most of the work that investigates
mechanisms to support spontaneous discovery and interaction among mobile users has
not yet explored means of automatic detection of common Global Context States (GCS).
In this paper, we propose a distributed reasoning approach and algorithm that deter-
mines a distributed Global Context State among potentially interacting nodes/peers. We
also evaluate the complexity of the algorithm - through simulation - and identify that the
convergence of the algorithm depends very much on the users’ mobility pattern and the
requested minimum number of contributing peers, rather than on the volatility of the
local contexts.
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1 Introduction

Computer aided reasoning, or automated reasoning, concerns how to infer or confirm,
completely automatically or semi-automatically, an information which is not explicitly
available based on a set of known information. It is one of the central problems of Artifi-
cial Intelligence (AI) [1] and a number of systems, both centralized and distributed, have
been developed to support it. While centralized systems may avoid communication is-
sues, distributed reasoning systems can offer greater scalability, increased flexibility and
better reliability. This paper focuses in the latter type.

Distributed reasoning systems have been studied for some time, especially as means
to process the vast amounts of data that compose the semantic web [2–4]. However, as
mobile devices with built-in sensors enjoy increasing popularity, many distributed per-
vasive applications have been proposed and implemented. As these applications are
intrinsically context-aware [5], context reasoning became an important issue, and dis-
tributed context reasoning [6, 7], i.e. the ability to infer or detect a global state of context,
became a necessary feature. By Global Context State we mean a specific combination
of the local context states experienced (or sensed) by a group of nodes/agents, and that
is relevant to the pervasive application. However, distributed context reasoning raises
many challenges such as: ability to handle the dynamic set of nodes/agents and the as-
sociated topology of the system, modeling entities, their local and the Global Context
States, handling the potentially heterogeneous nature of context information, tracking
the concurrent and independent changes of constituent parts of the global context and
management/coordination of the reasoning process. In this work, we will concentrate
on the latter two challenges.

Reasoning can be of many sorts, such as fuzzy logic-based, Case-Based Reasoning (CBR),
ontology-based, rule-based, distributed cooperative reasoning [8], or a combination of them.
Whereas fuzzy logic-based reasoning aims at modeling the imprecise modes of reason-
ing for decision making in an environment of uncertainty and imprecision [9], in CBR
the idea is to rely on previous experience, i.e. a solution of new problems happens by re-
trieving relevant prior cases and adapting them to fit the new situation. Ontology-based
reasoning, on the other hand, is mainly focused on formally describing how the entities
that compose a domain can be classified and how they relate to each other; many ontol-
ogy applications (such as OWL [10] and Description Logic (DL) variations [11]) can be
used to support it. Rule based reasoning employs rules/statements in some language
(usually Description Logic) expressing situations of interest. It is implemented through
”reasoning engines” that evaluate the rules and trigger those that have their antecedents
satisfied. Distributed cooperative reasoning simply adds to the previous techniques the
lack of central control and reasoning structures, relying on a distributed algorithm that
supports a coordinated reasoning process performed by several nodes/agents. Of all
possible forms of reasoning, in this paper we will address distributed cooperative and
rule-based reasoning, using Description Logic.

A distributed cooperative reasoning system is typically comprised of independent
nodes/agents with some means to communicate among themselves [12]. Each node/a-
gent runs a reasoning engine, and is capable of inferring or checking a new piece of
information that is not explicitly available at its local knowledge base. Communication
architectures frequently used in such reasoning systems include blackboard or message
passing systems. Blackboard systems rely on a shared data structured (called a black-
board) where an node/agent can post information, as well as read and act on informa-
tion posted by other nodes/agents. Message passing systems, on the other hand, rely
on nodes/agents sending messages to other nodes/agents and receiving messages from
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other nodes/agents as part of a reasoning process.

Another common distinction in distributed cooperative and rule-based reasoning is
the choice between data partitioning and rule partitioning. In data partitioning, data is dis-
tributed among nodes/agents and no single node/agent knows all information available
globally; whereas all rules are applied to each data subset. In rule partitioning, rules are
split, meaning that each nodes/agent only checks parts of the rules against its local data.
However, in order to check the original rule (the conjunction of the parts) on the global
state of all data available, nodes/agents have to exchange data among each other. In this
work, we focus on distributed rule-based reasoning with rule partitioning, and how to
accomplish it in message passing systems.

In distributed pervasive applications, an important issue for reasoning becomes the
determination of the system’s Global Context State (GCS) [13]. Concrete examples of such
a Global Context State shared among a group of mobile users are: quality of connectivity
- all user devices are connected through a high-speed wireless connection, enabling them
to use a collaboration app with high communication demands; or location - all users
are located within less then 200 meters from a common meeting place, so that they may
gather in a few minutes; or else, phone settings - all users have their device set to nor-
mal ring-tone, implying that all members of the group are mutually available for some
consultation or chatting.

As mentioned before, Global Context State is just the combination of all the nodes/a-
gents local contexts at a same instant of time, and determining such a state is essentially an
instance of the Global Predicate Evaluation (GPE) problem [14] for unstable predicates.
As well known from Distributed Algorithms theory, effectively detecting unstable predi-
cates in a asynchronous distributed system is complex and exponential in the number of
nodes/agents and local states, even if performed by a central server. However, by assum-
ing that the node/agent’s clocks are approximately synchronized (that is made possible
through current communication and GPS technology present on most mobile devices),
that remote communication is reliable and has upper-bound delays, and that a Global
Context State is only application-relevant if it remains stable during a minimum amount
of algorithm rounds (see section 3.1), it is possible to devise algorithms that converge
towards the distributed detection of such global states.

The determination of the Global Context State has several applications in distributed
pervasive systems. For example, consider the following scenario: a conference attendee
is interested in meeting with other nearby attendees who are idle (e.g. waiting in the
conference hall) and who share similar interests or expertise. In this scenario, distributed
reasoning could be used to compare the local context state of all attendees (i.e. current
location, interest/s and expertise) in order to identify which attendees, if any, match the
meeting criteria set by the seeking attendee. This would require the reasoners at the de-
vice of each attendee (further called, Peer Reasoners) to exchange their local context state
information (e.g. current locations) and cooperatively select which attendees match the
criteria. We should further consider the existence of an additional reasoner, the Ambi-
ent Reasoner, which would act as a communication/coordination hub for the reasoning
process and also provide public information about the ambient-specific context, such as
the conference program, the layout of the rooms, the room-specific planned activities,
etc. This ”ambient context state”, e.g. the current activity in each room, could also be
relevant for the matching: for example, only attendees located in the conference hall, the
registration desk, or in the restaurant should be considered for the matching.

The above examples of matching criteria would be defined by a Description Logic
rule, and would better be split in parts, to be evaluated independently by each of the
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Peer Reasoners (at the attendee’s devices) on the one side, and the Ambient Reasoner,
on the other side. The former would handle rule parts/predicates more closely related
to the attendee’s context data and preferences (e.g. current location, if available or busy,
affiliation, interests, etc.), and the latter would process the parts of the rule that refer to
public information (e.g. place-specific activities) and which contain predicates matching
issues, such as a precise definition of user co-location or proximity.

In this paper we describe an algorithm used for cooperative detection of distributed
Global Context States, that is the basis for distributed cooperative and rule-based reason-
ing. The main contributions of this paper are to define the concept of rule-based Global
Context States (GCS), as well as some required properties and premises, to propose an
algorithm to determine a distributed GCS among potentially interacting peers and to
simulate the execution of the proposed algorithm. The paper is structured as follows:
in section 2 we discuss some related work on distributed (context) reasoning for perva-
sive applications. In section 3 we define the concept of rule-based Global Context State,
list some premises about the system, expected properties of a solution and introduce the
algorithm, including its pseudo-code. In section 4 we explain how we simulated the al-
gorithm’s execution and present extensive results of the simulation. Finally, in section 5
we present some concluding remarks concerning our approach and future work.

2 Related Work

The present work is largely based on the work by Viterbo and Endler [15, 16], which ex-
plores distributed rule-based reasoning (with rule partitioning) and is aimed at Ambient
Intelligence applications. It proposes a simple two-tier model comprised of a user/client
side and an ambient side and a protocol that must be executed by both sides to converge
towards the evaluation of a partitioned rule. It also formalizes the notion of (decentral-
ized) cooperative reasoning, discusses the necessary stability conditions required for con-
vergence, and presents a middleware system called DRS that implements the distributed
reasoning protocol. In this work, we extend the aforementioned two-tier approach to
work in with an open set of nodes contributing to the reasoning process, i.e. detection of
the subset of nodes whose local context satisfies the rule’s antecedent. Also, while Viterbo
and Endler were primarily concerned with laying out the foundations of distributed co-
operative reasoning, this work focuses more on the distributed algorithm defining the in-
teractions and synchronization among the nodes to detect a Global Context State (which
actually occurred) defined through a global rule’s antecedents.

In [17], Padovitz, Loke and Zaslavsky propose and formalize an approach that enables
individual nodes to reason about common context situations by considering distributed
information. However, instead of presenting a specific approach for collaborative rea-
soning, their work’s main focus is on context model transformations that allow nodes to
obtain a merged perspective of the common context. Since our work does not consider
heterogeneous context models, one can see their work as complimentary to ours, since it
proposes a solution for merging different context model visions.

In [18], Gu, Pung and Zhang present a peer-to-peer system, where peers are organized
according to an ontology based semantic network, to support distributed reasoning for
collaborative context-aware applications. Each peer in the system can act as a context
producer (which provides low-level context data, usually obtained from physical sen-
sors), a context interpreter (which is similar to a producer but is able to infer high-level
contexts from low-level context data) or a context consumer (which obtains context data
by querying producers or interpreters). The system supports both pull and push modes
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for context requests; the former mode allows a consumer to execute a single query for
present context data, while the latter allows a consumer to subscribe to a context event
and be informed of related context changes for a period of time. The algorithm we present
in this paper works in a similar fashion to the aforementioned push mode; it allows for
continuous monitoring of context changes in a distributed environment. In our algo-
rithm, however, we’re not concerned with intermediate context states or with informing
the user of intermediate context updates, but rather with verifying if a certain Global
Context State holds while a user is interested in it. Also, in our work we expect all partic-
ipating nodes to be homogeneous, or to be able to provide the same type of information,
while the system presented by Gu, Pung and Zhang could support heterogeneous peers,
which have different sensing capabilities, and then have a context interpreter combine
the data in order to infer a high-level context. Lastly, their system is fully distributed and
thus does not rely on a central entity such as the Ambient Reasoner which is necessary in
our algorithm; it is worth noticing, though, that the prototype used to evaluate their sys-
tem used standard desktop computers to run context producers and interpreters, which
suggests these roles may not be suitable for execution in mobile devices.

Distributed Reasoning Architecture for a Galaxy of Ontologies (DRAGO) is a dis-
tributed reasoning system implemented as a peer-to-peer architecture, in which every
peer registers a set of ontologies and mappings [19]. In DRAGO, the reasoning opera-
tions are implemented using local reasoning over each registered ontology and by coor-
dinating with other peers when local ontologies are semantically connected with the on-
tologies registered in other peers. The reasoning with multiple ontologies is performed
by a combination of local reasoning operations, internally executed in each peer for each
distinct ontology.

P2P-DR [8] is a system for distributed reasoning focused on Ambient Intelligence
(AmI), which uses a peer-to-peer model and accounts for potential conflicts which might
happen during the reasoning process. Each node holds independent (local) information,
expressed as rules, and is also able to exchange information with neighbor nodes, by
means of bridging rules. Potential conflicts which may arise from global consolidation
of local information are dealt with by considering bridging rules as defeasible (can be
overridden) and defining trust levels between nodes in order to settle disputes between
conflicting rules. The authors point out context data can be inconsistent, for instance due
to imprecise or faulty sensors, or become ambiguous, when conflicting data is reported
by different sources. They highlight that ambient environments host nodes that are het-
erogeneous and dynamic in nature and thus might not be able to communicate directly
or even be aware of all nearby nodes.

A peer-to-peer inference system (P2PIS [20]) is a network of peer theories. Each peer
has a finite set of propositional formulas and can be semantically related by sharing vari-
ables with other peers. A shared variable between two peers is in the intersection of the
vocabularies of the two peers. Not all the variables in common in the vocabularies of
two peers have to be shared by them. Besides, two peers may not be aware of all the
variables that they have in common but only of some of them. In a P2PIS, no peer has
the knowledge of the global P2PIS theory. P2PIS distributed algorithm splits clauses if
they share variables of several peers. Each piece of a split clause is then transmitted to
the corresponding theory to find its consequences. The consequences that are found for
each piece of split clause must then be re-composed to get the consequences of the clause
that had been split.

DRAGO, P2P-DR and P2PIS propose distributed reasoning solutions considering data
distributed over different elements in an AmI system. The main concern of DRAGO is to
reason in distributed environments overcoming the barrier of the heterogeneous knowl-
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edge representation that independent entities in a AmI system are very likely to employ.
DRAGO relies on predefined mappings to align different ontologies. In a similar way,
P2P-DR and P2PIS are peer-to-peer frameworks in which peers can communicate with a
subset of the other available peers to import the knowledge necessary to answer queries
based on mappings that define how their local knowledge relates to their peers’ knowl-
edge. In such way, P2P-DR and P2PIS are capable of performing inference to answer
queries that check if a rule is true or false, in which the knowledge, i.e., set of literals that
represent context information, is fully distributed in a peer-to-peer system. Neverthe-
less, P2P-DR and P2PIS are not capable of answering queries with variables. Moreover,
DRAGO, P2P-DR and P2PIS are also limited by the fact that in practical implementations
of AmI it is not feasible to build in advance mappings of all possible pairs of different on-
tologies that may be needed. On the other hand, our approach is not a fully decentralized
peer-to-peer system, as it relies on the Ambient Reasoner for mediation and coordination.
Finally, unlike DRAGO and P2PIS, in our work we do not handle heterogeneous ontolo-
gies.

3 Proposed Algorithm

In this section we describe an algorithm for determination of a distributed global state
as the foundation for distributed coordinated reasoning on Global Context States. Before
this, though, we introduce some key concepts.

3.1 Global Context States

A Global Context State (GCS) is defined by a global condition, or constraint, which may
refer to the local context states of all (or some) the nodes in the system, including the
ambient node1. Such global condition is commonly expressed as the conjunction of an-
tecedent predicates, R i, in a Description Logic (DL) rule of the form R1 ∧ R2 ∧ ... ∧ Rk
⇒C. In such rule, the consequent C is usually an action, and the predicates Ri describe
relations between concrete context data facts at one or more nodes, and may also contain
free variables (denoted by, ?v, ?w, etc.) which of which ranges over context facts/items
(of given type or attribute), in a single node. When a rule like the above is evaluated,
these free variables are bound to sets of concrete context facts of any of the nodes. For ex-
ample, consider that a node N local’s context state has only facts (sentMsg, addr1,Hi), and
(sentMsg, addr2,Hello). Then, evaluating predicate sentMsg(?a, ?msg), on N’s context state,
would cause the binding of the pair of variables (?a, ?msg) to the set T N = {<addr1, Hi>,
<addr2, Hello>}. Consequently, the result of evaluating a DL rule with free variables ?vi,
(i= 1 . . . N) on a Global Context State, is thus a set of tuples < c1, ..., cN >, where ci is a
data item found in any of the nodes’ local context state, that has been bound to the free
variable ?vi, such that the tuple elements ci cause the rule’s antecedent R1 ∧ R2 ∧ ... ∧ Rk
to be satisfied. Note that if the Global Context State does not satisfy the rule’s antecedent,
the set of tuples is empty.

However, since the local context state of each node changes spontaneously, and inde-
pendently of the other nodes’ context state, the global condition may be satisfied only
for a limited amount of time. Thus, the main objective of distributed reasoning over Global
Context States is to detect if the Global Context State matches the rule’s antecedent part
R1 ∧ R2 ∧ ... ∧ Rk, and if this is the case, to execute the action of the rule’s consequent C.

1A local context state is defined by a finite set of n-ary tuples (e.g. attribute-value pairs), called context
data facts. E.g. (Battery, 50%), (Connection,3G), (Lat-Long-Location, -22.9784231, -43.2338216), etc.
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For this, the reasoners on the different nodes must run a distributed algorithm enabling
them to exchange partial reasoning results (the bindings of free variables with their lo-
cal context facts) until some tuple (i.e. the combination of all partial results) satisfies the
rule’s antecedent.

In order to illustrate the above concepts, let’s look at a very simple example: consider
three nodes, n1, n2 and n3, which repeatedly throw individual dice (d1, d2 and d3) asyn-
chronously, i.e. at random instants. Making an association with the aforementioned, the
current die number plays the role of the node i context state (which here would be a sin-
gle, unary tuple (di)). So, a rule to identify the global state in which d3’s number is odd,
and is the sum of the other two die numbers, would be:

even(?d1) ∧ odd(?d2) ∧ odd(?d3) ∧ equals(?d3,?d1+?d2)⇒OddSumObtained

In this case, the only tuple set that satisfies this rule is T= {<2, 1, 3>, <4, 1, 5>, <2, 3,
5>}, where the elements of each tuple are T n1, T n2, and T n3, respectively.

In this particular case, we can see that the above rule can be split in a way that each of
the reasoners becomes responsible for one of the predicates even/odd() - to be checked
whenever the node throws a die - and one reasoner will evaluate predicate equals().
Moreover, the reasoners have to exchange their data whenever some of them detects that
a new die throw - a change of its local context state - satisfies its local predicate. In this
specific example, only the reasoner with predicate equals() also has to take into account
the latest data received from the other two reasoners. However, there are other exam-
ples of rules where any partitioning and assignment of predicates to the nodes, causes
nodes to share more than just one free variable, so that data does not flow only towards
one node, as in the example, but that all nodes have to exchange partial results of their
predicate evaluations with some, or all, the other nodes.

As a second example, consider two mobile devices, n1 and n2, which are connected
through a wireless transmission technology (e.g. Bluetooth), and that n1 should send
a large file, say F, to device n2, but only if its own and n2’s remaining battery lifetime
(captured by variables ?BT1, and ?BT2, respectively) are sufficiently large, and otherwise,
the file transfer should be postponed. Let’s also assume that F’s transmission time FTT,
can be calculated - using predicate transTime() - from the file’s size and the current quality
of the wireless connection as perceived by each node, captured by variables ?QoC1 and
?QoC2, respectively. Then, the following rule could express whether the system of two
nodes share an appropriate Global Context State - i.e. sufficient battery lifetime on both
devices - for doing the file transfer.

transTime(?F, ?QoC1, ?FTT1) ∧ greater(?BT1, ?FTT1) ∧ greater(?BT1, ?FTT2)
∧ transTime(?F, ?QoC2, ?FTT2) ∧ greater(?BT2, ?FTT2) ∧ greater(?BT2, ?FTT1)

⇒ FileTransferPossible(?F)

In this rule, clearly the first three predicates of the antecedent can be evaluated/checked
by n1’s reasoner, while latter three predicates should be better checked at n2.2. Therefore,
also in this example, n1 and n2 must continuously update their estimated file transmis-
sion times FTTx, so that both reasoners detect the adequate Global Context State to start
the file transmission. This continuous update of shared free variables among the reason-
ing nodes will be further explained in section 3.3.

First, however, we must precisely define in which case a Global Context State (GCS) is
considered to occur. Since the local contexts that constitute a GCS can change in arbitrary
and system unknowably ways, we must consider the occurrence of a GCS in relation

2We also assume that node n1 informs n2 about F’s size.
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to real time. This is quite different than the concept of a distributed system’s global
state [21, 22], which is determined only by program-produced local events at the nodes
and by events associated to their interactions, and hence there is no concern about time.
On the other hand, in the case of GCS, we have to consider that the nodes have a notion
of time. In particular, all nodes must record the run of real time by periodic events, a
clock tick, ∆t. This assumption does not require the nodes to have the same clock tick
counter, nor to have their clock tick at the same real time. It just enforces that their ∆t do
not drift from each other. With this, it is possible to define:

Definition 1 A GCS has occurred iff its constituent local states have overlapped during at least
2 ∗ ∆t, from the perspective of each node contributing with a constituent local state.

This definition essentially says that only global states which remain stable for a min-
imum period of time are de facto considered, while a quick overlap of constituent local
states should be ignored. The 2 ∗ ∆t limit is required due to the fact that nodes may
not have their clock ticks synchronized, being incremented exactly at the same moment.
In the following section we will show that this 2 ∗ ∆t is a function of the system model
parameters.

Based on the definition of a Global Context State (GCS), we can now discuss the gen-
eral required properties of any distributed solution for reasoning over Global Context
State, and our system model.

3.2 Required Properties and Premises

Any solution/algorithm for distributed rule-based reasoning over a GCS must have the
following properties:

Convergence: if the Global Context State (GCS) satisfying the antecedents of a rule R
remains stable for a sufficiently long period of time, then eventually the algorithm
will evaluate that the rule R has been satisfied.

Safety: if the algorithm detects that the antecedents of rule R have been satisfied, then the
corresponding GCS has actually occurred at some moment during the processing
of the algorithm.

The convergence property leaves open the possibility that the solution never con-
verges, if the GCS defined by the rule stays valid only for short times (yet longer than
2 ∗ ∆t). In such case, due to the required exchange of messages between the reasoners,
it may be impossible for them to collectively grasp this short-lived Global Context State.
However, it is worth noting that the convergence property does not state that the GCS
will be valid at the moment when the algorithm detects it, but that it detects that the
GCS has in fact occurred in the past. This detection delay may be inevitable due to the
processing and message transmission latencies. The safety property, on the other hand,
requires the solution to be correct in that it never detects a GCS that has never occurred
in the sense of Definition 1. Since this definition is based on the notion of time, it requires
a synchronous model of a distributed system, i.e. where the maximum processing time
and message transmission latency are constant and well-known. Moreover, we make
other assumptions about the distributed system, which are summarized in the following
list:
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• Each node is capable of doing all local processing related to one incoming request
(i.e. handle any incoming or outgoing messages plus evaluate any DL predicates in
regard to its local context state in less than λ time units;

• Nodes do not fail, and stationary nodes can be found and are always reachable by
any other node. However, the total number of mobile nodes is variable;

• Message delivery is reliable and follows FIFO ordering;

• All nodes have a unique ID and communication address/endpoint;

• The clocks of all nodes do not drift from each other;

• The timer period at each node (∆t) is much larger than the communication and
processing latencies (i.e., δ + λ� ∆t);

• Each reasoner on a node checks its local context state (local Cxt) periodically and
does this in an atomic way and a negligible amount of time.

• The periodic check of local context state is stateful, meaning that it not just grasps
the momentaneous state of local context resources/sensors, but also registers any
change of context state that might have occurred since the previous check, even if
this change was very quick.

Without this last assumption about statefulness of context probing, it would be impos-
sible to ensure the safety property, i.e. that a global state that did not actually occur - e.g.
the overlap was less than 2 ∗∆t - would not be detected by the nodes. In order words, we
need the testimonies of very quick local context changes that invalidate the occurrence of
associated Global Context States.

3.3 Overview of the Algorithm

As previously mentioned, we assume that the system has a single stationary node which
is associated with a place/location (e.g. the conference site), and which will be the com-
munication mediator and coordinator of the reasoning process. This node will execute
the Ambient Reasoner (Amb), and for the cooperative reasoning, all mobile nodes will
interact only with this Amb. From this point on, from our algorithm’s perspective, we
will refer to mobile nodes simply as peers or by the name of the corresponding role they
play in the algorithm.

The algorithm essentially works as follows: whenever an application on a a Request-
ing Peer (ReqP) needs to evaluate a Global Context State, it submits the corresponding
DL rule to the middleware at this peer3 . The rule is then partially evaluated at ReqP,
taking into account its current local context state, and then forwarded to the Ambient
reasoner (Amb) with the partial results (i.e. a set of tuples denoted by T I)4, produced by
ReqP. When this message is received by Amb it will also partially evaluate some parts of
the rule based on its local context state and the partial results received from ReqP. This re-
sults in yet another new set of possible partial results (denoted by, T A), but where some
of the rule’s free variables (related to the other peers’ context facts) are still unbound, i.e.
undefined. Then, Amb broadcasts the rule and the partial results (T I and T A) to all other

3We assume that split of the rule is pre-defined by the application and sent as part of the submission.
4In the remainder, we use following T suffix convention: I = Requesting peer, A= Amb and O = other

contributing peer.
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Figure 1: Architectural diagram of the components used in our algorithm.

participating peers, requesting them to reply whenever their local context states, together
with the partial results T I and T A, satisfy the rule antecedents.

Figure 1 shows a diagram which represents the main architectural components used
in the algorithm.

3.4 Pseudocode

In this section we present the pseudo code of the algorithm, which consists of ECA (Event
Condition Action) clauses, where the Event part is either the start event (init), a new
request - from the application - to check a rule R (only at ReqP), the arrival of a message
(receive(sender, msg-type, arguments)), or a timeout from a timer set previously. We
assume that each peer has a single event queue and that events are fetched from this
queue one at a time, and that the Action-parts of ECA clauses are executed atomically.
Each peer has its own variables and timer, and data exchange only occurs through the
communication primitives send(), receive() and broadcast().

Notation, Variables and Primitive Functions

Here we shortly present the notation, the main variables, function names and message
types that appear in the pseudocode.
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Variable/Symbol Usage
RID system-wide unique ID for a reasoning request
R I, R A, R O rule part assigned to a RequestingPeer (I), AmbReasoner (A),

and ParticipatingPeer (O), respectively
R [T X ] Antecedent of DL rule R (or part of it), where all variables re-

ferring to items of the local context at peer X have been bound
to corresponding elements in the tuple set T X

T I, T A, T O tuple sets produced by a RequestingPeer (I), AmbReasoner
(A), and ParticipatingPeer (O), respectively, with some bind-
ings of free variables to their local context state data facts

waiting boolean flag set when a peer is waiting for message(s) from
another peer

response bag set of tuples of the form (PeerID, RID, count, T PeerID,
ref PeerID), where T P is the partial evaluation from peer P,
i.e. it is the set of its local context states that satisfies the peer’s
local part of the rule

ref P name/address of peer P, which is used for making the peers
that contributed to a global state mutually aware of each other
at the end of the reasoning process

count number of continuous timer periods that the local context
state (from a Peer) satisfied the local part of the rule

min size minimum number of peers that are required to contribute to
the global state expressed by the rule

Primitives Functionality
eval(RID, R, Cxt): T returns the set of tuples T with current value(s) for context

variables that satisfy rule R for request RID
set timer() sets a new timeout
send(), receive() primitive communication functions (first arg. is destination,

2nd arg. is message type)
extract(): RefList extract the contributing peer’s references from the response

bag relative to a RID
deliver result() middleware layer returns the reasoning result (addresses of

the contributing peers) to the application which requested the
reasoning

Message Type Meaning and Source
EVAL request to evaluate if the local context state (local Cxt) satisfies

the rule with some of its variables instantiated by other peers
(may be sent by ReqP or Amb )

REPLY peer reply with the context state that partially satisfies the local
part of the rule (sent by a participating peer to Amb )

RESULT delivery of a response bag with a global state that was detected
on at least min size peers (sent by Amb )

FINISHED termination of the distributed reasoning process (sent by Amb )

Requesting Peer (ReqP)

init⇒ {waiting = FALSE}
when new request for rule R = R I ∧R A ∧R O⇒ {

RID = new request();
T I = eval(RID, R I, local Cxt);
count = 0;
send (Amb, EVAL, count, {R A [T I ] ∧R O [T I ] }, my ref);
set timer();
waiting = TRUE;

}
when timeout ∧waiting⇒ {

10



T I = eval(RID, R I, local Cxt);
if (T I changed) then count = 0 else count = count +1;
send (Amb, EVAL, RID, count, T I );
set timer();

}
when receive (Amb, RESULT, RID, response bag) ∧waiting⇒ {

(ref O1, ref O2, ...) = extract(responde bag, RID);
deliver result( RID, ref O1, ref O2, ...);

}
when receive (Amb, FINISHED, RID) ∧waiting⇒waiting = FALSE;

Ambient Reasoner (Amb)

init⇒ {waiting = FALSE; response bag = ∅; count = 0; finished = FALSE;}
when receive (ReqP, EVAL, RID, c, (R A [T I ] ∧R O [T I ]), ref I)⇒ {

T A = eval( RID, R A[T I], Amb Cxt);
set timer();
waiting = TRUE;
broadcast (EVAL, RID, count, R O[T I,T A]);

}
when (receive (ReqP, EVAL, RID, c, T I) ∨ timeout) ∧waiting⇒ {

if (T I changed) then response bag = ∅;
T A = eval(RID, R A[T I, response bag), Amb Cxt);
if (T A changed) then count = 0 else count = count +1;
broadcast (EVAL, RID, count, (T A, T I));
set timer();

}
when receive(Peer i, REPLY, RID, count, T O i) ∧waiting⇒ {

update response bag with (Peer i, RID, count, T O i, ref O i);
remove from response bag any record (P, R, c, T O, ref O) where c ∈ 0,1;
if (card(response bag) ≥min size) then finished = TRUE;

}
when finished⇒ {

waiting = FALSE;
∀ P ∈ ({ ReqP } c response bag ) send (P, RID, RESULT, response bag);
broadcast (RID, FINISHED);
finished = FALSE;

}

Note: min size may be a constant configured at system start-up, or may be provided
by the requesting peer (ReqP).

Participating Peer (Peer i)

init⇒waiting = FALSE;
when receive (Amb, EVAL, RID, (R O[T A,T I])⇒ {

T O = eval( RID, R O[T A,T I], local Cxt);
set timer();
waiting = TRUE;
counter = 0;
if (R O[T I,T A,T O] is satisfied)

then send (Amb, REPLY, RID, count, T O, my ref);
}
when (receive (Amb, EVAL, RID, new(T I,T A) ) ∨ timeout ) ∧waiting⇒ {
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T O = eval( RID, R O[T A,T I], local Cxt);
if (T O changed) then count = 0 else count = count + 1;
if (R O[T I,T A,T O] is satisfied) ∨ count == 0)

then send (Amb, REPLY, RID, count, T O, my ref);
set timer();

}
when receive (Amb, RESULT, RID, response bag)⇒waiting = FALSE;
when receive (Amb, FINISHED, RID, ∅)⇒waiting = FALSE;

3.5 Discussion

Although the formal proof of the algorithm’s correctness, i.e. its convergence and safety
properties, is beyond the scope of this paper, we feel the need to informally discuss it
here.

As mentioned in section 3.2, convergence cannot be guaranteed. However, it is intu-
itive that if the Global Context State (GCS) is satisfied by the combined local contexts of
at least min size peers, and stays satisfied for a sufficiently long period of time (� 2 ∗ ∆t),
then this will not cause the Requesting Peer to send any modified EVAL messages to the
Ambient Reasoner, and all Participating Peers will also start sending REPLY messages
with count ≥ 1, so that eventually the Ambient Reasoner will have received min size RE-
PLY messages from the Peers, and will move to state finished.

The safety property, i.e. that the algorithm will never notify a GCS which never oc-
curred, is heavily based on the assumption that local context state checks by the peers are
stateful (cf. last item in section 3.2). Thus, if a GCS has not occurred, it means that at least
at one of the peers (a Requesting or Participating Peer) the operation changed will return
true, causing the peer to either send a new EVAL request or send a REPLY message with
count ≥ 1. This fact, combined with the assumptions that (i) the peers’ clocks do not
drift, and (ii) the timer period of all peers (∆t) is much larger than their communication
and processing latencies, will guarantee that this global context instability will always
reach the Ambient Reasoner before it might conclude that min size peers have witnessed
a stable GCS. Thus, the Ambient Reasoner will not finish the reasoning process, but will
keep waiting for the Global Context State to stay satisfied during a longer time interval.

4 Simulation

4.1 Sinalgo

In order to simulate the proposed algorithm’s execution we used Sinalgo [23], a free
open-source Java framework for validating and testing network algorithms in mobile net-
works. Sinalgo allows for quick prototyping of network algorithms in Java, easy extensi-
bility and customization, two and three dimensional network graphs, plus synchronous
and asynchronous simulations. It includes a network graph visualization utility which
can be used to visually inspect an algorithm’s execution steps.

Sinalgo’s extension points are called models. Each model includes a small set of pre-
defined options already implemented in the standard Sinalgo distribution. The following
models are included with Sinalgo:

Mobility Defines if and how each node’s position varies over time;

Connectivity Defines when two nodes are within communication range;
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Distribution Defines how to initially place the nodes in the network graph (i.e., defines
the nodes’ initial positions);

Interference Defines if overlapping communications can interfere with each other;

Reliability Defines how reliable message transmission is (i.e., defines if and under what
circunstances messages can be dropped while in transit);

Transmission Defines how long messages take to be transmitted.

Creating a project in Sinalgo typically involves carrying out the following tasks:

• Implementing the nodes behavior, which will usually include defining message
structures that will be used for communication between nodes;

• Implementing, if necessary, customized globally visible methods (such as methods
to collect statistics data, write log files, take some action when a node is added
or removed from the simulation, customize the drawing of the network graph or
check if the simulation has finished);

• Extending any of the existing standard models or even implementing additional
models as needed;

• Configuring the project and some of the simulation parameters using a standard
XML configuration file.

As previously mentioned, Sinalgo supports both synchronous and asynchronous sim-
ulations. While asynchronous simulations are purely based on events which lack tempo-
ral concurrence, synchronous simulations are based on rounds, which are simply fixed
time slots where events can occur in parallel. In an asynchronous simulation, nodes are
only able to act when one of the following events ocurr: a message arrives or a timer is
fired. Usually, in asynchronous mode, the reaction to an event will involve creating other
events and thus the execution flow of the simulation will be comprised of a sequence of
chained events.

In a synchronous simulation, on the other hand, the framework keeps track of a global
clock which has its ticks incremented by one at the beginning of each round. After incre-
menting the global clock, Sinalgo executes global methods defined to be executed prior
to each round and global timers that have fired in the current round. It then moves nodes
according to their mobility model and updates the connections (communication links) be-
tween nodes based on the connectivity model. After that, the framework executes each
nodes’ step, which is the main action sequence performed by the node and essentially
includes: executing node specific methods defined to be executed prior to each round,
executing node specific timers that have fired in the current round, handling received
messages and executing node specific methods defined to be executed after each round.
Finally, after executing each nodes step, Sinalgo executes global methods defined to be
executed after each round and then checks if the simulation has terminated. So, to sum-
marize, the basic calling sequence of a synchronous simulation in Sinalgo is as follows:

1. Increment global clock

2. Execute global pre-round methods

3. Execute global timers that have fired
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4. Update nodes’ position

5. Update nodes’ connectivity

6. Execute nodes’ step

6.1. Execute node specific pre-round methods

6.2. Execute node specific timers that have fired

6.3. Handle messages received by node

6.4. Execute node specific post-round methods

7. Execute global post-round methods

8. Check if simulation has terminated

Overall, Sinalgo turned out to be a very adequate option to implement our algorithm
and explore some simulation scenarios. Its ease of use combined with its flexibility to
extend and customize its behavior make it an invaluable tool.

4.2 Scenario and Variables

We propose a general simulation scenario similar to the one mentioned in section 1: dur-
ing a small conference, an attendee is interested in engaging in a group discussion with
nearby attendees who share a common interest. For that purpose, the attendee must rely
on a reasoning process to assess the interests of other attendees, to determine if there are
enough attendees nearby that share a common interest in order to have a group discus-
sion and, in case so, to find out who are these attendees. The attendee could also benefit
from knowing if there are any available rooms in order to host the group discussion,
although room unavailability will not stop the discussion from happening if there are
enough attendees with a common interest nearby.

We assume all attendees are potentially interested in having group discussions and,
thus, are willing to share their own interests and their current location in order to sup-
port the reasoning process. We also assume attendees can move within the conference
grounds, in order to attend sessions in different rooms, and that their interests change as
a result of attending sessions about different topics. This effectively means that both
attendees positions and interests change throughout time. Room availability to host
group discussions also changes throughout time, as conference sessions have different
time schedules. In addition, since it is a small conference, we take for granted that the
organizers are able to provide reliable connectivity access with a single central commu-
nication hub.

In this scenario, the attendee who is interested in finding nearby attendees with a com-
mon interest plays the role of the Requesting Peer (ReqP), as it wants to evaluate a Global
Context State; the other attendees play the role of Participating Peers (ParP), as they con-
tribute to the reasoning process with partial results; and finally, the central communica-
tion hub provided by the conference organizers plays the role of the Ambient Reasoner
(Amb), since it is used to mediate and coordinate the reasoning process. According to
our algorithm, we assume that for all reasoning purposes, attendees only interact with
the central communication hub, and not directly between themselves. Table 1 summa-
rizes the mapping between the entities involved in the scenario, in our algorithm and in
Sinalgo.

14



Scenario Algorithm Sinalgo

Attendee interested in Requesting Peer Node
promoting group discussions (PeerNode class)
Remaining attendees Participating Peer Node

(PeerNode class)
Central comm. hub Ambient Reasoner Node

(AmbientReasoner class)

Table 1: Mapping between the proposed scenario, our algorithm and Sinalgo entities.

The Global Context State looked for in this scenario could be expressed by the follow-
ing Description Logic rule, which would be evaluated cooperatively among the Ambient
Reasoner, the Requesting Peer and the Participating Peers:

InCenter(?ReqP, ?Region) ∧CurrentInterest (?ReqP, ?I) ∧ InsideRegion(?P, ?Region)

∧CurrentInterest (?P, ?J) ∧Equals(?I, ?J) ∧Available(?Room) ⇒NotifyAll(?ReqP, ?P)

In this rule, variables ?ReqP and ?P bind, respectively, to the Requesting Peer and
any Participating Peers that are nearby, while ?Region describes the dynamic perimeter
region around ?ReqP (as it moves), ?I and ?J bind to the current interest of the Requesting
and Participating Peers, respectively, and ?Room binds to the name/number of the rooms
that are available at the moment. As rule’s predicates are self-explanatory, one could
imagine that InCenter() and CurrentInterest() - its 1st occurrence in the rule - are evaluated
at the Requesting Peer, while each of the Participating Peers evaluates InsideRegion() and
CurrentInterest() - 2nd occurrence - , and Equals() and Available() would be evaluated at
the Ambient Reasoner. It is worth mentioning that the above rule is just one of several
possible rules that describe the Global Context State. Other, perhaps more detailed, rules
could be used instead of this one.

Both types of attendees (Requesting Peer and Participating Peers) and the central com-
munication hub (Ambient Reasoner) are implemented in Sinalgo as standard simulation
nodes, each with its own class. Initial node deployment relies on a circle pattern (Cir-
cle distribution model) with the central communication hub in the center and attendees
around it. Network edges, Sinalgo’s abstraction of communication links between nodes
that are within communication range, are created only between attendees and the central
communication hub. Since we consider the conference’s wireless network to be reliable,
we do not use interference, we use reliable message delivery (ReliableDelivery reliability
model) and constant transmission time for messages (ConstantTime message transmis-
sion model in Sinalgo) equal to 1 round.

Attendees’ mobility is implemented according to two different models. The first model
is Sinalgo’s standard RandomWayPoint, which moves each node to a randomly selected
waypoint and then waits at that point for a certain amount of time, before choosing an-
other waypoint and repeating the same procedure. Both the movement’s speed and the
waiting time are determined according to standard Sinalgo distributions (Gaussian and
Poisson, respectively). The second model, which we implemented based on the previous
model, is called Random Waypoint with Fixed Meeting Points. It works in a similar fashion
to the standard RandomWayPoint model, however, it allows for up to two fixed meeting
points to be configured. When it selects a new waypoint, it has a configurable probability
of choosing one of the meeting points instead of a random waypoint. Consequently, it is
possible to use this model’s configuration in order to increase the likehood of attendees
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with similar interests getting near each other. The central communication hub is placed
at the center of the conference grounds and does not move (NoMobility). All the models
used in the simulation are summarized in table 2.

Model Type Model(s) Used

Mobility (Attendees) RandomWayPoint
Random Waypoint w/ Meeting Points

Mobility (Comm. Hub) NoMobility
Connectivity StaticConnectivity
Distribution Circle
Interference (not used)
Reliability ReliableDelivery
Transmission ConstantTime (= 1)

Table 2: Summary of Sinalgo models used in the simulation.

We assume that each attendee switches between three different interests: A, B or C.
Interests are chosen randomly and last for a random period of time, measured in simu-
lation rounds, after which they may change. The minimum and maximum durations for
interests are configured by custom parameters in Sinalgo’s standard configuration file; by
default they are set to 25 and 40, respectively. It is also possible to configure the timeout
(∆t), measured in simulation rounds, before each entity participating in the reasoning
process will need to reevaluate its own context and act accordingly as predicted by the
algorithm.

For our simulation we chose to use Sinalgo’s standard deployment field, which is
1000x1000, in order to simulate the conference grounds. We consider that an attendee is
nearby another attendee when the distance between them is less than 250. In this man-
ner, a group discussion can only happen when enough attendees that share a common
interest have gathered within a 250 radius of the attendee who is interested in promoting
the discussion. The amount of attendees needed to start a group discussion can be con-
figured by means of establishing the minimum response bag size. Moreover, since we are
not concerned with short lived Global Context States which might not be detected by the
algorithm, we require that attendees must maintain a common interest and stay within
range for at least twice the timeout value (2 ∗ ∆t).

We used Sinalgo’s standard CustomGlobal class in order to implement a global mon-
itor which detects when the simulation is over, maintains some statistics and tracks the
detection delay between reasoning occurs and the simulation finishes. In order to check
if the algorithm has finished its execution, it checks at the end of each round if all peers
have been notified of the end of the reasoning process (in effect it checks if all peers have
received a FINISH message). It also keeps track of all Participating Peers by inspecting
them at every round; it checks, for each of them, if its interest matched the interest of
the Requesting Peer when it was evaluated and if its distance to the Requesting Peer
was within the acceptable range when it was evaluated. Doing so allows it to keep track
of how long Participating Peers who share an interest with the Requesting Peer and are
near it have stayed that way; thus it can determine, externally to the algorithm, when
reasoning should become stable.

In figure 2a we present a screenshot of the standard Sinalgo deployment field already
loaded with a central communication hub, identified by the blue square in the middle
with the letters AR (for Ambient Reasoner) and 10 attendees, identified by the person icon
which display the node’s identification number in the middle and the current interest on
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top. The circle around attendee 2 identifies it as the Requesting Peer and determines the
range of attendees considered to be nearby. In figure 2b we present another screenshot of
the simulation, this time after reasoning has finished. The Requesting Peer is identified
by the green color, while the nearby peers who share a common interest (C, in this case)
are identified by the blue color. In figures 3a and 3b we present, respectively, screenshots
of running simulations both with and without (two) meeting points; red icons represent
peers who are too distant or who do not share an interest with the Requesting Peer (pic-
tured in black), while green icons represent peers who are close enough to the Requesting
Peer and share an interest with it. Meeting points, placed at (250,250) and (750,750), are
represented by a common meeting point icon with four arrows pointing inwards.

We propose three settings for the simulation. In each setting we work with a fixed
number of attendees (20) excluding the one who originates the reasoning process (Re-
questing Peer) and we measure the amount of time needed for reasoning to stabilize,
the total number of point-to-point messages exchanged and the detection delay (the time
between reasoning has stabilized and the algorithm finishes its execution). In the sim-
ulation, timeouts (∆t) occur synchronously every 10 rounds; this effectively means that
every 10 rounds each participating entity will reevaluate its context and act accordingly.
A brief description of each setting follows.

In the first setting, we vary the minimum response bag size based on percentages,
in steps of 5% and up to 35%, of the number of attendees (corresponding to response
bag sizes from 1 to 7) and the mobility model. We experiment both with the standard
RandomWayPoint mobility model, varying the movement’s speed, and with the custom
Random Waypoint with Fixed Meeting Points model, varying the amount of fixed meet-
ing points available at the conference grounds, but always with a 50% chance of choosing
a fixed meeting point instead of a random waypoint. In this setting we are interested in
observing how the mobility models, as well as the relation between the number of atten-
dees and the minimum response bag size, influence the simulation. Table 3 summarizes
the key variables of the first simulation setting.

In the second setting, we vary the range (minimum and maximum values) that de-
fines how long a local context (interest) lasts based on the amount of time required for a
Global Context State to be considered stable by the algorithm (2 ∗ ∆t, where ∆t = 10). In
this setting we are interested in observing how much local context volatility influences
the reasoning process, in particular in terms of the time taken to finish reasoning and the
amount of messages exchanged. We use both the Random Waypoint with Fixed Meeting
Points mobility model, with one and two meeting points, and the standard RandomWay-
Point model. Table 4 summarizes the key variables of the second simulation setting.

In the third setting, we vary the probability of attendees heading to a meeting point,
from 25% to 75%. In this setting we are interested in observing how much the probability
of attendees heading to meeting points and the existence of meeting points influence the
reasoning process. We stick to the Random Waypoint with Fixed Meeting Points mobility
model, with both one and two meeting points. Table 5 summarizes the key variables of
the second simulation setting.

4.3 Results

In this section we present the results for the simulation settings described in section 4.2.
Each variation of a setting was executed 10 times and the numbers shown in this sec-
tion correspond to the rounded average of these executions. We present, for each setting,
the simulation duration (measured in Sinalgo rounds) and the number of messages ex-
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(a) Reasoning about to start.

(b) Reasoning finished.

Figure 2: Screenshots of a starting simulation and of a finished simulation in Sinalgo.
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(a) Reasoning without meeting points.

(b) Reasoning with two meeting points.

Figure 3: Screenshots of running simulations in Sinalgo.
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Variable Possible Values Parameters

Attendees 20 n/a
Min. Response Bag Size 1, 2, 3, 4, 5, 6, 7 n/a
LocalContextDuration (random) min=25, max=40
Mobility Model RandomWayPoint Speed distribution=Gaussian,

”slow” mean=5, variance=1;
WaitingTime distribution=Poisson,
lambda=20;

RandomWayPoint Speed distribution=Gaussian,
”fast” mean=10, variance=2;

WaitingTime distribution=Poisson,
lambda=20;

Random Waypoint w/ Speed distribution=Gaussian,
One Meeting Point mean=5, variance=1;

WaitingTime distribution=Poisson,
lambda=20;
GoToMeetingPointProb value=0.5;
NumMeetingPoints value=1;
MeetingPoint1 x=250.0 y=250.0;

Random Waypoint w/ Speed distribution=Gaussian,
Two Meeting Points mean=5, variance=1;

WaitingTime distribution=Poisson,
lambda=20;
GoToMeetingPointProb value=0.5;
NumMeetingPoints value=2;
MeetingPoint1 x=250.0, y=250.0;
MeetingPoint2 x=750.0, y=750.0;

Table 3: Summary of key variables for the first simulation setting.

changed.

When accounting for messages exchanged during the algorithm’s execution, we sep-
arate point-to-point messages (i.e., messages sent directly from specific peers to the Am-
bient Reasoner or in the opposite direction) and broadcast messages (i.e., messages sent
from the Ambient Reasoner to all peers). We choose not to present the total number of
broadcast messages, as that number is rather deterministic: the Ambient Reasoner only
does a broadcast once it receives an EVAL message from the Requesting Peer; the Re-
questing Peer only sends an EVAL message once it timeouts; thus, we expect broadcasts
to occur in regular timeout intervals, which means the total number of broadcasts can
be estimated by dividing the simulation duration by the timeout. Indeed, our results
showed that assumption to be true.

We also choose not to present the detection delays observed during the simulations.
The detection delay is the number of rounds between the moment that the Global Con-
text State becomes stable (i.e., there are enough replies with count ≥ 2 ∗ ∆t ) and the
algorithm finishes its execution. Our results showed that it is a constant value (3 rounds),
which corresponds to the time needed for the Participating Peers to send their last REPLY
message to the Ambient Reasoner and for the Ambient Reasoner to send the FINISH and
RESULT messages.

For each result we also calculated the standard deviations, which are not shown in
this paper. We observed high standard deviation for the majority of the results, mostly
within 50% to 100% of the corresponding mean. We believe this is a consequence of the
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Variable Possible Values Parameters

Attendees 20 n/a
Min. Response Bag Size 4 n/a
LocalContextDuration (random) min=10, max=25

min=25, max=40
min=40, max=55

Mobility Model RandomWayPoint Speed distribution=Gaussian,
mean=5, variance=1;
WaitingTime distribution=Poisson,
lambda=20;

Random Waypoint w/ Speed distribution=Gaussian,
One Meeting Point mean=5, variance=1;

WaitingTime distribution=Poisson,
lambda=20;
GoToMeetingPointProb value=0.5;
NumMeetingPoints value=1;
MeetingPoint1 x=250.0 y=250.0;

Random Waypoint w/ Speed distribution=Gaussian,
Two Meeting Points mean=5, variance=1;

WaitingTime distribution=Poisson,
lambda=20;
GoToMeetingPointProb value=0.5;
NumMeetingPoints value=2;
MeetingPoint1 x=250.0, y=250.0;
MeetingPoint2 x=750.0, y=750.0;

Table 4: Summary of key variables for the second simulation setting.

random variables used in the simulations. Furthermore, we believe the high standard
deviations do not weaken the conclusions we draw throughout this section based on the
simulation results.

4.3.1 Simulation Setting 1

Table 6 presents the simulation results for the first setting, where we vary the minimum
response bag size and the mobility model. The results demonstrate some of the algo-
rithm’s characteristics.

First, and perhaps more obvious, it is clear that as we increase the minimum response
bag size, the longer the reasoning process lasts. This is expected, as a greater minimum
response bag size demands that more attendees have a similar interest and are near each
other. Figure 4 depicts how the minimum response bag size influences the duration of
the simulation. It shows that as we linearly increase the minimum response bag size,
the duration of the simulation increases exponentially. This implies not only that the
minimum response bag size is a key factor for the performance of the algorithm, but also
that the algorithm is better suited for reasoning among small groups of peers.

Concerning the mobility models, the results show that the faster the attendees move,
the longer the reasoning process lasts, as it is more difficult to get the required number
of attendees with a similar interest in the same area. Moreover, the results show that the
introduction of meeting points help to promote colocation of attendees, increasing the
likehood of attendees with similar interests getting near each other and thus reducing
the duration of the reasoning process. This can also be observed in figure 4, which shows
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Variable Possible Values Parameters

Attendees 20 n/a
Min. Response Bag Size 4 n/a
LocalContextDuration (random) min=25, max=40

Random Waypoint w/ Speed distribution=Gaussian,
One Meeting Point mean=5, variance=1;

WaitingTime distribution=Poisson,
lambda=20;
GoToMeetingPointProb value=0.25, 0.50, 0.75;
NumMeetingPoints value=1;
MeetingPoint1 x=250.0 y=250.0;

Random Waypoint w/ Speed distribution=Gaussian,
Two Meeting Points mean=5, variance=1;

WaitingTime distribution=Poisson,
lambda=20;
GoToMeetingPointProb value=0.25, 0.50, 0.75;
NumMeetingPoints value=2;
MeetingPoint1 x=250.0, y=250.0;
MeetingPoint2 x=750.0, y=750.0;

Table 5: Summary of key variables for the third simulation setting.

how having a single meeting point mostly results in a shorter reasoning process than
having two meeting points, as attendees will likely gather at a single location and thus
the probability that attendees with similar interests will get near each other increases.

Another expected result is that the longer the simulation lasts, the more messages
need to be exchanged between the Participating Peers and the Ambient Reasoner. Figure
5 depict how the simulation duration influences the number of point-to-point messages
sent. As it can be observed, the amount of point-to-point messages exchanged tends to
hold a linear relation to the duration of the simulation.

4.3.2 Simulation Setting 2

Table 7 presents the simulation results for the second setting, where we vary the local
context volatility; contrary to the previous setting, here we use a constant number of
attendees (20) and a minimum response bag size (4). The results for this setting allow us
to observe different characteristics of the proposed algorithm.

Probably the most interesting pattern which can be observed is that less volatile (longer
lasting) local contexts result in shorter reasoning processes than more volatile local con-
texts. This is most likely due to the fact that the more stable the local contexts are, the
more time (and thus the greater the chance) there is that attendees with similar interests
will get near each other at some point in time. Figure 6 depicts how local context volatil-
ity influences the duration of the simulation. Naturally, consistent with the first setting’s
results, the number of exchanged point-to-point messages also increases as the duration
of the simulation increases.

4.3.3 Simulation Setting 3

Table 8 presents the simulation results for the second setting, where we vary the proba-
bility of attendees heading to meeting points; we use a constant number of attendees (20)
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Mobility Min. Resp. Simulation Messages
Model Bag Size Duration Point-to-Point

RandomWayPoint 1 32 18
”slow” 2 224 142

3 460 306
4 1,745 1,194
5 22,215 15,081
6 159,169 108,496
7 1,465,423 1,000,618

RandomWayPoint 1 67 45
”fast” 2 187 142

3 1,808 1,319
4 8,225 6,002
5 130,747 95,512
6 984,876 719,306
7 21,931,631 16,022,897

Random Waypoint w/ 1 35 21
One Meeting Point 2 86 60

3 187 143
4 293 229
5 2,239 1,635
6 15,055 11,216
7 61,588 45,817

Random Waypoint w/ 1 32 19
Two Meeting Points 2 107 78

3 130 92
4 555 423
5 4,170 3,040
6 27,096 19,968
7 145,695 107,353

Table 6: Results for simulation setting 1.

Mobility Context Simulation Messages
Model Duration Range Duration Point-to-Point

RandomWayPoint 10-25 15,294 13,608
25-40 3,325 2,287
40-55 1,948 1,132

Random Waypoint w/ 10-25 2,149 2,033
One Meeting Point 25-40 497 373

40-55 355 219

Random Waypoint w/ 10-25 3,525 3,271
Two Meeting Points 25-40 1,137 841

40-55 637 405

Table 7: Results for simulation setting 2.

and a minimum response bag size (4). The results for this setting allow us to observe yet
other characteristics of the proposed algorithm.

The results for this setting clearly show that adding meeting points to the simula-
tion result in shorter reasoning processes, as depicted in figure 7. Moreover, it shows

23



 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 5  10  15  20  25  30  35  40

S
im

u
la

ti
o

n
 D

u
ra

ti
o

n
 (

ro
u

n
d

s
)

Minimum Response Bag Size (% of attendees)

RandomWayPoint Slow
RandomWayPoint Fast

Random WP w/ 1 Meeting Point
Random WP w/ 2 Meeting Points

Figure 4: Minimum response bag size influence on the duration of the simulation for setting
1.

Mobility Probability of Heading Simulation Messages
Model to Meeting Point Duration Point-to-Point

Random Waypoint w/ 25% 1964 1383
One Meeting Point 50% 470 358

75% 219 179

Random Waypoint w/ 25% 2057 1438
Two Meeting Points 50% 1934 1402

75% 560 429

Table 8: Results for simulation setting 3.

that adding a single meeting point shortens the reasoning process more than adding two
meeting points, which is also consistent with the previous settings. This is especially true
as we increase the probability of attendees heading to meeting points.

5 Conclusion

In this paper, we have proposed a distributed algorithm for detecting Global Context
States among an arbitrary set of mobile peers, presented its applicability for coopera-
tive reasoning for pervasive applications, and have conducted several simulation exper-
iments to evaluate the performance of the algorithm in different mobility and context
volatility scenarios.

The obtained results show that the convergence time of the algorithm grows exponen-
tially with the percentage of peers that are required to contribute to the Global Context
State (i.e. the relative size of response bag), but is not so much sensitive to context volatil-
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Figure 5: Simulation duration influence on the number of exchanged point-to-point messages
in setting 1.

ity. Moreover, the results show that with more regular mobility patterns, e.g. with some
fixed ”meeting points”, the convergence time drops significantly, and that the commu-
nication complexity is proportional to the convergence time, making it feasible for such
scenarios with less mobility entropy. We have also identified that the detection delay is
very small and almost constant, suggesting that Global Context States will be informed
timely to users. Collectively, theses results suggest that the approach can be applied in
practice in situations where the percentage of contributing peers is less than 35% of the
total number of peers, when there exists some user clustering points, such as meeting
points or coffee tables, and the Global Context State is defined by a few context variables,
which do not change very frequently.

A limitation of our algorithm is the fact that it requires a careful calibration of the timer
period (i.e. ∆t), which is inherently dependent on the application domain. However, once
the minimum period of stability of a Global Context State to be inferred is determined,
then our algorithm does a fairly good job in detecting it. Another point of criticism may
be the premise that all peers must adopt exactly the same timer periodicity. However,
if we assume that each peer is expected to run the same client program so as to have
the ability to perform the decentralized reasoning, then this client would of course use a
common timer periodicity. Also, in regard to the assumption that local clocks don’t drift
from each other, we believe that current processor clock technology is already capable of
guaranteeing this property for periods of time which exceed, by large, the time scale of
the expected time of use of our system.

It is worth noting also that in our current implementation of the algorithm (used in
the simulations) the peers and the Ambient Reasoner perform only the detection of the
specific Global Context State of the small conference scenario (Section 4.2). Hence, our
implementation does not yet support general purpose reasoning of DL rules - expressing
Global Context States - nor the rule splitting and distribution process among the peers.
Hence, as part of future research we plan to introduce DL rule processing engines at the
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Figure 6: Local context volatility influence on the duration of the simulation.

peers, and evaluate the performance of the complete reasoning algorithm.

Future work

This work is just a first step towards a decentralized reasoning approach, and we envis-
age several possible lines of future work, both as improvements of the algorithm, as well
as in regard to the reasoning approach, as a whole.

Regarding the algorithm, in our simulations we only evaluated the convergence of the
algorithm using two simple local context variables: location and a small set of (three)
interests. It would be interesting, though, to evaluate the convergence on scenarios
where the global context depends on more local context variables, possibly with different
volatilities. Still concerning the algorithm’s convergence, we showed that the minimum
response bag size appears to be central to that matter, however we did not delve into
trying to refine and optimize the convergence time, which could result in some improve-
ment to the algorithm. Also, we believe some of the algorithm’s premisses could be
weakened in order to allow for further testing and adjustments to the algorithm. Exam-
ples of weakened premisses include different evaluation timeouts at each peer and local
clocks with a small drift. Ultimately, these adjustments could result in an asynchronous
algorithm.

Regarding the reasoning approach, we believe it could be interesting to define a fully
decentralized approach. In this approach, the Ambient Reasoner could become a role.
Thus, instead of relying on a single pre-determined peer, any peer with sufficient re-
sources and low mobility could assume the Ambient Reasoner role throughout the rea-
soning process.
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