

PUC

ISSN 0103-9741

Monografias em Ciência da Computação
n° 09/12

Modeling Relevant Test Concepts
from UTPX and SecureUMLX

Andrew Diniz da Costa
Viviane Torres da Silva

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 09/12 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena May, 2012

Modeling Relevant Test Concepts
from UTPX and SecureUMLX

Andrew Diniz da Costa, Viviane Torres da Silva1,
Carlos José Pereira de Lucena

1 Computer Science Department – Federal Fluminense University

acosta@inf.puc-rio.br, viviane.silva@ic.uff.br, lucena@inf.puc-rio.br

Abstract. Documenting software tests is almost as essential as documenting source co-
de itself. As the recognition of systematic software testing increases, there is a need to
conceive modeling techniques to explicitly document key concerns associated with test
cases. Modeling techniques are known as a good way to perform such documentation,
because they provide abstractions and a visual notation to represent testing-specific
concerns facilitating the communication among the members of the project team. Based
on this context, the goal of the paper is to present a test conceptual framework able to
represent relevant test concepts that are not handled by famous test approaches, such
as AGEDIS Modeling Language and UML Testing Profile. In order to represent the test
concepts proposed by the conceptual framework, the UTP and SecureUML modeling
languages were extended. Such extensions were evaluated from a controlled-
experiment based on two industrial large-scale systems and that involved participants
with different skills and experience on software testing and modeling.

Keywords: Unified Modeling Language, UML Testing Profile, SecureUML, Test of
Software.

Resumo. Documentar testes de software é quase tão essencial como documentar o
código fonte em si. Com o reconhecimento da crescente importância de realizar testes
de software, há a necessidade de prover técnicas de modelagem para documentar
explicitamente as principais preocupações associadas com testes. As técnicas de
modelagem são conhecidas como uma boa maneira de realizar essa documentação, já
que fornecem abstrações e uma notação visual para representar específicas
preocupações de teste, facilitando assim a comunicação entre membros de equipes de
teste. Com base neste contexto, este trabalho apresenta um framework conceitual de
teste capaz de representar relevantes conceitos de teste que não são manipulados por
conhecidas abordagens de teste, como AGEDIS Modeling Language e UML Testing
Profile. Visando aplicar esses conceitos propostos no framework conceitual, a UTP e
SecureUML foram estendidas. Essas extensões foram avaliadas a partir de um
experimento controlado baseado em dois sistemas industriais de larga escala e que
envolveram participantes com diferentes habilidades e experiência em modelagem e
teste de software.

Palavras-chave: Teste de Software, Modelagem de Teste, Perfil UML.

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

 Table of Contents

1 Introduction 1
2 Modeling Test Concepts 2

2.1 Modeling Main Revealed Test Concepts 2
2.2 Modeling Access Control Policies 4

3 Modeling Test Concepts in an Industrial Domain 6
3.1 Oil Control System 6
3.2 Modeling Test Concepts from UTPX and SecureUMLX 7

4 Evaluation of the Approach 10
4.1 Stage 1: Empirical Procedures to Evaluate Creation of Models 11
4.2 Stage 2: Empirical Procedures to Evaluate Maintanance of Models 13
4.3 Results of the Experiment 15

5 Discussion 17
6 Conclusion and Future Work 18
References 18

 1

1 Introduction

The maintenance and updating of large-scale systems are usually supported by the de-
velopment of test cases and their documentation. Thus, the documentation of the tests
is essential and extremely important to track the tests and the changes performed in
each system version. Without documenting the test cases it is difficult to plan the in-
vestments necessary to perform the tests and also to guarantee that the remaining
faults were not caused due to the changes realized while maintaining or updating the
software [Black, 2002][Kaner et al., 1999][Kaner et al., 2001]. One way to perform such
documentation is by using test modeling languages that provide abstractions and a vi-
sual notation to represent testing-specific concerns.

A test modeling language able to document test cases should provide abstractions
and a visual notation to represent testing-specific concerns that will facilitate the com-
munication among the members of the project team about the tests to be executed. Al-
though there are several modeling languages that support the modeling of test cases,
such as [OMG, 2007][Trost and Cavarra, 2012] and [UTML, 2012], they are not expres-
sive enough to document the test cases of different projects due to their inability to
cover test concepts that are relevant in such kinds of systems [Harrold, 2000][Harrold,
2008]. In addition, there is no published documentation that demonstrates the systema-
tic evaluation of the modeling languages. The available evaluations are basically per-
formed by the development team and do not demonstrate the applicability and effici-
ency of the language to model important test concepts.

Based on this context, the study presented in [Costa et al., 2010] revealed relevant
test concepts that are not often represented in test modeling languages proposed in the
literature, such as, (i) identifying which test cases are mandatory or optional to the sys-
tem under test (SUT), (ii) informing the test type (e.g. functional, unit, performance
etc.) of each test case, (iii) relating the version of the SUT to the tests, (iv) representing
if a test case is of regression, new or impacted, due new requirements defined to a sys-
tem, (v) distinguishing components that contain implemented test cases of the compo-
nents that represent test suites, i.e., entities that execute a set of spread test cases auto-
matically in a specific order.

Another important concern identified in [Costa et al., 2010] was the need of a mod-
eling technique able to associate the test cases with members of a test team that will
manipulate such tests. The available modeling languages do not give support to define
the ones able to execute, create, delete, update and read the test cases, i.e, they are not
able to assign permissions to members of test teams.

Thus, the goal of this paper is to present a test conceptual framework that represents
these identified test concepts and also their relationships in order to provide the basis
to create test-related technologies. Following such approach, the paper proposes the
UML Testing Profile [OMG, 2007] eXtended (UTPX) and SecureUML [Lodderstedt et
al., 2002] eXtended (SecureUMLX) based on the test concepts proposed in the concep-
tual framework. Test concepts, often handled by test modeling-approaches, are not
mentioned in the conceptual framework, such as, data pools used for test cases, execution
time of a test, oracle, test’s verdict etc.

The paper is organized as follows. Section 2 presents the conceptual framework that
represents the test concepts identified in [Costa et al., 2010]. Section 3 presents the use
of the UTPX and SecureUMLX in test cases created to a large-scale petroleum control

 2

system tested by a test team of the Software Engineering Lab. Aiming to evaluate the
this new modeling approach, Section 4 describes the applied controlled-experiment
related to the creation and maintenance of models. Section 5 discusses the test concepts
that are used by the most famous test modeling languages and management tools to
support the testing activities. And finally, in Section 6, the final considerations are pre-
sented.

2 Modeling Test Concepts

This section explains the test conceptual framework (see Figure 1) that represents test
concepts revealed in [Costa et al., 2010] and that are not handled by famous test ap-
proaches, such as, TTCN-3 [TTCN-3, 2012], UML Testing Profile (UTP) [OMG, 2007]
and Agedis [Trost and Cavarra, 2012]. This conceptual framework is presented in two
parts: (i) modeling and explanation of the main concepts identified in [Costa et al.,
2010], and (ii) modeling of access control policies from the use and extension of Se-
cureUML.

2.1 Modeling Main Revealed Test Concepts

The most important meta-classes of the conceptual framework illustrated in Figure 1
are TestContext and TestCase. TestContext represents a set of tests (one or more test
cases, represented by TestCase meta-class) that are related to a specific context. A con-
text is any concept that analysts considered important to conceptually group one or
more test cases.

Both test context and test case are concepts often considered by approaches pro-
posed in the literature (e.g, TTCN-3 [TTCN-3, 2012] and UTP [OMG, 2012]). Thus the
conceptual framework illustrated in Figure 1 also represents such concepts and the
links among them and other related test concepts.

According to [Costa et al., 2010], it is important to specify the system version related
to each test case. This information becomes crucial because, depending on the system
version, a specific test case can or cannot be executed. Thus, the meta-class SUT is used
to represent the current version of a system and the version related to the test context
being documented (i.e., the desired version). Note that the test can refer to an antique
version of the system.

One of the difficulties met in the projects tested by our teams is related to the identi-
fication of the mandatory and optional test case to be executed in each software ver-
sion. The mandatory tests are those that must be executed in a specific system version,
while the optional consists of tests that do not have a very high priority and can be e-
xecuted if the test team has enough time to do so. This identification helps on planning
the test activity. Aiming to represent such idea the enumeration ObligatorinessType
was defined.

Another important concept that should also be modeled is the classification of test
cases. Such concept is useful for helping in planning the tests and for identifying their
importance in particular software releases. Different classifications can be used in a
project, such as, regression, new and updated. The first classifies the tests executed e-
very time a new version of the system is created. These tests do not depend on the new
or updated requirements that have influenced the creation of the new version. The sec-
ond classification is composed of new tests created due to the definition of new system

 3

requirements or due to changes to the system functionalities. And the third classifica-
tion is composed of tests that were modified due to the definition of a new requirement
or the modification of a given requirement. These three classifications are examples
adopted in different projects tested by the quality group of the Software Engineering
Laboratory. Thus, to represent such idea the meta-class TestClassification was defined.

Figure 1. Modeling conceptual framework of test.

The meta-class DevelopmentPackage was represented in order to inform the real
package used to develop a given test (especially for test’ scripts). It is also useful to dis-
tinguish the classifications that group tests conceptually.

The enumeration TestType was defined to help in the identification of test types
(e.g. functional, unit, etc.). This identification helps to understand the purpose of each
test and is useful on the delegation of tasks to members with expertise in running diffe-
rent test types.

Another test concept represented in Figure 1 is the test cases executed automatically
or manually (by using the enumeration ExecutionType). The automatic tests are execu-
ted by using a program, while manual tests require the tester to perform a set of manu-
al actions. When a large amount of tests are created, the identification of automated
and manual tests is usually time-consuming. Such identification helps the manager on
scheduling the testes and guides the tester to know which tool he/she should use to
execute the test.

The new attribute priority of the meta-class TestCase is used to identify the priority
of test execution in more detail. This concept is particularly useful when the available
time to test a given project is critical and when the set of mandatory tests is large and

 4

the time to execute them is short. Thus, a subset of mandatory tests having higher prio-
rity is executed before the other also mandatory tests.

The meta-class OrderedSuite represents a test suite, which is a code component that
executes a set of test cases automatically in a specific order. In the literature different
tools and APIs can be used to create suites and execute them, such as Rational Quality
Manager [RQM, 2012], Rational Test Manager [RTM, 2012], and DBUnit [DBUnit,
2012]. Thus, to document that a component is a suite and which tests are executed for
each suite becomes important in the identification of the artifacts involved in that task.
Realize that TestContext aggregates one or more test cases without caring about the
execution order.

Another important concept that should be documented is the dependence between
tests. This information is considered important in order to define the correct test execu-
tion order. To represent it, the Dependency meta-class of the UML 2.0 [Booch et al.,
2005] is reused and it is related to enumeration DependenceType that describes the
types of dependences between tests. ArtifactCreated, for example, is used when a test
case depends on the creation of some artifact (e.g. file, component, entity, etc.) per-
formed by another test case. While artifactRemoved indicates that the test case de-
pends on the exclusion of another artifact of a system. Details of these types are presen-
ted in section 3.

2.2 Modeling Access Control Policies

To specify access control policies for test resources, we had decided to use SecureUML
[Lodderstedt et al., 2002]. Essentially, it provides a language (see the blue meta-classes
in Figure 1) for modeling Roles, Permissions, Actions, Resources, and Authorization
Constraints, along with their Assignments, i.e., which permissions are assigned to whi-
ch roles, which actions are assigned to which permissions, which resources are assig-
ned to which actions, and which constraints are assigned to which permissions. Notice
also that actions can be either Atomic or Composite. The atomic actions are intended to
map directly onto actual operations of the modeled system. The composite actions are
used to hierarchically group more lower-level ones and are used to specify permissions
for sets of actions.

Nowadays, SecureUML provides five AtomicActions: update, read, create, delete
and execute. Such actions can be related to different types of resource, such as attribu-
tes, methods, classes, etc. If new resources will be used from SecureUML, they should
extend the meta-class Resource illustrated in Figure 1. Thus, we decided to extend its
meta-model in order to specify:

1. The model element types of the system design modeling language that repre-
sent protected resources related to test teams. These element types are modeled
as specializations of the class Resource. In this case, TestContext, TestCase, and
OrderedSuite are protected resources.

2. The actions these resource types offer and the hierarchies classifying these acti-
ons (see Figure 2). This is accomplished by introducing the different action ty-
pes as specializations of the classes CompositeAction and AtomicAction. In Ta-
ble 1 are presented the actions for each resource of test protected, where under-
lined actions are composite actions.

3. Depending on the context that a test is executed (e.g. tests executed in the pro-
duction environment) a user can or can not have permission to perform some

 5

action. Thus, to represent this idea we decided to create the meta-class Context
that is related to the meta-class Permission.

Aiming to constrain which resources are accessible from the actions and which acti-
ons are subordinated to the composite actions, we used OCL meta-model invariants.
Below invariants which guarantee that TestContextFullAccess always act on TestCon-
texts is presented. TestCaseFullAccess and OrderedSuiteFullAccess actions have simi-
lar OCL invariants to define that they act on TestCases and OrderedSuites, respecti-
vely. Besides, each composite action contains atomic actions (e.g. read, update, create,
delete and execute) upon the corresponding artifact.
_ ___

context TestContextFullAccess

 inv targetsATestContext:

 self.resource.ocllsTypeOf(TestContext)

 inv containsSubactions:

 self.subordinatedactions = self.resource.action

->select (a|a.ocllsTypeOf(AtomicRead))

-> union (self.resource.action

-> a|a.ocllsTypeOf(AtomicUpdate)))

-> union (self.resource.action

-> a|a.ocllsTypeOf(AtomicCreate)))

-> union (self.resource.action

-> a|a.ocllsTypeOf(AtomicDelete)))

Table 1. Actions of the resources protected

Resource Actions

TestContext create, read, update, delete, fullaccess

TestCase create, read, update, delete, execute, fullaccess

OrderedSuite create, read, update, delete, execute, fullaccess

 6

Figure 2. Actions used by SecureUMLX

3 Modeling Test Concepts in an Industrial Domain

This section presents the UML Test Profile eXtended (UTPX) and SecureUML extended
(SecureUMLX) based on the conceptual framework presented in Section 2. The main
reasons for choosing UTP and SecureUML were the following: (i) they are OMG offi-
cial standards for modeling, and (ii) they are approaches that represent important con-
cepts related to the test domain (e.g. test contexts, test cases and permissions men-
tioned in Section 2). UTP is a proposal that was defined by a consortium of institutions
(Ericsson, Fraunhofer/FOKUS, IBM/Rational, Motorola, Telelogic, University of Lü-
beck). Thus, aggregating our experience with the experience of such institutions al-
lowed the creation of a test modeling language more complete and that can be applied
in different systems. Aiming to exemplify these extensions, we used a large-scale sys-
tem tested by a Software Engineering Lab team. Initially, we describe this system and,
then, illustrate examples of diagrams created.

3.1 Oil Control System

Over the past five years, the Software Engineering Lab has coordinated and carried out
tests of software systems developed for a big Brazilian oil company. Seeking to illus-
trate the use of the UTPX and SecureUMLX, we decided to choose one of the biggest
systems that we tested. This system is responsible for controlling the inventory and
supply of oil and derived products (e.g. gasoline, kerosene, etc). Some goals of such
systems are: (i) register routes (i.e. paths) based on ducts and ships that could be used
to transport the derived products (e.g. gasoline, lubricating oil, kerosene, etc); (ii) pre-
dict when such products will arrive in terminals and refineries located in different pla-
ces; and (iii) plan the best routes to transport a particular product.

The system was developed by four teams responsible for the following elements: in-
terface, database, requirements and test team. The test team was composed of seven
people that executed functional, database and performance tests. Table 2 gives some
details about the system characteristics.

 7

Table 2. Data of the petroleum control system

Project size 7 years

of staffs 25 people

Test team 7 people

Status Working

Model size
49 use cases

712 classes

Data base 213 tables

Test Cases

46 database tests

17 performance tests

120 automated functional tests

600 manual tests

3.2 Modeling Test Concepts from UTPX and SecureUMLX

When we work with profiles in UML, new stereotypes and attributes can be defined.
Following this idea, Figure 3 illustrates an example of class diagram that applies UTPX
to model these test concepts.

This example models tests created to create and update routes (i.e. paths) based on
terminals and refineries that represent places in Brazil that store oil and derived pro-
ducts (e.g. gasoline, lubricating oil, kerosene, etc).

The CreateRoutes class is a test context composed of one test case named testCreati-
on. This test case is considered mandatory and automatic in version 7.0 of the current
system (represented from the attribute desiredSystemVersion). Besides test case, two
other auxiliary methods are modeled: populateTerminals and populateRefinaries.

These methods are responsible, respectively, for populating a database with termi-
nals and refineries, and they are used by the test case. On other hand, the UpdateRou-
tes class is a test context composed of three test cases: testUpdate1, testUpdate2 and
testUpdate3. The first test case is optional and manual in version 6_00 of the current
system. While the second and third test cases are mandatory and manual in version 7.0
of the current system.

Each test case contains three more pieces of important associated information: (i) the
system version with which the current test case is associated and updated (described
by using the attribute version); (ii) its type of test (e.g. unit, functional, stress, etc.); and
(iii) the priority of execution (e.g. high, medium, low) that is related to the obligatori-
ness type (e.g. mandatory or optional) of the test case.

In order to represent dependences between tests, we decided to reuse the depen-
dence concept proposed by UML. Moreover, we have defined a set of stereotypes to be
used related to the dependence relationships in order to provide the semantic of such
relations, as described below:

 8

• <<artifactCreated>>: It is used when a test case depends on the creation of an
artifact (e.g. file, component, entity, etc.) performed by another test case.

• <<artifactRemoved>>: It indicates that the test case depends on the exclusion
of another artifact of a system.

• <<artifactUpdated>>: It states that the test case depends on the actualization of
an artifact (e.g. change the name, path, etc.).

• <<setArtifactCreated>>: It indicates that the test case depends on the creation
of a set of artifacts.

• <<setArtifactRemoved>>: It is used when the test case depends on the exclusi-
on of a set of artifacts.

• <<setArtifactUpdated>>: A test case depends on the modification of a set of ar-
tifacts.

• <<environmentChanges>>: The test case depends on changes in the environ-
ment where it is executing, such as, changes on the operation system, environ-
ment variables, etc.

New types of dependencies can be included depending on the project being tested.
Such dependencies were defined from real situations identified in systems tested by
the Software Engineering Lab teams. Figure 3 illustrates a dependence used in this pro-
ject between the tests described in the CreateRoutes and UpdateRoutes classes. Besides
showing its dependence, the class diagram informs the semantic of each one.

When a suite describes a specific order for the execution of its tests, the stereotype
OrderedSuite can be used. In addition, the dependency relationship is also used bet-
ween the suite and the test contexts in order to identify the test cases that compose the
suite. The stereotype below can be used for this purpose:

<<executionSuite>> [{names of the test cases}]

Figure 3 illustrates an example of the suite SuiteRoutes that depends on the test con-
texts modeled. The stereotype “<<executionSuite>>[testUpdate2, testUpdate3]” is used
in this case to indicate that the suite depends on two test cases of the UpdateRoutes test
context. The same structure can also be adopted in order to inform which test cases a
test context depends on by using the stereotypes mentioned previously. This informa-
tion should be included depending on the level of detail that a designer desires to pro-
vide.

These test contexts and suite modeled in Figure 3 are grouped in packages that have
the stereotype <<Development>>. This stereotype represents that the related package
stores the classes or entities created in a given project. On other hand, the stereotype
<<TestClassification>>, illustrated in Figure 4, represents categories of a given test con-
text that state the importance of such a test in testing a release.

In the large-scale system being used as an example, three classifications are adop-
ted: regression, new and updated (as explained in details in Section 2.1). The test con-
texts illustrated in Figure 4 and in the package New were created in order to test the
new requirements that were defined in the current version of the system being mod-

 9

eled. Due to the definition of these new requirements, some test context needed to be
updated. They are pointed out in Figure 4 in the package Updated. The regression tests
are identified in the package Regression.

Figure 5 illustrates an example of the concrete syntax of SecureUMLX. In this exam-
ple are defined two roles in a test team: Trainee Tester and Expert Tester. The first role
can read and execute tests of the OpenScenarium test context in the test environment.
On other hand, people that play Expert Tester role have full access to such test context
in the test environment. If a role had different permissions for test cases of a same test
context, each allowed operation (e.g. read, execute, update, write or delete) would be
defined for test case. Thus, in the place of the stereotype <<testcontextaction>> (of the
class that describes the permission) should be used the stereotype <<testcaseaction>>
followed by the name of the test case and the desired operation desired. This idea of
defining permissions also can be applied to ordered suites from the stereotype <<or-
deredsuiteaction>> followed by the name of the suite and the desired operation.

Figure 3. Example of UTPX

 10

Figure 4. Modeling Test Classifications

Figure 5. Example of UTPX

4 Evaluation of the Approach

In order to evaluate UTPX and SecureUMLX, presented in Section 3, we decided to
conduct a controlled experiment that lasted ten months and was divided in two stages.
The focus of the first stage was to analyze hypotheses (H1 and H2) related to the crea-
tion of models. While the second stage evaluated hypotheses (H3 and H4) related to
the maintenance of models. The considered hypotheses were:

 11

H1: By using UTPX and SecureUMLX the effort to create test models is reduced
when compared with the creation based on UTP and UML techniques.

H2: When a designer uses UTPX and SecureUMLX the amount of errors in the crea-
tion of test models is reduced when compared with the use of UTP and UML techni-
ques .

H3: UTPX and SecureUMLX reduce the effort in maintaining the test models when
comparing with the use of UTP and UML techniques.

H4: When a designer uses UTPX and SecureUMLX the amount of errors in the ma-
intenance test models is reduced when compared with the use of UTP and UML tech-
niques.

Initially, subsection 4.1 explains the empirical procedures followed in stage 1 to ap-
ply the experiment that evaluated the hypotheses H1 and H2. Next, in subsection 4.2
the empirical procedures followed in stage 2 to analyze the hypotheses H3 and H4 are
presented in detail. At last, in subsection 4.3, the results of the experiments are pre-
sented.

4.1 Stage 1: Empirical Procedures to Evaluate Creation of Models

Aiming to analyze the hypotheses H1 and H2, this experiment followed well-known
recommendations [Fink, 2003], lasted six months and was applied to forty one partici-
pants from two different universities, with different skills and experience (see Table 3).
Fourteen subjects were of the Federal University of the Rio de Janeiro and twenty se-
ven subjects of the Pontifical Catholic University of the Rio de Janeiro.

The experiment was divided in six steps. The first step was to train the participants
in order to explain: (i) how the subjects could create UML diagrams in UTP, and (ii)
how UML allows modeling new concepts using well-known techniques, such as, using
commentaries, defining new stereotypes, attributes or methods. Since we had forty one
participants, we divided the subjects in six groups. The main reasons to perform this
division were: (i) it was hard to book the same time for all subjects to participate on the
training, (ii) the use of small groups makes easier the understanding of people’s
doubts, and (iii) we could divide in small groups the people with similar levels of
knowledge on tests and UML. The meeting with each group lasted about forty minutes
to one hour and half. This time increased when the knowledge of the participants de-
creased.

After training, the second step was applied. This step requested to the participants
the creation of diagrams using UTP and well-known UML techniques taught in step 1.
Such diagrams should model the test concepts (see Section 2) identified in [Costa et al.,
2010]. These concepts are related to real situations identified in two large-scale systems
of the Software Engineering Lab. These systems are related to the inventory and sup-
ply control of petroleum products, being one of them presented in Section 3.1 of the
paper.

 12

Table 3. Profile of the subjects that participated of the experiment

Subjects and
their Roles

Academic Background Description

(9 subjects)

1 manager

1 requirement analyst

5 senior developers

2 test analysts

6 PhD candidates in Software
Engineering (SE)

1 MSc candidate in SE

1 post graduate as system a-
nalyst

1 grad. in Computer Science
(CS)

Very good knowledge
and experience in testing,
UML modeling and deve-
loping concepts.

> 3 years of experience

(11 subjects)

2 database admins.

1 requirement analyst

3 senior developers

5 testers

1 MSc candidate in SE

5 grad. in CS.

5 undergrad. in CS

Extensively worked with
automated and manual
functional tests. Good
knowledge of UML mo-
deling.

1..3 years of experience

(21 subjects)

21 junior developers

21 undergrad. students in CS Poor experience with
tests and UML modeling,
but good knowledge a-
bout the main related
concepts.

< 1 year of experience

In addition, the participants were required to answer a questionnaire and the time
they spent in answering was controlled. .The questionnaire was divided in four activi-
ties that focused on: (i) the modeling of test concepts related to each test context, such
as, the identification of the test cases, their types, obligatoriness, priorities, related sys-
tem versions system etc; (ii) the dependencies among the test contexts informing the
semantic of such dependencies; (iii) the representation of test classifications; and (iv)
the modeling of security policies related to the test teams to inform the roles defined
for each team.

In order to remove or minimize the bias in the responses given by the subjects, the
questions of the experiment was validated by three experts on testing modeling and
experimental software engineering. .

The focus of the third step was to prepare the participants to create diagrams using
UTPX and SecureUMLX. To perform such training, the same idea of dividing the sub-
jects in groups, applied in step 1, was adopted. Such training lasted from 30 minutes to
one hour, and this time changed based on the knowledge of the participants.

The fourth step involved the design of another questionnaire, which requested to
the participants the modeling of the test concepts mentioned in Section 2 by using
UTPX and SecureUMLX. Such questionnaire was also validated by three experts on

 13

modeling tests and experimental software engineering and followed well-known rec-
ommendations [Fink, 2003]. Besides, these activities were equivalent to the first questi-
onnaire, i.e., they had the same complexity and followed the same structured explained
in step 2. Thus, the first activity of the questionnaire requested a similar modeling of
test contexts modeled in Figure 3. Second activity requested a modeling with depen-
dencies, as shown in Figure 3, involving suites and test contexts. Third activity asked
the creation of a class diagram considering test classifications (similar to the diagram in
Figure 4). And the fourth activity requested the modeling of security policies, as shown
in Figure 5.

Both the questionnaires applied in the second and fourth steps and the people trai-
ning were applied in different orders, i.e., part of the subjects responded the question-
naire of the second step followed by questionnaire of the fourth step, and another part
followed the inverse procedure. The reason behind it was to avoid actions that could
induce the result of the experiment.

Next, interviews were performed with each participant in the fifth step. The main
idea of this step was to understand the problems that each subject had when modeling
the requested test concepts and the difficulties they found in using the new approaches
(UTPX and SecureUMLX). According to the participants answering the UTPX questi-
onnaire was easier than the UTP questionnaire. One of the main reasons was that UTP
does not handle several test concepts requested in the questionnaire. Besides, all parti-
cipants mentioned that UTPX and SecureUMLX is an easy and intuitive approach to
work with. Examples of phrases mentioned by the participants are presented below.

“UTPX and SecureUMLX is an intuitive and easy approach to create class dia-
grams composed of test concepts.”

“I did not have any problem on creating models based on UTPX and SecureU-
MLX.”

 Finally, the last and sixty step gathered and analyzed in detail all the responses of
the questionnaires responded by the participant. These results are mentioned in details
in subsection 4.3.

4.2 Stage 2: Empirical Procedures to Evaluate Maintanance of Models

This part of the experiment analyzed the hypotheses H3 and H4 that lasted four mon-
ths and was applied to sixteen participants with different skills and experience (see Ta-
ble 4) of the Pontifical Catholic University of the Rio de Janeiro.

Similar to the stage 1 presented in section 4.1, well-known recommendations [Fink,
2003] were followed and six steps were also adopted in this second stage of the ex-
periment. Above, the main differences between this stage and the stage presented pre-
viously are presented.

 14

Table 4. Profile of the subjects that participated of the experiment

Subjects and their
Roles

Academic Background Description

(4 subjects)

1 manager

1 requirement a-
nalyst

2 senior developer

4 PhD candidates in Softwa-
re Engineering (SE)

Very good knowledge and expe-
rience with testing, UML mode-
ling and developing concepts.

> 3 years of experience

(10 subjects)

2 database admins.

3 senior developer

5 testers

5 MSc candidate in SE

3 grad. in Computer Science
(CS).

2 undergrad. in CS

Extensively worked with auto-
mated and manual functional
tests. Good knowledge of UML
modeling.

1..3 years of experience

(2 subjects)

 2 junior developers

2 undergrad. students in CS Poor experience with tests and
UML modeling, but good kno-
wledge about the main related
concepts.

< 1 year of experience

The first step concerns about the training of the participants in order to explain how
the subjects could maintain the UML diagrams created by using UTP and well-known
UML techniques. Since we had sixteen participants, we divided the subjects in four
groups. The meeting with of each group lasted from thirty minutes to one hour. This
time vary according to the knowledge of the participants. Realize that the time spent
time in this stage was lower than the time spent in the first step of the experiment re-
lated to the creation of models (subsection 4.1). The main reason was that fifteen of the
sixteen subjects participated on the previous experiment.

After training, the second step was applied. This step requested to the participants
the maintenance of class diagrams created by using UTP and well-known UML techni-
ques presented in step 1. The structure of this questionnaire was similar to the structu-
re defined in step 2 of the previous experiment that was composed of four activities.

The third step prepared the participants to maintain diagrams created by using
UTPX and SecureUMLX. The subjects were divided in four groups, and this activity
lasted from 20 to 40 minutes.

The fourth step involved the design of another questionnaire, which requested to
the participants the maintenance of class diagrams based on UTPX and SecureUMLX.
This questionnaire followed the same structured and complexity adopted by the ques-
tionnaire of step 2.

The questionnaires of the steps 2 and 4 were validated by three experts on testing
modeling and experimental software engineering and followed well-known recom-

 15

mendations [Fink, 2003]. Besides, similar to stage 1 of the experiment, such both ques-
tionnaires and the people trainings were applied in different orders. The reason behind
it was to avoid actions that could induce the result of the experiment.

Next, interviews were performed with each participant in the fifth step. All partici-
pants mentioned that they did not have problems to maintain the diagrams based on
UTPX and SecureUMLX. However, some participants mentioned that depending on
the amount of classes modeled, the maintenance can be a problem. Next, there are so-
me phrases mentioned by the participants:

“Maintaining diagrams based on UTPX and SecureUMLX was easy, but depen-
ding on the amount of classes can be a problem.”

“UTPX and SecureUMLX together is good approach to model test concepts. Ho-
wever, an evaluation involving a bigger amount of classes should be performed.”

The problem of maintaining big amounts of diagrams and classes modeled in the
same diagram is well-known in the literature. Nevertheless, aiming to identify the im-
pact of the new approaches in such situation, we intend to apply them in real test pro-
jects to perform better analyses.

Finally, the last and sixth step gathered and analyzed in detail all the responses of
the questionnaires responded by the participant. These results are mentioned in details
in subsection 4.3.

4.3 Results of the Experiment

In Figure 6 are illustrated the results obtained in stage 1 of the experiment described in
subsection 4.1. Figure 6(a) shows that 95.63% of the participants responded the second
questionnaire (step 4) in less than 50 minutes, while only 43.91% of the participants
spent the same time in the first questionnaire (step 2). Another data presented in Figu-
re 6(a) is that 39.02% of the participants took more than 60 minutes to respond the first
questionnaire, while in the second questionnaire no participant spent such time.

Figure 6(b) presents the amount of errors modeled by the participants on each ap-
plied questionnaire. In the second questionnaire 21.95% of the participants modeled
correctly 100% of the exercises requested. On other hand all the participants had some
problem when responding the first questionnaire. Besides, 90.24% had more than ten
modeling errors in the first questionnaire. While in the second questionnaire there was
no participant that made more than ten errors.

 16

Figure 6. Results of experiment – stage 1.

In Figure 7 are illustrated the results obtained in the stage 2 of the experiment de-
scribed in subsection 4.2. Figure 7(a) shows that 93.75% of the participants responded
the second questionnaire (step 4) in less than 40 minutes, while in the first question-
naire (step 2) there were 87.50% of the participants. Another data presented in Figure
7(a) is that 12.50% of the participants took more than 40 minutes to respond the first
questionnaire, while in the second questionnaire there were only 6.25% of the partici-
pants.

Figure 7(b) presents the amount of mistakes made by the participants on each appli-
ed questionnaire of the stage 2 of the experiment. In the second questionnaire 18.75%
of the participants modeled correctly 100% of the requested activities. On other hand
all the participants had some problem when responded the first questionnaire. Besides,
25.00% made more than ten modeling mistakes in the first questionnaire. While in the
second questionnaire there was no participant with more than ten errors.

By analyzing these data we could conclude that the hypotheses H1, H2 and H3 are
true, because the time and the amount of errors modeled were substantially lower in
the second questionnaire than the first one. However, the experiment was not conclu-
sive in case of hypothesis H4 because the gathered results did not present relevant dif-
ferences when comparing both questionnaires. Thus, an analysis involving more parti-
cipants is being elaborated to achieve a conclusion about H4.

 17

Figure 7. Results of experiment – stage2.

5 Discussion

After analyzing a set of famous test modeling languages proposed in the literature, su-
ch as UML Testing Profile [OMG, 2007], AGEDIS modeling language (AML)[Trost et
al., 2012], Testing and Test Control Notation (TTCN-3) [TTCN-3, 2012] and Unified
Test Modeling Language for Pattern-Oriented Test Design (UTML) [UTML, 2012], we
verified that they do not provide important concepts that can be useful for test teams,
such as the identification of (i) which system version each test is able to test, (ii) which
tests are mandatory, (iii) which test types were created (e.g. functional, database, secu-
rity and integration test), (iv) which types of dependences exist between tests (such as
data dependence), and (v) which tests are automated and manual.

Besides, several proposed tools, which manage test cases (e.g. Rational Test Man-
ager - RTM [RTM, 2012] and Rational Quality Manager - RQM [RQM, 2012]), provide
interesting test views from the interface that are not provided by the other mentioned
approaches, such as the ability to group conceptually test cases. This grouping becomes
easier their identification. Besides this, they allow viewing which suites are available,
and which test cases each suite executes. On the other hand, the tool does not provide
important test concepts, such as: (i) dependences between tests; (ii) the identification of
which tests are mandatory and optional; (iii) which tests are automated and manual;
(iv) the identification of test types; and (v) which tests are updated to a given version.

Aiming to provide an approach that could treat this gap, we decided to propose a
new test modeling language that could represent these forgot test concepts. From this
new modeling, we identified the necessity of defining security policies for test teams.

 18

Thus, we decided to use SecureUML [Lodderstedt et al., 2002] that is based on role
based access control (RBAC). According [Basin et al., 2007], a distinct characteristic of
SecureUML is that it spells out and follows a precise methodology that guarantees that
query evaluation is formally meaningful. This methodology requires, in particular,
precise definitions of both the metamodel of the modeling language and the mapping
from models and scenarios to the corresponding snapshots of this metamodel. From
this idea, we decided to bring SecureUML to the test domain. Thus, security policies
could be defined on test concepts not supported for famous approaches of the litera-
ture.

6 Conclusion and Future Work

This paper presented a test conceptual framework that aims to represent a set of test-
relevant concepts not supported by current modeling languages proposed in the litera-
ture, as is clearly stated in Section 2. This framework was created based on our five ye-
ars experience in coordinating and carrying out tests in different large scale projects
within the scope of the Software Engineering Lab.

The paper also presented extensions in the UML Testing Profile and SecureUML in
order to represent these test concepts not handled. Aiming to evaluate such extensions,
a controlled-experiment divided in two stages and composed of subjects with different
levels of skills on software testing and modeling was applied.

From good results of the experiment, we have been developing a tool that allows
generating test scripts and other useful artifacts (e.g. reports) for test teams based on
UTPX and SecureUMLX diagrams. Such tool will be a plug-in to the Rational Software
Architect [RSA, 2012], which is an IDE tool used in development projects of the Soft-
ware Engineering lab and allows modeling different types of diagram, such as UML.
From this plug-in test teams of the lab will adopt the Model Driven Test paradigm in
order to create class diagrams that are documentations requested by our clients. Based
on this motivation, the lab created a group responsible for developing plug-ins to tools
used in different projects.

References

Basin, B., D., Clavel, J., Doser: “A Metamodel-Based Approach for Analyzing Security-
Design Models, in the Proceedings of the ACM/IEEE 10th International Conference on
Model Driven Engineering Languages and Systems, 2007.

Black, R.: Managing the Testing Process: Practical Tools and Techniques for
Managing Hardware and Software Testing, Publisher: Wiley, 2nd edition, ISBN:
0471223980, 2002.

Booch, G., Rumbaugh, J., and Jacobson, I.: Unified Modeling Language User Guide,
2nd Edition, The Addison-Wesley Object Technology Series, 2005.

Costa, A. D., Silva, V. T., Garcia, A., Lucena, C. J. P.: "Improving Test Models for Large
Scale Industrial Systems: An Inquisitive Study", Proceedings of the ACM/IEEE 13th
International Conference on Model Driven Engineering Languages and Systems, Part I,
LNCS Springer 6394, pp. 301-315, Oslo, Norway, 2010.

DBUnit web site, http://www.dbunit.org/. Último acesso realziado em Maio de 2012.

 19

Fink, A.: The Survey Kit: How to ask survey questions, Volume 2, Publisher: SAGE,
ISBN 0761925791, 2003.

Harrold, M. J.: Testing: A Roadmap. Proceedings of ICSE 2000, Future of Software
Engineering, pp. 61-72, 2000.

Harrold, M. J.: Testing Evolving Software: Current Practice and Future Promise.
Proceedings of ISEC 2008, pp. 3-4, 2008.

IEEE-SA Standards Board, IEEE Standard for Software Test Documentation
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=741968&userType=inst

Kaner, C., Bach, J., Pettichord, B.: Lessons Learned in Software Testing, Publisher:
Wiley,1st edition, ISBN: 0471081124, 2001.

Kaner, C., Falk, J., Nguyen, H. Q.: Testing Computer Software, Publisher: Wiley, 2nd
edition, ISBN: 0471358460, 1999.

Lodderstedt, T., Basin, D., Doser, J.: “SecureUML: A UML-Based Modelling Language
for Model-Driven Security”, in the Proceedings of the 5th International Conference on
the Unified Modeling Language, 2002.

RQM – Rational Quality Manager, http://www-
01.ibm.com/software/rational/products/rqm/,. Último acesso realziado em Maio de
2012.

RSQ - Rational Software Architect,
http://www.ibm.com/developerworks/rational/products/rsa/. Último acesso
realziado em Maio de 2012.

RTM - Rational TestManager and Rational ManualTest, http://www-
01.ibm.com/software/awdtools/test/manager/. Último acesso realziado em Maio de
2012.

OMG - Object Management Group, UML Testing Profile, version 1,
http://www.omg.org/cgi-bin/doc?formal/05-07-07, 2007.

Trost, J., and Cavarra, A. AGEDIS Language Specification,
http://www.agedis.de/documents/d127_1/AGEDIS-ls-fpd.pdf. Último acesso
realziado em Maio de 2012.

TTCN-3 web site, http://www.ttcn3.org/. Último acesso realziado em Maio de 2012.

UTML - The Unified Test Modeling Language for Pattern-Oriented Test Design,
http://www.fokus.fraunhofer.de/en/motion/ueber_motion/technologien/utml/ind
ex.html21. Último acesso realziado em Maio de 2012.

