

PUC	

ISSN 0103-9741

Monografias em Ciência da Computação
n° 06/12

A DDS-based middleware for scalable tracking
and communication of wireless-connected

mobile nodes in a WAN

Markus Endler
Rafael Oliveira Vasconcelos
Lincoln David Nery e Silva

Rafael André
Lucas Alves

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 06/12 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena June, 2012

A DDS-based middleware for scalable tracking and
communication of wireless-connected mobile nodes in

a WAN
Markus Endler Rafael Oliveira Vasconcelos

Lincoln David Nery e Silva Rafael André Lucas Alves

{endler, rvasconcelos, lnsilva, randre, lalves}@inf.puc-rio.br

Abstract. Applications such as vehicle fleet monitoring and logistic systems, emer-
gency response coordination, environmental monitoring or mobile workforce man-
agement, employ mobile networks as means of communication, information sharing
and coordination among a possibly very large set of mobile nodes interconnected by a
Wide Area Network (WAN). The majority of those systems thus requires real-time
tracking of the mobile nodes, interaction with all participant nodes, as well as means of
adaptability in a very dynamic scenario, where it is not possible to predict when,
where and for how long the nodes will remain connected. Several studies and real-
world applications suggest that OMG's Data Distribution Service (DDS) standard - and
corresponding middleware products - enable scalable decentralized solutions for real-
time communication between large sets of networked nodes. However, our experi-
ments show that DDS only works well when deployed on a LAN or a high-
performance network, drastically loosing its performance when used in a wireless
network. In this paper we present a DDS-based communication middleware that sup-
ports real-time tracking and communication with several thousands of mobile nodes,
wirelessly connected over the WAN, as well as three modes of communication: unicast,
groupcast and broadcast. We then show some performance results of our middleware,
that demonstrate the viability of extending the real-time communication capacity of
DDS also to wireless-connected mobile nodes in a WAN.

Keywords: DDS, mobile collaboration, mobile communication, middleware, scalable
communication

Resumo. Aplicativos como o monitoramento de frota e sistemas de logística, coordena-
ção de resposta a emergências, monitoramento ambiental ou gestão da força de traba-
lho móvel, empregam redes móveis como meio de comunicação, compartilhamento de
informações e coordenação de um número possivelmente grande de nós móveis inter-
ligados por uma Wide Area Network (WAN). A maioria destes sistemas, portanto, re-
quer monitoramento dos nós móveis em tempo real, interação com todos os nós parti-
cipantes, e meios de adaptabilidade em um cenário muito dinâmico, onde não é possí-
vel prever quando, onde e por quanto tempo os nós permanecerão conectados. Vários
estudos e aplicações reais sugerem que o padrão de Serviços de Distribuição de Dados
da OMG (DDS) - e produtos correspondentes de middleware - habilitam soluções des-
centralizadas e escaláveis para comunicação em tempo real de grandes conjuntos de
nós de rede. No entanto, nossos experimentos mostram que o DDS só funciona bem
quando implantado em uma LAN ou uma rede de alto desempenho, perdendo drasti-
camente seu desempenho quando utilizado em uma rede sem fio. Neste artigo apre-
sentamos um middleware de comunicação baseado em DDS que suporta monitora-
mento em tempo real e comunicação com vários milhares de nós móveis, conectados

 ii

sem fio por uma WAN, e três modos de comunicação: unicast, groupcast e broadcast.
Depois, mostramos alguns resultados de desempenho do nosso middleware que de-
monstram a viabilidade de ampliar a capacidade de comunicação em tempo real do
DDS para nós móveis conectados sem fio em uma WAN.

Palavras-chave: DDS, colaboração móvel, comunicação escalável, comunicação móvel,
middleware

 iii

In charge for publications

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iv

Table of Contents

1 Introduction 1	

2 Why DDS Should not be Used for Mobile Networks 2	

3 Overview of the Scalable Data Distribution Layer (SDDL) 4	
3.1 RUDP 6	
3.2 Handling Mobile Node Handover 6	
3.3 Load Balancing Support 6	

4 Group Communication and Management 7	
4.1 Extending Asynchronous Pub/Sub Alike Communication to the Mobile Clients 8	

5 Use Case: Fleet Tracking and Management 8	

6 Performance Tests 9
6.1 General Test Set-up 9	
6.2 Testing Unicast and Broadcast Without Handovers 10	
6.3 Tests With Mobile-initiated Handovers 10
6.4 Tests With Groupcast Messages 12	

7 Related Work 13	

8 Conclusion and Next Steps 14	

References 15	

1

1 Introduction

As wireless connectivity through 2G/3G networks and Wi-Fi technology is becoming
ubiquitous, and GPS-enabled portable devices with several embedded sensors are be-
ing massively sold (smart phones, tablets), new distributed mobile applications requir-
ing instant communication and tracking of mobile nodes (e.g. humans, vehicles or au-
tonomous robots/vehicles) are becoming feasible. In particular, application fields such
as vehicle fleet tracking and management, logistics, remote monitoring of devices for
maintenance, emergency response coordination, homeland security or mobile work-
force management, are putting pressing demands for systems capable of (soft) real-
time monitoring and communication among large sets of mobile nodes, connected
through any wireless technology. For example, transport and energy companies oper-
ating trucks on a large territory are demanding systems for tracking and instant com-
munication between their transport teams, enabling them to share information about
delivery-tasks, road conditions, vehicle conditions, or any event that may have oc-
curred during their routes.

As wireless connectivity through 2G/3G networks and Wi-Fi technology is becom-
ing ubiquitous, and GPS-enabled portable devices with several embedded sensors are
being massively sold (smart phones, tablets), new distributed mobile applications re-
quiring instant communication and tracking of mobile nodes (e.g. humans, vehicles or
autonomous robots/vehicles) are becoming feasible. In particular, application fields
such as vehicle fleet tracking and management, logistics, remote monitoring of devices
for maintenance, emergency response coordination, homeland security or mobile
workforce management, are putting pressing demands for systems capable of (soft)
real-time monitoring and communication among large sets of mobile nodes, connected
through any wireless technology. For example, transport and energy companies oper-
ating trucks on a large territory are demanding systems for tracking and instant com-
munication between their transport teams, enabling them to share information about
delivery-tasks, road conditions, vehicle conditions, or any event that may have oc-
curred during their routes.

A common characteristics of all the applications considered in our work is the fact
that the mobile nodes periodically produce some data about them (e.g. probing sen-
sors), which we call context information, as for example, their position, speed or other
data, and publish this data so to be processed or visualized by other nodes – either sta-
tionary or mobile. Hence, we also assume that each mobile node has some wireless in-
terface and is capable of communicating with other stationary machines through the IP
protocol. In these applications, the main requirement is that, if the mobile node is con-
nected and is producing its context data, this context update (CxtU) should be deliv-
ered to all the other interested nodes almost instantaneously. Moreover, messages
should be deliverable to each mobile node that is connected, with the smallest possible
delay.

In the past, much research has been done in Publish/Subscribe (Pub/Sub), but only
few support large-scale mobile networks with wireless links and at the same time offer-
ing QoS communication guarantees. On the other hand, OMG’s Data Distribution Serv-
ice (DDS) standard [11] offers high performance communication capabilities, currently
used for several distributed mission-critical applications, and which should be useful
also for large-scale mobile networks. DDS specifies a Peer-to-Peer, scalable middleware
architecture for data distribution in (soft) real time, with Quality of Service (QoS) con-
tracts between producers and consumers of data (e.g. best effort or reliable communi-
cation, data persistency and several other message delivery optimizations, etc.). Unlike
other communication middleware, DDS can explicitly control the latency and efficient

2

use of network resources through fine-tuning of its network services that are critical in
soft real-time applications (e.g. its QoS policies deadline, latency budget or transport
priority, etc.). However, so far we have not seen any deployment of DDS for large-scale
and wireless-connected mobile distributed applications, such as the ones described
above, which suggests that DDS cannot be efficiently deployed directly at mobile
nodes in the wireless networks. This motivated us to design and implement a middle-
ware that extends DDS’ high-performance communication capabilities to wireless-
connected mobile devices. As the main requirement of our middleware, we put scal-
ability, simplicity and high communication performance.

The main contributions of this paper are the following:

1. We discuss the problems of deploying DDS on mobile networks, and give evi-
dence of the incurred performance penalties when using DSS’ Reliability and Durabil-
ity QoS policies in settings with intermittent connectivity;

2. Describe our DDS-based communication middleware and show that it supports
re-liable unicast and groupcast message delivery to mobile nodes in spite of IP ad-
dress changes, temporary disconnections, and Firewall/NAT traversal;

3. Give evidence of the scalability of our middleware, even for a deployment in a
WAN, and show that it is capable of handling frequent handovers of mobile nodes;

4. Show a mechanism by which the processing and communication workload can
be balanced among the Gateway nodes;

5. Describe support for two sorts of groups of nodes: explicit and context-defined
groups, and show how the latter are efficiently maintained/updated by our middle-
ware.

6. Present results of several performance tests made in several WAN settings,
showing the apparent suitability of our middleware for communications in large-scale
mobile applications.

This work is part of a larger project called ContextNet, aimed at developing middle-
ware for (soft) real-time communication, coordination and collaboration in large-scale
distributed mobile applications. In the scope of this project, the middleware presented
in this paper, is the basic layer for communication and context information sharing.
This middleware, called Scalable Data Distribution Layer (SSDL), is available for
download at http://www.lac.inf.puc-rio.br/sddl

Paper outline: In the next section we discuss why DDS apparently is not well suited
for wireless communications, and justify our claim by showing data of a performance
test done with commercial DDS products. In section 3 we overview the architecture
and main components of SDDL, and in section 4, explain SDDL’s support for group
communication and management. Section 5 then shortly explains our middle-ware’s
main use case, and section 6 presents results of several performance tests done for dif-
ferent numbers of simulated mobile nodes accessing SDDL from a WAN, and with di-
verse handover behavior. In section 7 we compare our work with related work, and in
section 8 we make some concluding remarks, respectively.

2 Why DDS Should not be Used for Mobile Networks

Due to several successful deployments, DDS has proved to be a good solution for a
large number of real-world mission critical applications that have soft real-time com-
munication requirements. However, most of these DDS-based applications seem to
have a specific network set-up which ensures highly efficient communication and abil-
ity to support most of the required QoS parameters. However, this common net-work

3

setting for DDS is not the same as that of large-scale distributed mobile applications
discussed in the previous section. Trying to use DDS for such applications raises sev-
eral interesting challenges, which we will discuss in the following.

It does not take long to realize that deploying an application over the WAN with
DDS is not a simple task. DDS’ optimized data communication facilities are heavily
based on IP Multicast messages, that are quite restricted in the Internet. In fact, as dis-
cussed in [7], Internet is characterized by many interconnected “scattered islands
where IP Multicast is available”.

But not only the lack of Internet-wide IP Multicast is the problem. Since DDS QoS
policies are implemented by properly setting the DDS Network Services, there is no
guarantee that most DDS optimizations and QoS policies will work in a WAN where
the messages are routed through several networks which are beyond reach to the user
of a DDS-based application.

In a wireless mobile setting we face additional challenges, since mobile nodes usu-
ally have scarce resources and small bandwidth network connections, therefore mak-
ing them not well suited to act as regular DDS nodes. Moreover, wireless mobile DDS
nodes can be expected to frequently experience network disconnections, especially in
cases where the node is connected via 3G or EDGE technology. On the other hand,
DDS offers two QoS policies that could be used to address this problem: (i) Reliability
and (ii) Durability. The Reliability policy can be used to guarantee that every message
will be delivered to all active/connected nodes, while the Durability policy persists all
DSS messages for a pre-defined amount of time. So, with both policies DDS would be
able to ensure that intermittent nodes and late joiners will receive all messages sent.
However, there is very little information in literature on how those QoS policies be-
have under different frequencies and durations of intermittent connectivity. In order
to answer these questions we decided to run an experiment: to deploy a simulated set
of mobile data-producing DDS nodes on two servers, and test the system’s data deliv-
ery performance using the aforementioned DDS QoS policies with intermittent connec-
tivity. For our experiments we chose two well-established commercial DDS implemen-
tations available. In this experiment we would artificially cause short periods (< 1 sec-
ond) of wireless disconnection for a random number of the simulated mobile DDS
nodes and measured the Roundtrip delay (RTD) of unicasts with acknowledgement to
all simulated nodes.

Initially, we wanted to run the experiment with machines in different network do-
mains. But, as in [7], we faced a serious limitation of our DDS products: their inabil-
ity/complexity of usage in a WAN. Each node would have to establish a VPN connec-
tion in order to participate in the DDS domain – which is a non-scalable solution. To
proceed with our tests, we thus switched to a LAN network set-up and obtained re-
sults for a simultaneous disconnection of 10, 100 and 1000 simulated mobile DDS
nodes, shown in Table 1.

Total nr of simulated

DDS nodes 10 100 1.000

Average RTD (in
milliseconds) 2900 2800 3050

Table 1. Test of DDS implementations with intermittent connectivity

The obtained result show that even for short-lived disconnections, and independent
of the number of disconnected nodes DDS suffers from significant loss of communica-
tion performance. These results and the problems mentioned before suggest that DDS
should not be used for high-scalable mobile applications deployed over the WAN, at
least not until there’s a major upgrade of the networking quality by ISPs or improve-
ments of the available DDS implementations. As a means to address these problems, in

4

this paper we present SDDL, a middleware solution that uses DDS only on stationary
nodes in a LAN (it could also be a cloud infrastructure) and employs a scalable gate-
way approach to bridge the gap between the high performance DDS and the weak
wireless connectivity to the mobile nodes. SDDL has a particularly interesting feature:
it’s a lightweight implementation that can run on almost any mobile device with IP
connectivity, and does not require a platform-specific DDS implementation on the mo-
bile nodes.

In order to compare SDDL with one of the commercial DDS implementations, we
did some performance tests for three different scenarios in a wired LAN setting. The
tests measured the amount of time needed to distribute one hundred 1K messages
among different sets of nodes. The results are shown below:

Total number of MN 100 500 1000
Our DDS Implementa-
tion 1020ms 223ms 114ms

SDDL 990ms 199ms 102ms

Table 1. SDDL vs. commercial DDS performance

The results indicate that our middleware is good enough as a DDS replacement for
mobile nodes in the contexts that DDS does not perform well or does not perform at
all. Through our middleware we expand some advantages of DDS’s real-time commu-
nication capabilities to mobile nodes, and solve at least some of the problems that pre-
vent DDS from being used in a mobile WAN setting. The most basic layer of the Con-
textNet architecture is its communication middleware, named Scalable Data Distribu-
tion Layer (SDDL), which connects stationary nodes of a wired “core” network with all
the mobile nodes. This layer is the focus of this paper, and will be further described in
more detail. The other ContextNet middleware layers and services have been presen-
ted in [2]. The collaborative applications are to be built within Social Networks or by
using our Mobile Collaboration and Coordination Framework Mobilis [3].

3 Overview of the Scalable Data Distribution Layer (SDDL)

Scalable Data Distribution Layer (SDDL) is a communication middleware that connects
stationary DDS nodes in wired “core” network to mobile nodes with an IP-based wire-
less data connection. Some of the stationary nodes are information and context data
processing nodes, others are gateways for communication with the mobile nodes, and
yet others are monitoring and control nodes operated by humans, and capable of dis-
playing the mobile node’s current position (or any other context information), manag-
ing groups, and sending unicast, broadcast, and groupcast message to the mobile
nodes (MN).

SDDL employs two communication protocols: DDS’s (Distribution Service for Real-
Time Systems) RTPS [2] for the wired communication within the SDDL core, and the
Reliable UDP protocol (RUDP) for the communication at the edges, between the core
network and the mobile nodes. As part of the core network - based on DDS - three
sorts of SDDL nodes have distinguished roles:

The Gateway (GW) defines a unique Point of Attachment (PoA), for connection with
the mobile nodes (MN), which are an IP address and a port. The Gateway is responsi-
ble for managing a separate RUDP connection with each of these MN, for-warding any
application-specific message or context information to the SDDL core network, and in
the opposite direction, converting DDS messages to RUDP messages and delivering
them to the corresponding MNs.

5

The PoA-Manager is responsible for two things: to periodically distribute PoA-List
to the MNs, and to eventually request some MNs to switch to a new Gateway/PoA.
The PoA-List is always a subset of all available Gateways in SDDL, and the order in the
list is relevant, i.e. the first element points to the preferred Gateway/PoA, and so forth.
By having an updated PoA-List, a MN may always switch its Gateway if it detects a
weak connection or a disconnection with the current Gateway. Moreover, by distribut-
ing different PoA-Lists to different groups of mobile nodes, the PoA-Manager is able to
balance the load among the Gateways, as well as announce to the mobile nodes when a
new Gateway is added to, or an existing Gateway is removed (or failed) from the
SDDL core.

GroupDefiners are responsible for evaluating group-membership/s of all mobile
nodes. To do so, they subscribe to the DDS topic where any message or context up-date
is disseminated, e.g. the ones sent by mobiles and forwarded by the corresponding
Gateway, and map each node to one or more groups, according to some application-
specific group logic. This group membership information is then shared with all Gate-
ways in the SDDL core network, using another specific DDS topic, to which all Gate-
ways subscribe so that they can update their cached node’s membership information.
Whenever a new message is published to a group, each Gateway queries its group-to-
MN mapping, to learn to which of the attached MNs it should send the message. The
current groups of a node can be determined, for example, by its current position (e.g. if
it is inside some region), by the node ID, or by any other attribute/field of its context
information (e.g. a vehicle’s remaining fuel).

Fig. 1. Nodes and protocols used in SDDL

Figure 1 shows these three types of SDDL nodes, and the communication protocols
they use. At the mobile side, currently we have implemented a simple Android-based
client application, which displays the user’s current location on a map and is capable of
sending and receiving text messages. For testing purposes, we also have a program
(a.k.a. the Vehicle simulator) which simulates any number of mobile nodes (each in a
separate thread) periodically sending their position and also capable of performing a
switching between Gateways. This program will be further explained in section 7.1.
The Controller is a JavaScript and Applet, which runs in a web browser and is used to
visualize the mobile nodes and their (random) trajectories on a map and to send uni-
cast, groupcast and broadcast messages to the mobile nodes. Figure 2 shows a screen-
shot of the Controller, where the mobile nodes are represented by blue icons, leaving a
blue trail behind, and the green icon is the mobile node to which a message is been
sent. In addition to this main map-view, there is also another view (not depicted here)
with options to select a group for groupcast communication.

6

3.1 RUDP

The Reliable UDP (RUDP) protocol is the basis for the Gateway-mobile node interac-
tion. It implements some TCP functionality on the top of UDP, and has been custom-
ized to handle intermittent connectivity, Firewall/NAT traversal and robustness to
switching of IP addresses and/or network interfaces. Each message, in either direction,
requires an acknowledgement, and if one is not received each transmission is retried
several times before considering the connection broken. In addition, RUDP has been
optimized in the following ways: reduced number of connection-check packets; trans-
parent continuation of a RUDP connection in spite of IP address changes; small num-
ber of connection maintenance packets for Firewall/NAT traversal. These optimiza-
tions are very important, since cellular wireless networks are not fully reliable every-
where. For example, when a mobile node connected to a Gateway enters an area with
no, or weak, connectivity, it may suffer a temporal disconnection. And when the wire-
less signal comes back, the device will probably get a new IP address. In our RUDP
implementation, the previous connection to the mobile node will be maintained, and
all buffered UDP messages will be delivered in the original order, provided that the
disconnection time is shorter than a threshold.

3.2 Handling Mobile Node Handover

A mobile node Handover (HO) happens when a node connected to a Gateway drops or
loses its connection and connects itself to a different Gateway. SDDL supports both
core-requested, mandatory HO, i.e. when the PoA-Manager request the mobile node to
re-connect to a new GW, and a mobile-initiated, spontaneous HO, i.e. when the MN
spontaneously decides to re-connect to a new GW. In any case, it is the MN that actu-
ally chooses the new PoA from its PoA-List, and reconnects to the corresponding GW.

While performing a handover between Gateways, i.e. during the period of time
when the MN is temporary disconnected, it could happen that some messages for the
node are lost. In order to prevent this from occurring and achieving reliable delivery of
messages during handovers (a.k.a. smooth handovers), SDDL includes the Mobile
Temporary Disconnection Service (MTD).

The MTD Service, which may run on any node(s) of the SDDL core network, is re-
sponsible for buffering all messages that have not been delivered to the MN during its
HO. But as soon the MN is connected to the new GW the MTD Service will resend all
buffered messages into the DDS domain, so that they can be delivered to the MN
through the new GW. Since not all applications require reliable message delivery
across handovers (smooth handover), the MTD service is optional in SDDL.

The interested reader may refer to [3] for more information about the SDDL and
about performance tests done in a Local Area Network.

3.3 Load Balancing Support

As aforementioned, SDDL has a load balancing support based on MN handovers. This
approach allows the SDDL to balance the workload among Gateways by sending
mandatory HOs to MNs. To enable load balancing, Gateways periodically publish
through SDDL domain a LoadReportTopic that contains information about their CPU
usage, free memory, number of vehicles connected and public IP address and port.
Others information such as network usage, for instance, could be easily added to this
topic.

7

By receiving the load reports sent from Gateways the PoA-Manager has knowledge
about the Gateways’ workloads, thus it is able to redistribute the MNs to reconnect
through a different Gateway. As a first implementation, PoA-Manager applies a simple
algorithm that distributes the Gateways’ workload based only on number of vehicles
connected. However, we argue that this algorithm, which is a module a part from the
PoA-Manager itself, can be changed by another more sophisticated one. In fact, we are
in an initial stage to develop a new algorithm that utilizes information about CPU and
network usage, free memory and number of MNs connected.

PoA-Manager has a second module that is in charge of choosing which MNs should
execute a HO to which new Gateways. The first module only estimates how many
MNs should stay connected in each Gateway. This second module, for instance, could
decide to keep on the same Gateway MNs that belong to the same geographical prox-
imity. Both modules may be dynamically changed without impacting PoA-Manager
execution.

4 Group Communication and Management

SDDL has been deployed in a real-world Fleet Tracking and Management application
of a major gas distribution company, which operates throughout the entire country in
Brazil. In SDDL, a mobile node n may be member of one or more groups. Groups of
nodes may be either long-lived/explicit or context-defined. In the former category they
are explicitly defined by the application developer/operator, e.g. nodes belonging to a
certain user group, to a same company or administrative domain, or nodes of a same
type. For context-defined groups, the membership of a node is dynamically deter-
mined by its most recently updated context data (its ContextUpdate – CxtU). For ex-
ample, if the context means the “geographic position”, then all nodes located within a
certain region (e.g. a metropolitan area or within the boundaries of a state), can form a
context-defined group. Alternatively, nodes could also be grouped by their current
type of connectivity (3G vs. 2G), their residual energy level, accelerometer data, local
weather condition, or any other dynamic context information. Hence, context-defined
group membership has to be continuously updated according to the most recent CxtU
sent by the nodes, and this is done by the GroupDefiners in tandem with the Gate-
ways: for each CxtU the GroupDefiners check if some membership changed, and if this
is the case, disseminate this node’s group change to all Gateways, which update their
mappings accordingly.

Based on this group management, groupcast message delivery is then implemented,
in two steps: first, the sender disseminates a single message in the DDS domain and
tags it for the corresponding groups; secondly, each Gateway identifies which of its
attached MNs are in the groups, and sends to them a copy for the message through
RUDP. It should be mentioned that this groupcast message may not be delivered ex-
actly to all members of a group, since the group membership of a node may not be re-
flected in the Gateway mapping until its group determining CxtU is produced by the
node (e.g. every 30s), received and processed by the corresponding GroupDefiner.
However, we believe that for most applications such groupcast delivery imprecision is
perfectly tolerable. In fact, there is this tradeoff between groupcast precision and the
generated traffic load caused by of more frequent CxtU.

Each GroupDefiner internally consists of a generic CxtU message processing part,
and an application-specific, Group selection module. The generic part is responsible for

8

reading CxtU messages from the DDS domain, recording the current groups related to
the message, and handling the CxtU object to the Group Selection module. This mod-
ule will execute a specific group-mapping algorithm to determine the group/s that the
corresponding producer of the CxtU is member of. The separation of the generic and
the specific group membership processing parts has some advantages: (i) it is possible
to deploy several GroupDefiners in the SDDL core, each of which executing a Group
selection module that examines a certain type of the CxtU object independently of the
other modules, and (ii) Group selection modules may be easily exchanged in the
GroupDefiner, without compromising the remaining function of the SDDL group
management and communication capabilities.

4.1 Extending Asynchronous Pub/Sub Alike Communication to the Mobile
Clients

Our middleware also enables asynchronous communication from the mobile nodes,
but only in a restricted form. Instead of allowing them to register an arbitrary filter-
ing/selection expression with the subscription (as it is possible in content-based Pub-
lish/Subscribe), for the sake of performance, it is group-based: i.e. a mobile node may
subscribe to data published in any of the groups (either explicit or context-defined),
registered by through the Controller.

Moreover, we expect the mobile client app also to store on the MN all its active sub-
scriptions. When a mobile node subscribes to a certain group, its subscription is sent to
the corresponding Gateway, which stores it locally and marks this mobile node as be-
ing interested in groupcast messages of the corresponding group. Thus, whenever this
Gateway receives a message for this group from the DDS domain, it will also select the
subscribed MN as a destination of the message and hand it the message through
RUDP. But whenever a handover occurs between two Gateways, it is necessary for the
MN to re-issue its subscriptions. Of course, this form of Pub/Sub is quite different
from the asynchronous communication support of DDS, including the lack of QoS
policies. Until now, however, this is the best compromise that we could find for a scal-
able Pub/Sub mobile communication. Further details about our implementation of
group management and asynchronous communication in SDDL can be found in [12].

5 Use Case: Fleet Tracking and Management

In the Mobile InfoPAE project, SDDL is being integrated into a real-world fleet tracking
and management application of a major gas distribution company, which operates in
the entire country. Using this application, the company's Operations Center is able to
track and analyze the mobility pattern of all its trucks in real-time, so as to optimize the
fleet’s journeys, detect obstructions or jams on roads, and monitor the vehicle’s itiner-
ary, detecting abnormal events or actions (e.g. too long elapsed time at a client stop, too
slow or to fast driving, etc.). Moreover, it supports simple text messaging with drivers,
allowing the Operations Center to send them instructions or alerts, individually or to
groups of them. For the communication with the vehicles, the company uses all four
Brazilian major cellular network operators, since in each region of the country has its
main operators. Moreover, in each region, there are significant differences of connec-
tivity quality (e.g. 2G vs. 3G), and extension of the wireless coverage. Thus, during a
long journey, vehicles may experience several IP address changes, temporary data link
disconnections (due to weak coverage, and caused by handover latency). Finally, in
most cases their 2G/3G connections will be behind firewalls of the cell operators.

9

6 Performance Tests

In order to evaluate the performance of the SDDL middleware in an environment with
high latency connections (such as in WANs) and subject to intermittent connectivity
and/or the occurrence of IP address changes (such as those experienced by mobile
nodes connected by mobile network providers), we did the following experiments: we
ran several performance tests involving three Gateways and one PoA-Manager execut-
ing in our lab, and several thousand simulated mobile nodes/vehicles launched in par-
allel on 4 to 5 remote machines served by different broadband ISP internet connections.
We measured the Round Trip Delay of both unicast and groupcast messages to the
mobile nodes. Some experiments also included frequent handovers, both initiated by
the mobiles and/or by the PoA-Manager, the latter aiming load balancing among the
Gateways. In a previous publication, [3] we showed the middleware’s performance for
unicast and broadcast message delivery when deployed in a local area network.

6.1 General Test Set-up

The experimental set-up was as follows: In our lab, the three Gateways executed on
separate machines: a Dell PowerEdge server (3.0 GHz, 2x Dual Core), a PowerMac G5
(2.5GHz Quad-core with 8GB RAM), and a PC (CPU Core i5 with 8GB RAM), while the
PoA-Manager and a GroupDefiner executed on a separate PC. All these machines were
connected to a 10/100/1000-Mbps switch. This switch, in turn, was connected to a
10/100-Mbps switch at the router serving the Internet connection of our lab. At the re-
mote side, the machines were diverse, but all were connected via wired Ethernet to the
ISP modem or router. Before executing the experiment, all home testers measured their
effective uplink capacity, (which was in the range from 0.25 to 0.9 Mbps) and downlink
capacity (in the range from 1.01 Mbps to 9.56 Mbps). We chose not to use Wi-Fi wire-
less network, as this would create a less realistic simulation scenario, since all simu-
lated remote vehicles would be competing with each other for a single wireless connec-
tion, using a wireless protocol (802.11), which is not collision free, contrary to what
happens with real-world Edge or 3G connections. However, we emulated the intermit-
tent connectivity of real-world wireless connections by making the simulated vehicles
randomly close RUDP connections and reconnect to a new Gateway. Also, there was
very little interference at the usage of the Internet connection by other applications on
the remote machines.

Our vehicle simulation program uses a thread pool of size 30 to indefinitely exe-cute
an arbitrary number vehicles, where each vehicle is scheduled to send 20 simulated
coordinates (latitude, longitude) in an serialized java object (a.k.a. its context update -
CxtU) to one of the gateways every 30 seconds. Thus, the total size of the CxtU mes-
sage is approximately 1 KB . In addition to sending CxtUs each 30 seconds, each vehi-
cle also receives sporadic ping messages from the Control node executing in the SDDL
core, and immediately replied with a pong message.

6.2 Testing Unicast and Broadcast Without Handovers

In these experiments, the vehicle simulation program (say, VS-i for program launched
at remote_machine i) initially connected all the simulated vehicles to a single Gate-
way, but right after each of them established the RUDP connection with this Gate-way,
it received (only once) a PoA-List of size 3, containing the IP addresses and ports of all
the three gateways running in our lab (which was used for the handover tests - see sec-
tion 6.3). In this experiment, we turned off the load-balancing function of the PoA-

10

Manager, since we wanted to evaluate exclusively the SDDL's performance with mo-
bile-initiated, spontaneous handover, i.e. without any interference/overload caused by
mandatory handover requests by the PoA-Manager.

Table 3 shows the round trip delays (RTD) of the unicast messages for three total
amounts of simulated vehicles executing at the remote machines. Since the Internet
connectivity and the remote machine's capacities were so different, we measured the
mean RTD time for each vehicle simulation programs separately.

Total nr
of vehi-

cles VS-1 VS-2 VS-3 VS-4 VS-5
Global

mean
1000 108 67.80 70 67.2 78.25
4123 115.8 86.20 84.4 87 93.35
7174 98.8 68.60 77.4 67.4 78.05

Table 2. Round Trip Delays of unicasts to vehicles of each home machine (in ms)

The lower value for unicast RTD for 7174 simulated vehicles was probably caused
by a sudden performance boost in the throughput of the ISP up/downlinks at one or
more of the remote Internet connections. It also indicates that the increased number of
clients does not yet affect the SDDL communication performance. The total number of
vehicles is not a multiple of 4 because during the parallel launch and connection of
>1000 simulated vehicles to a Gateway some of the RUDP connections failed to be es-
tablished, and our vehicle simulation program was not conceived to retry all failed
connections several times.

In this same test run, we also measured the RTD of a broadcast to - and reply from-
all 1000 simulated vehicles, executing on the four home machines, which was only 47,1
seconds. Since the broadcast incurs in too much instantaneous communication load at
the vehicle simulation program and their Internet connections, we were only able to
execute it for 250 vehicles per machine.

6.3 Tests With Mobile-initiated Handovers

In order to test the performance of SDDL with spontaneous, mobile-initiated hando-
vers and with intermittent connectivity of the mobile nodes, we added - just for this
experiment - a new message to the system, the Handover Test messages (HT), and
modified the PoA-Manager and the vehicle simulation program, accordingly to do also
the following:

• Every 3 minutes, each vehicle decides if it will disconnect from the current
Gate-way and reconnect to another Gateway, chosen randomly from its PoA-list. This
decision is controlled by a handover probability (HO_P), which we varied from 0% to
15%. Whenever a vehicle starts an handover, it first closes the current RUDP connec-
tion, and then requests a new RUDP connection to the newly chosen Gate-way, i.e. for
some short period of time - a few ms - the simulated vehicle is entirely disconnected
from any Gateway. Each handover is printed at the terminal console.

• Each vehicle also accepts the HT message and increments a global counter,
which is also printed at the console.

The purpose of the HT message is to test the reliable delivery of messages to the ve-
hicles during a handover/disconnection. It is sent by the PoA-Manager immediately
after it receives a "connection closed" message from the corresponding Gateway. Since

11

the mobile node is disconnected, the non-delivered messages are received by the MTD
service, and later forwarded to the new Gateway where the node/vehicle connects.
Thus, we wanted to check, at each vehicle simulation program, if the total number of
received HT messages equals the total number of performed handovers by the simu-
lated vehicles, i.e. if the MTD service had replayed all the non-delivered unicast mes-
sages, or if some unicast message had been loss during the handover.

Table 4 shows the mean values of round trip delays (RTD) of unicast messages for
four combinations of total number of vehicles and handover probability (HO_P), again,
presented separately for each home machine.

Total nr of vehi-

cles/HO_P VS-1 VS-2 VS-3 VS-4 VS-5
Global

mean
1800/15% 103.6 72 65 61.2 70.2 74.4
3979/5% 93.2 68.2 84 63 73.4 76.36
5812/5% 112.6 79.2 102 70 92.2 91.2

7815/10% 79 58.8 59.6 50.4 334.8 116.52

Table 3. Round trip delays of unicast messages (to each home machine) under different handover prob-
abilities (in ms)

From this data, we can see two things: (i) a higher handover probability, does not
necessarily increase the overall RTD of unicast messages, showing that the retransmis-
sions by the MTD and the disconnection management by the Gateways apparently on-
ly affect the message delivery times of the migrating mobile nodes; (ii) for a same
handover probability, e.g. 5%, larger number of total mobile nodes does slightly impact
on the increase of the overall message RTD.

When comparing the data of Tables 3 and 4 (for approximately 4000 simulated vehi-
cles), it is interesting to notice that the unicast RTD are similar, and even decreased a
little bit in the experiments with low-probability mobile-initiated handovers. But,
again, this could be due to a lucky choice of the pinged vehicles, or a sudden enhance-
ment of the link quality of the remote Internet connections.

Concerning the delivery of HT messages, there is a natural delay due to the fact that
the MTD service only resends non-delivered messages to the mobile nodes, after the
connection establishment is announced by the new Gateway. And since we did not
implement the vehicle simulation program to stop doing handovers after some time, at
the end of the simulation, there is always a gap between the last announced handover,
and the corresponding delivery of the HT message, and this gap obviously increases
with the number of vehicles, and their probability of doing handovers. Table 5 shows
the percentage of “missing” HT messages at the end of the simulation for the tests with
1800 and 3979 simulated vehicles. However, when examining the output logs of the
vehicle simulation program, apparently almost all the HT messages (of past hando-
vers) were delivered. This raises our confidence that SDDL supports reliable delivery
of messages in the presence of handovers between Gateways.

Total # nodes VS-1 VS-2 VS-3 VS-4 VS-5

1800/15% 2.4 1.7 4.9 3.1 1.5
3979/5% 4.9 5.9 2.5 3.0 6.2

Table 4. Percentage of “missing” HT messages after stopping the vehicle simulation programs

12

6.4 Tests With Groupcast Messages

The purpose of this test was to measure the RTD of groupcast messages (including the
corresponding acknowledgements by all group members), for different sizes of groups,
where the group members were simulated by vehicle simulation programs (VS-i) exe-
cuting on the remote machines served by the different ISPs. Since we did this experi-
ment on a different day and from other remote machines, we named them VS-6 to VS-
11 to make clear that the RTD times of this and previous experiments cannot be com-
pared. In this experiment, common ping delay was around 25 ms (except for VS-11,
that was 444ms), and down- and up-links varied between 1.59 – 1.2 Mbps and 0.93 –
0.33 Mbps, respectively. It should be noted that VS-11 was a machine connected in Eu-
rope, and therefore its RTD is so much higher than the other vehicles executing on
Brazilian machines. For this experiment we turned off the induced mobile-initiated
handover behavior of the simulated vehicles (HO_P=0), i.e. they would only switch to
another Gateway if their RUDP connection in fact failed.

The group size is approximate, as it was determined by the GroupDefiner using a
mod operation (e.g. x%100) over the least significant byte of the node/vehicle-
identifier, which is a randomly generated UUID. Thus, in the Gr-10%, the group had
approximately 10% of 5795 simulated vehicles, etc. Recall that in all test runs, the
SDDL core nodes were also busy processing the CxtU messages sent every 30 seconds
by each MNs.

Table 5. Round trip delays of unicast and groupcast messages (in ms)

Table 6 shows the mean RTD times of 5 measurements, both for the unicast and the
groupcast communication modes. The color of the field indicates which remote ma-
chines actually executed vehicles that participated in the groupcast (red means: not
used). The numbers reveal that the mean RTD time for the estimated 579 and 1358
group members is only 19.7 and 66.4 seconds. This suggests that a one-way groupcast
message is probably delivered to all the group members is 40-70%-fraction of this time.
Moreover, although we don’t know how many group members were actually executed
by VS-11, its longer ping delay certainly contributed to the total increase of the RTD in
the Gr-10% experiment. As mentioned in section 6.2, we also tested and measured the
RTD of a broadcast to 1000 simulated vehicles, and the obtained results for 1000 and
1358 deliveries and replies seem to be consistent. We had planned to test the groupcast
performance also in conjunction with induced mobile-initiated handovers (e.g. P_HO >
0), which certainly would considerable increase the RTD of the groupcast, but due to
limited human resource and time, we were not able to do the experiments for presenta-
tion in this paper.

7 Related Work

Apparently, so far there is only few research and development on DDS-based middle-
ware systems for mobile distributed applications in arbitrary wireless networks – most
of DDS studies present comparisons between and benchmarks of different DDS ven-
dors´ implementations, such as [8] [9] [10], but none of them mentions wireless net-
works or mobile DDS deployments. Among the few works that focus on mobile de-

13

vices, we found the DDS-based middleware proposed in [4], named DDSS. It includes
a specific architectural element that supports mobile nodes and ensures reliable data
delivery even for mobile subscribers that switch their wireless access point during sys-
tem operation, similar to the handovers supported in SDDL. In the proposed architec-
ture all mobile devices are required to execute a lightweight version of DDS, the Mo-
bile DDS Client, whereas stationary nodes on the fixed communication network run
full-fledged DDS nodes and are responsible for the routing and delivery of data to all
nodes. Due to DDS connectivity and Firewall/NAT traversal restrictions (unless a VPN
is created), all these Mobile DDS Clients must run in single network domain and rely
on stable wireless connectivity. Moreover, the authors present no data about the com-
munication performance over wireless networks, and apparently there is no support
for context-defined groups and groupcast communication.

Another DDS-based system targeted at mobile networks is presented in [5].
REVENGE is a DDS-compliant infrastructure for news dispatching among mobile
nodes and which is capable of transparently and autonomously balancing the data dis-
tribution load in the DDS network. It implements a P2P routing substrate - deployed on
a LAN - that is fault tolerant and self-organizing. More specifically, it is able to detect
crashed nodes, and to re-organize the routing paths from any source node to any mobile
sink nodes. Since all nodes run DDS (mobile nodes have the DDS minimum profile), it
has full DDS QoS Policy support. REVENGE has been tested in a wireless network (on
an University Campus wireless LAN), but the authors have not shown performance
data in situations where the mobile nodes had intermittent wire-less connections and
suffered IP address changes. Concerning asynchronous communication capabilities at
the mobile nodes, this system provides full DDS-based Pub/Sub support, while SDDL
implements only a restricted form of group subscription, but which has the advantage
of high performance and scalability. Moreover, REVENVE’s asynchronous communica-
tion depends of mobile nodes´ initiative to become a group publisher/subscriber. SDDL
asynchronous communication support, instead, supports, in a uniform way, both MN-
initiated group participation and external, MN-agnostic grouping determined by the
GroupDefiners, and also context-defined groups.

It seems that the main distinguishing feature of SDDL, when compared to the above
systems is that the mobile nodes of SDDL only need to execute the lightweight RUDP
protocol, which is platform independent (since it requires only the TCP/IP-protocol
stack) and is very resource-efficient. Moreover, since DDS does not perform well with
intermittent connectivity and does not natively support Firewall/NAT traversal, the
mobile clients of REVENGE and DDSS have to execute in a single network domain and
in wireless networks with strong connectivity guarantees. Table 7 summarizes the main
difference among the systems.

Aspect REVENGE [5] DDSS [4] SDDL

Application News dissemination Generic middleware Generic middleware
Communication modes Pub/Sub Pub/Sub Unicast, Groupcast and

Broadcast, Limited
form of Pub/Sub on
MNs

Fault-tolerance Active Replication on
fixed nodes, and node
failure detection allow-
ing data re-routing

No Gateway failure
through MH hando-
vers, and RUDP resil-
ience to node´s short
disconnections and IP
Addr changes

Reliable data delivery
to mobile nodes

Yes, but no handover
support

Yes Yes, MTD service
caches non-deliverd
messages, and RUDP

14

has internal aks

Software on the mobile
node

DDS node with mini-
mum profile

Lightweight(?) DDS
node

Just the RUDP java
Library

DDS compliance and
QoS support

Yes, also at the mobile
nodes

Yes, also at the mobile
nodes

Only in the SDDL core,
but not on the MNs

Load Balancing Yes, in the routing sub-
strate

N/A Yes, of the mobile
Gateways’ load

Wireless deployment/
test

Deployment in campus
Wi-Fi network

Not mentioned In a WAN, but simu-
lated disconnection
and IP Address chang-
es

Communication Scale 10 source nodes, 10
sink nodes

N/A 7500+ CxtU producers
and several sinks; and
1 gr-cast source (Con-
troller) and 1500+
sinks

Context Updates by
each mobile

N/A N/A Yes, ≈1KB sent every
30 seconds

Publishing frequency
per source

10–100 news/s N/A 3 times/min

Total traffic load 1000 news/s N/A >250 1KB-objects/s

Table 6. Comparison of DDS-based systems for mobile communication

8 Conclusion and Next Steps

In this paper we have presented a middleware for efficient communication and dis-
semination of context data sent from mobile nodes connected through arbitrary IP-
based wireless links. Through the use of DDS in its core network, the implementation of
Gateways handling all connections with the mobiles, a simple but efficient mechanism
for handling handovers between Gateways, and its lightweight and robust RUDP its
architecture appears to be scalable to large sets of mobile clients. We also think that the
group management and groupcast capability, and the processing of context-defined
groups are interesting and useful feature which, to the best of our knowledge, have not
been tried out for DDS.

So far, our tests with several thousands of simulated vehicles have given us satisfac-
tory performance results, where a group/broadcast communication to more than a 1000
nodes happens in less than 1 minute. But of course, it is early to say how well this mid-
dleware will behave when used in a real-world node tracking and communication ap-
plication, which will be tested soon. As future steps, we intend to work on several
fronts: complete and enhance the mobile client API, turn the middleware more generic
(so far, the DDS data model defining the topics is very specific and has to be customized
for every new application), implement new functionality at the Controller for creat-
ing/destroying mobile groups, persisting them in a groups directory that can be que-
ried by subscribers, augment the resource utilization and load data that PoA-Manager
gets from the Gateways, and experiment with smarter load balancing algorithms.

References
[1] Shruti P. Mahambre, Madhu Kumar S.D., and Umesh Bellur, “A Taxonomy of

QoS-Aware, Adaptive Event-Dissemination Middleware”, IEEE Internet
Computing 11, July, 2007, pp. 35-44.

15

[2] U. Farooq, S. Majumdar, and E.W. Parsons, “High Performance Publish/Subcribe
Middleware for Mobile Wireless Networks”, Mobile Information Systems, vol. 3,
No. 2, IOS Press, 2007.

[3] L. David, R, Vasconcelos, L. Alves, R. Andre, G. Baptista, M. Endler, “A
Communication Middleware Supporting Large scale Real-time Mobile
Collaboration”, IEEE 21st International WETICE, Track on Adaptive and
Reconfigurable Service-oriented and component-based Applications and
Architectures (AROSA), Toulouse, June, 2012.

[4] K.-J. Kwon, C.-B. Park, and H. Choi, “A proxy-based approach for mobility
support in the DDS system,” 6th IEEE International Conference on Industrial
Informatics, 2008. INDIN 2008, 2008.

[5] A. Corradi, L. Foschini, and L. Nardelli, “A DDS-compliant infrastructure for
fault-tolerant and scalable data dissemination”, In Proceedings of the The IEEE
symposium on Computers and Communications (ISCC '10). IEEE Computer
Society, Washington, DC, USA, 2010, pp. 489-495.

[6] A. Corradi, and C. Julien, “The Context of Coordinating Groups in Dynamic
Mobile Environments”, in Proceedings of the 13th International Conference on
Coordination Models and Languages (Coordination), June, 2011, pp. 49-64.

[7] Christian Esposito, “Data Distribution Service (DDS) Limitations for Data
Dissemination w.r.t. Large-scale Complex Critical Infrastructures”, 2011.

[8] T. Pongthawornkamol, K. Nahrstedt, and G. Wang, “The Analysis of
Publish/Subscribe Systems over Mobile Wireless Ad Hoc Networks,” in 2007
Fourth Annual International Conference on Mobile and Ubiquitous Systems:
Networking & Services (MobiQuitous), 2007, pp. 1-8.

[9] C. Esposito, S. Russo, and D. Di Crescenzo, “Performance assessment of OMG
compliant data distribution middleware,” in 2008 IEEE International Symposium
on Parallel and Distributed Processing, 2008, pp. 1-8.

[10] M. Xiong, J. Parsons, and J. Edmondson, “Evaluating the Performance of
Publish/Subscribe Platforms for Information Management in Distributed Real-
time and Embedded Systems,” omgwiki.org/dds, 2010.

[11] OMG, “Data Distribution Service for Real-time Systems.”, 2007.

[12] R.O. Vasconcelos, L.D. Silva, L. Alves, R. André, and M.Endler, “Real-time Group
Management and Communication for Large-scale Pervasive Applications”,
Technical Report: Monografias em Ciência da Computação - MCC 05/2012, Dep.
de Informática, PUC-Rio, ISSN 0103-9741, May, 2012.

