

PUC	

ISSN 0103-9741

Monografias em Ciência da Computação
n° 11/12

Middleware Supporting Situational Awareness in
Mission-Critical Scenarios with Rotorcraft

Gustavo Luiz Bastos Baptista

Markus Endler
José Viterbo Filho

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 11/12 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Aug, 2012

Middleware Supporting Situational Awareness in
Mission-Critical Scenarios with Rotorcraft

Gustavo Luiz Bastos Baptista Markus Endler José Viterbo Filho
{gbaptista, endler}@inf.puc-rio.br viterbo@ic.uff.br

Abstract. Situational Awareness (SA) has a central role with rotorcraft operations in
mission-critical scenarios, for operational performance, mission success, safety and
survivability. Applications and systems that enhance SA impose requirements of real-
time communication and processing of large volumes of data, with high throughput
and low latency. This work presents a middleware architecture to support those appli-
cations, with capabilities such as real-time data-centric publish-subscribe communica-
tion, Quality of Service (QoS) management, Semantic Interoperability and Distributed
Complex Event Processing for the detection of Situations of Interest (SoI). A realistic
scenario of helicopter rescue missions for offshore drilling is presented, with a SoI to be
detected by the system. A visualization tool is used to illustrate the capabilities provid-
ed to applications, and simulation results are presented that compare different event
processing distribution models and abstraction levels, regarding their impact on per-
formance and scalability.

Keywords: middleware, mission-critical applications, Situational Awareness, Complex
Event Processing, CEP, Data Distribution Service, DDS

Resumo. Situational Awareness (SA) tem um papel central em operações de helicópte-
ros em cenários de missão crítica, para desempenho operacional, sucesso de missões,
segurança e sobrevivência. Aplicações e sistemas que aumentam SA impõe requisitos
de comunicação e processamento de grandes volumes de dados em tempo real, com
alta vazão e baixa latência. Este trabalho apresenta uma arquitetura de middleware pa-
ra suportar estas aplicações, com capacidades tais como comunicação em tempo real
em um modelo data-centric publish-subscribe, gerenciamento de Qualidade de Serviço
(QoS), Interoperabilidade Semântica e Distributed Complex Event Processing, para a
detecção de Situações de Interesse (SoIs). Um cenário realista de missões de resgate
com helicópteros em explorações de petróleo é apresentado, com uma SoI a ser detec-
tada pelo sistema. Uma ferramenta de visualização é utilizada para ilustrar as capaci-
dades providas para aplicações, e resultados de simulações são apresentados que com-
param diferentes modelos de distribuição e níveis de abstração de eventos, conside-
rando seu impacto no desempenho e escalabilidade.

Palavras-chave: middleware, aplicações missão crítica, Situational Awareness, Com-
plex Event Processing, CEP, Data Distribution Service, DDS

 ii

In charge of publications

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

Table of Contents

1 Introduction 1	
1.1 Coordination in Mission-Critical Scenarios 1	
1.2 Situational Awareness 1	

1.2.1 Situations of Interest 2	
1.2.2 Visualization 2	

1.3 Goals 2	
2 Base Technologies 2	

2.1 OMG Data Distribution Service (DDSTM) 3	
2.2 Distributed Complex Event Processing 3	

2.2.1 Event Processing Agents and Event Processing Networks 4	
2.2.2 EPNs Distribution Models 4	
2.2.3 SoIs expressed as CEP Rules 5	

3 Middleware Architecture 5	
3.1 Quality of Service Management 5	
3.2 Semantic Interoperability Support 6	
3.3 Distributed Complex Event Processing Management 6	
3.4 Net-Ready Applications With Visualization 7	

4 Representative Scenario and Situation of Interest 7	
4.1 Situation of Interest 7	

5 Distributed Complex Event Processing Instantiation 8	
5.1 Events Abstraction Levels 9	

6 Performance Results 9	
7 Visualization 10	
8 Related Work 11	
9 Conclusions 12	
References 12	

 1

1 Introduction

1.1 Coordination in Mission-Critical Scenarios

Communication and coordination in mission-critical scenarios is demanding in that it
involves requirements typical of critical situations, including the necessity for decision
making and response under temporal and resource constraints. Different models of
coordination are used by systems supporting these requirements, such as centralized
command and control systems or decentralized collaboration systems.

Centralized command and control is typically present in fleet management, tactical
systems, or mobile task force management systems, which are becoming essential to
the coordination and optimization of people, vehicles or mobile assets to accomplish
many sorts of objectives and missions. Those systems typically involve managing large
groups of mobile nodes, which are equipped with portable or onboard computing de-
vices with available wireless communication interfaces and embedded or onboard sen-
sors (e.g. GPS, avionics sensors, etc), and access to a communication infrastructure for
remote monitoring (e.g. tracking their current position). A control station typically re-
ceives information about the monitored assets in real-time, allowing rapid decisions
and actions to be taken by control teams, such as modifying objectives, new targets, re-
routing of task-force team members, and other major operational or tactical changes in
a mission.

Another way to allow timely collaboration among the team members is to support de-
centralized, network centric mission communication and coordination. In this ap-
proach, each individual agent of the team performs its specific mission, but continu-
ously shares data as needed with others so as to provide a more complete and accurate
representation of the environment and better define its current role in a task force
group. This type of collaboration appears suitable for emergency search-and-rescue
missions (e.g. natural disasters) or tactical coordination (e.g. police or military patrol).
In fact, such centralized and decentralized types of coordination can both be supported
by command-and-control and collaboration systems at the same time, depending on
the types of scenarios and missions. The main goal in these systems is to enhance Situa-
tional Awareness (SA) [1], both to control stations and to the mobile team participants.

1.2 Situational Awareness

Situational Awareness (SA) is a term coined in the aviation and military domains, and
has many different definitions. According to [1], SA is “the perception of the elements
in the environment within a volume of time and space, the comprehension of their
meaning, and the projection of their status in the near future”. For example, in rescue
missions with rotorcraft, SA supports better coordination of rescue flights and land-
ings, and also has a positive impact on the safety and survivability of the task force it-
self. SA is critical for helicopter pilots due to workload associated with conducting dif-
ficult missions with operational risks and environmental hazards [2]. In order to ad-
dress SA enhancement it is necessary to have the scope of specific Situations of Interest
(SoIs) that are important for the accomplishment of missions.

 2

1.2.1 Situations of Interest

We consider as a Situation of Interest (SoI) a description of a spatio-temporal condition
with regard to the context of monitored elements (e.g. their geographical position)
and/or the environment state (e.g. the weather condition). The detection of a SoI usual-
ly demands a notification to interested parties (e.g. users or systems), either because it
represents a desirable or undesirable/dangerous overall situation. A SoI can have a
global or local focus, which can be respectively regarded as global SoI or local SoI. An
example of global SoI is providing control station operators (or pilots on rotorcraft)
overall situations related to a group of nodes (e.g. too many/too few helicopters in a
region). An example of local SoI is showing a pilot combined local information from
remaining fuel, weather data, obstacles and mission objectives.

1.2.2 Visualization

Visualization techniques play a central role in enhancing SA [3]. In the context of mili-
tary and rescue missions, it generally involves the representation of geographic areas
in maps or 3D environments, with the elements that are important to be monitored and
considered for decisions in missions, or aiding individuals to perform specific tasks, for
example, providing visual signals to a pilot during landing approaches. Appropriate
visualization requires showing users the right information, at the right time, building a
common picture of the operational area. Since the complexity and potential large num-
ber of elements and data sources (e.g. sensors and monitored nodes) can cause clutter
to visualization, showing aggregations that combine large amounts of raw data is nec-
essary.

1.3 Goals

In order to implement systems that support coordination and visualization enhancing
SA, support is necessary from underlying middleware with mechanisms for real-time
communication and processing of large volumes of data, with high throughput and
low latency. In this work, we present a middleware architecture with such features,
giving focus to its capabilities that allow the real time monitoring of nodes (e.g. ro-
torcraft) and the evaluation of general relations among mobile and stationary nodes, or
virtual entities (e.g. arbitrary geographical points), in a scalable manner. After the de-
scription of base technologies in Section 2, the middleware architecture is presented in
Section 3. A realistic scenario of helicopter emergency response missions in the off-
shore drilling domain is presented in Section 4, and 5 describes the application of this
architecture to the context of the presented scenario. Performance results are then pre-
sented in Section 6 that compare simulations with different event processing distribu-
tion models and granularities for data abstraction levels, regarding their impact on
scalability and performance.

2 Base Technologies

This section presents the technologies for event-based communication and processing
which have been used as base for the middleware presented in this work.

 3

2.1 OMG Data Distribution Service (DDSTM)

For inter-process communication, the publish/subscribe model [9] is a well-
established, robust and performance-enhancing, means of communication for open,
distributed and mobile systems. Over the past few years, its capabilities have evolved
from centralized publish/subscribe architectures to overlay networks of distributed
brokers, leading to enhanced scalability and availability. More recently, the Data Dis-
tribution Service for Real-Time Systems (DDSTM) [4] standard proposed a peer-to-peer
(i.e. fully distributed and without broker nodes) data-centric publish/subscribe com-
munication model. It provides high performance real-time communication, scalability
and availability, and supports the specification of Quality of Service (QoS) contracts
between data producers and consumers. It allows interoperability across different
DDSTM implementations, programming languages and platforms, as well as automatic
discovery of DDSTM publishers/subscribers. DDSTM is based on a Data Centric Pub-
lish/Subscribe model, where DDS Topics are logical entities defined to compose a dis-
tributed relational data model, also known as Global Shared Data Space. The Topics
are the first class entities of information, which applications can publish or subscribe
to, and can be regarded as distributed relational database tables. The DDS Domain,
which contains all shared data, is fully distributed over the participating network
nodes, without any intermediate broker or centralized management entity. Several
commercial and open-source implementations of DDSTM are available, such as [5-7].

2.2 Distributed Complex Event Processing

In the same way as communication models evolved during the last years, processing
models have evolved from Transactional Database Management Systems (DBMSs) that
receive synchronous queries to asynchronous event processing systems. It turns out
that the traditional database model is not adequate for applications with the aforemen-
tioned requirements of real-time communication and processing, high throughput and
low latency. These applications are typically based on the processing of continuous
streams of data, in general obtained from external sources (e.g. sensors), instead of
humans submitting transactions. The main interaction model is asynchronous, e.g. the
triggering of alerts when SoIs are detected. Event processing systems receive continu-
ous streams of data (i.e. event streams), continuously process these data and send
asynchronous notifications about detected situations (i.e. events representing SoIs) [12].
Actually, both asynchronous communication and processing models are complemen-
tary, in a way that typically event-processing systems use some sort of asynchronous
communication (e.g. publish/subscribe).

Complex Event Processing (CEP) [8] extends the capabilities of the content-based pub-
lish subscribe model [9], with the capacity to specify relationships not only over event
properties, but also relationships between different events, causality, temporality, se-
quencing, aggregation and composition. A complex event is thus a higher-level ab-
straction representing a situation derived from the occurrence of more elementary
events. Causal maps can be associated to these events, allowing a complete tracking of
the event causes (i.e. the sequence of events that caused an event to happen). The tem-
poral relationships between events allow the processing of event sequences within
specified time windows. It is also possible to evaluate aggregation functions over event
properties observed in sets of events, such as the average, maximum or minimum
property values of the observed event set. All these features allow the definition of
powerful event processing rules that express application-relevant patterns of events
and their relationships [10]. Many commercial and open-source implementations of
CEP are available, such as [11-15].

 4

2.2.1 Event Processing Agents and Event Processing Networks

An Event Processing Network (EPN) is a conceptual representation of an event pro-
cessing system in a platform independent way. An EPN is composed of Event Pro-
cessing Agents (EPAs), which receive event streams as input and process these events
with different operations (e.g. filtering, aggregation, transformation, pattern detection,
etc) producing events as output, as the result of this processing. In an EPN, the EPAs
are conceptually connected to each other (i.e. output events from one EPA are received
and further processed by other EPAs), without regard to the particular details and type
of the underlying communication mechanism (e.g. push- or pull-based) used to trans-
fer events between each other. The EPAs organized in an EPN implement the whole
processing logic of situation detection through event processing [16].

Figure 1 - Example of Event Processing System with Event Processing Agents
(EPAs) organized to form an Event Processing Network (EPN) [16].

2.2.2 EPNs Distribution Models

Event processing systems (e.g. CEP systems) implement the concepts of EPNs in slight-
ly different ways, but one important aspect that has the largest impact on scalability is
the deployment model of the EPN (centralized vs. distributed) [10]. The distribution of
the event processing architecture is a key aspect to allow scalability on the number of
data producers and data consumers, and also scalability in the number of situations of
interest to be detected from large amounts of events flowing through the system [17].

In a centralized event processing architecture, the processing of event streams is per-
formed by only one centralized node in a computer network, which implements all
processing logic or has all EPAs (i.e. the whole EPN) locally deployed. On the other
hand, in a distributed architecture, the event flows are processed by EPAs deployed at
different computer network nodes interconnected by a communication infrastructure.

Distributed event processing architectures are divided in two categories: clustered and
networked. In the clustered model, EPAs are deployed in a cluster, where nodes that
are tightly coupled by a fast and reliable network are within the same administrative
domain. These clusters benefit from parallel event processing, but also require high
network bandwidth between the cluster nodes and the remote producers and consum-
er of events. Networked architectures, on the other hand, focus on minimizing network
bandwidth usage by deploying EPAs dispersed in a Wide Area Network (WAN), but
closer to event producers and consumers. The placement decision for the EPAs of a
particular application can balance different criteria, such as geographical location of
event sources and sinks, network throughput and reliability functionality segmenta-
tion, etc [10]. Different academic and commercial distributed event-processing systems
are available. The majority of them use a clustered deployment [11; 12; 15], with few
implementing a networked solution[13; 18].

 5

2.2.3 SoIs expressed as CEP Rules

The capabilities of processing event streams and the recognition of event patterns on
real time provided by the CEP model make it very well suitable for the detection of
SoIs, to enhance SA. Rules can be deployed on EPAs to compose EPNs, which trigger
complex events representing the detected SoIs. These complex events can be captured
by applications, systems or used by other rules to detect many abstraction levels of
SoIs.

3 Middleware Architecture

A set of capabilities for applications were implemented, all with a network-centric ap-
proach for real-time data sharing among rotorcraft nodes [2]. Middleware APIs, encap-
sulating the use of DDSTM for data-centric publish/subscribe communication, were de-
veloped supporting capabilities, such as Networked Weather, Uncharted Obstacles,
Own Ship Position Reporting, and Aids for Landing Operations. The API methods al-
low applications to interact with the DDS Global Shared Data Space synchronously or
asynchronously, without requiring the application programmer to deal with DDSTM-
specific entities or to have deep knowledge about the DDSTM specification.

Figure 2. Middleware for Net-Ready Applications Overview

Figure 2 shows an overview of the Middleware for Net-Ready Applications, with the
communication APIs for the different net-ready applications, and modules for manag-
ing QoS, Semantic Interoperability and Distributed Complex Event Processing, ex-
plained in sections 3.1, 3.2 and 3.3 respectively. We implemented the middleware for
OpenSplice DDS [6], RTI Connext DDS [7] and CoreDX DDS [5] commercial DDSTM
products. The DCEP module is currently implemented with instances of the Esper CEP
open-source engine.

3.1 Quality of Service Management

The DDSTM specification provides a rich set of Quality of Service (QoS) parameters, fea-
tures and enforcement mechanisms (e.g. communication reliability, latency, transport
priority, data persistence, etc.). However, the configuration and association of these

 6

QoS parameters with the different DDS entities (i.e. Domain participant, Publisher,
Subscriber, DataReader/Writer and Topics) is usually restricted to application devel-
opment time, and is work-intensive. Therefore, a QoS Management API was developed
to provide direct means of defining DDS QoS parameters dynamically through config-
uration files, which serve as QoS templates that can be used by the other components
of our middleware.

Using the QoS Management API, important QoS settings can be set, depending on the
scenario of usage, for example: Defining prioritized event flows, in accordance to the
level of priority required by SoIs. Setting the level reliability for data delivery to ensure
delivery or the discarding of certain types of events in the case of network failures. Set-
ting the persistence level of different Topics to allows late joiners to receive events al-
ready published into the system, or to make data volatile.

3.2 Semantic Interoperability Support

When systems operated by different groups, belonging to different organizations, need
to interact and exchange information, the use of different data standards and formats
may become a hurdle. Although much shared data are conceptually of same type, e.g.
position, speed, cargo weight, etc., they may be represented in different units and for-
mats. In the specific case of geographic location, it may be described by different pro-
jection, datum and coordinate systems [19].

To tackle this problem, we implemented a semantic interoperability service, where a
node in the DDS Domain assumes the mediator role. Whenever a new node joins the
system, it will inform the mediator which model it adopts to represent the data to be
shared. This mediator is capable of querying an Ontology Manager to obtain further
semantic information about how to deal with different data models adopted by the
peers. The Ontology Manager stores ontologies that represent known semantic models
and conversion rules between them, and delivers these rules to the mediator.

As to the data conversion process, it may be performed by two different approaches. In
a centralized approach, upon receiving the conversion rules from the Ontology Man-
ager, the mediator will be responsible for converting all data among the different mod-
els. Of course, this is only feasible if the amount/frequency of data exchange is low. In
a translation-on-receiving approach, the mediator will forward the conversion rules to
all nodes, and each one will produce data using its original model. When a node then
receives data represented in a different model, it will itself perform the translation.

3.3 Distributed Complex Event Processing Management

The Distributed Complex Event Processing Management (DCEPM) module, as shown
in Figure 2, implements the distributed event processing architecture, which allows the
creation of EPNs to detect SoIs. The EPAs use DDSTM to send and receive events
from/to monitored nodes, and to exchange events with each other. In the former case,
the middleware APIs for Net-Ready Applications, in addition as being used by appli-
cations, are used by the EPAs to subscribe and publish to the DDS Topics that share
data from monitored nodes and applications. On the latter case, the EPAs provide and
use additional DDS Topics that are specific for them, which can also be used by appli-
cations to consume events.

Each EPA contains a DDS Subscriber for subscribing to events from the desired
sources. For example, an EPA can subscribe to events from rotorcraft nodes or other

 7

EPAs. A CEP engine is instantiated inside each EPA, with deployed rules that process
events received from the DDS layer. Since the communication APIs are separated from
the CEP Engine, EPAs can use any desired internal CEP engine for processing events
(the current implementation uses the open-source Esper CEP engine). An internal DDS
Publisher allows the EPA to publish events into the DDS Domain, after processing in-
put events with the internal CEP Engine.

3.4 Net-Ready Applications With Visualization

The middleware presented in this work provides many benefits for the development
applications that enhance SA in rotorcraft missions. We developed applications with
capabilities for monitoring Own Ship positions, Weather Reports and Obstacles, show-
ing a common operational picture on a map (using instances of FalconView [20] and
Google EarthTM). In [2] we present details about the development of those applica-
tions, and in Section 7 we show simple functional evaluation with a visualization tool
to show the detection of a SoI.

4 Representative Scenario and Situation of Interest

In Brazil, the offshore regions of the states of Rio de Janeiro, São Paulo and Espírito
Santo are areas of intense oil exploration, and are responsible for up to 80% of the Bra-
zilian production. Therefore, many offshore oil drilling and extraction platforms are
deployed in this region, and can be located as far as 100km from the coast. Because of
this exploration activity there are ships and helicopters transporting employees, cargo
and equipment between land bases and the offshore platforms. However, both the oil
extraction activities of the offshore platforms, and the traffic of ships and aircraft im-
pose operational risks. Employees working on oil platforms are exposed to risks of fire
or explosions and the inherent risks of helicopter air transportation. Several emergency
incidents occurred during the last several years, such as fire and explosions on plat-
forms. Also, helicopter crashes have been reported. The large distances these helicop-
ters have to fly, without any close emergency landing spots, expose them to unex-
pected and severe weather and also make them vulnerable to mechanical failures. The-
se risk factors and recent incidents show that the capacity of effectively performing
emergency response operations in these regions is very important, to respond to inci-
dents involving oil platforms, ships and helicopters.

4.1 Situation of Interest

In order to show how the proposed system is able to support applications that enhance
SA, we describe a hypothetical SoI to be detected by the system.

The example SoI is characterized by the generation of an alert notification when a sig-
nificant percentage of monitored nodes is out of range from a set of previously defined
stationary set of Points of Interest (PoIs). An application of this inference could be, for
example, to detect when a set of helicopters, which cover routes between support bases
(e.g. land bases, oil extraction platforms, military support bases, etc.), are too far from
all these points at the same time, characterizing an exposure to high operational risk.
For instance, if rescue helicopters are all away from support bases at the same time, an
unexpected emergency situation that requires their reallocation can be difficult to man-
age.

 8

Applying this situation to the scenario presented in Section 4, we define that the heli-
copters for transportation between land bases and offshore platforms are the moni-
tored nodes, and the land bases are the PoIs. Considering all the operational risk in-
volved, it is important to have a minimum number of rescue helicopters close to sup-
port bases, so they can return and reload with the required resources (e.g. fuel, medi-
cine or cargo). This SoI was chosen because it presents characteristics that allow us to
explore its detection with multiple granularities of event abstraction levels (explained
in Section 5.1).

5 Distributed Complex Event Processing Instantiation

In order to implement the detection of the SoI described in Section 4.1, an EPN with a
specific hierarchical topology is used. We define three main kinds of EPAs, as shown in
Figure 3. Node EPAs are deployed in the mobile monitored nodes, containing CEP
rules (i.e. event correlation and patterns rules) that detect primitive events locally at the
node (e.g. from local sensors), and generate events that represent abstractions of situa-
tions detected locally on that node. Network EPAs are deployed in the fixed network
and receive events from a set of Node EPAs in their responsibility (the sets of Node
EPAs in the responsibility of a Network EPA can be defined following any desired cri-
teria, like geographical regions). The Network EPAs contain CEP rules that detect
events related to all the nodes in their responsibility.

Figure 3. Example of an EPN Hierarchical Topology with Node EPAs, Network EPAs

and a Global EPA

The Network EPAs process the events received from Node EPAs and generate events
with a higher level of abstraction (e.g. summarizations, aggregations of primitive
events). Global EPAs are also deployed in the fixed network, and receive events from a
set of Network EPAs. The Global EPA contain CEP rules that detect events related to
all Network EPAs, and produce events with an even higher level of abstrac-
tion/aggregation, that characterize the detected overall SoI. This hierarchical organiza-
tion of agents is general enough to be used for the detection of many other similar SoIs,
since it reflects an organization that promotes scalability.

 9

5.1 Events Abstraction Levels

Different granularities and abstraction levels can be used to define CEP events, and
there’s subjectivity on this choice. For example, considering the SoI presented in Sec-
tion 4.1, the Own Ship Position Report event sent by rotorcraft nodes is considered to
be at a fine-grained abstraction level. Other events considered as having a coarser-
grained abstraction level (i.e. generated by aggregation of events with lower abstrac-
tion levels) can be defined. On our example situation, a node has knowledge about ex-
isting PoIs, and calculates if it is within range of all of them. So instead of sending a
fine-grained Own Ship Report, it can send a coarse-grained event representing whether
the node is out of range from PoIs, called “RangeStateFromPoIs”. Section 6 shows per-
formance results of simulations with different abstraction levels of events exchanged
between processing agents, and how they impact performance and scalability.

6 Performance Results

This section describes tests performed with the detection of the SoI presented in Sec-
tion 4.1. The tests compare different settings of events abstraction levels and EPN dis-
tribution models, to assess how they influence performance and how they scale in the
number of monitored nodes and PoIs.1

Two settings for the abstraction levels of events were used; (A1) Fine-grained Abstrac-
tion of Events – Rotorcraft nodes send Own Ship Report events (with their current po-
sition), and Network EPAs perform all processing to verify which nodes are out of
range from PoIs. (A2) Coarse-grained Abstraction of Events - Each rotorcraft node has
knowledge of the coordinates of all PoIs and publishes a coarse-grained abstraction
event indicating whether or not it is on range from all PoIs in a given moment (“Rang-
eStateFromPoIs”). This local processing removes the processing burden from the Net-
work EPAs, transferring it to the nodes to promote overall system scalability.

Two settings for deployment models of EPNs were used: (B1) Centralized Event Pro-
cessing - All monitored nodes send events to a single Network EPA. (B2) Distributed
Event Processing - Monitored nodes send events to distributed Network EPAs. Each
Network EPA processes events from nodes in its responsibility and disseminates con-
solidated reports (i.e. coarse-grained events) with this data. A Global EPA aggregates
data from all Network EPAs, counting the overall percentage of nodes out of range
from PoIs, and generating an event indicating the global situation.

The tests were performed with an infrastructure of 6 machines interconnected in a Lo-
cal Area Network (LAN) by a Gigabit Ethernet switch. Up to 3 Network EPAs and 1
Global EPA, were deployed in four different machines with Quad-Core Intel i5 proces-
sors and 8GB RAM, running Fedora Linux 15, 64 bits. A load generator application,
simulating rotorcraft nodes, Node EPAs, and an instance of Google EarthTM applica-
tion, were respectively deployed in two laptop computers.

For each setting (A1, A2, B1 and B2), 1000, 2000 and 3000 rotorcraft nodes, and 100, 500
and 1000 PoIs were simulated. A maximum range distance from PoIs of 10 kilometers

1 Although the SoI presented in Section 4.1 does not require processing a large

number of PoIs (as the number of offshore platforms and land bases is not large),
other different SoIs may require the processing of a large set of virtual entities
(e.g. an aircraft monitoring obstacles on real time).

 10

was specified, and each rotorcraft node was positioned in a fixed location outside the
range of all POIs. Figure 4 shows a chart comparing the throughput of the system for
the different settings (A1, A2, B1 and B2).

As expected, the coarse-grained abstraction of events removed the processing effort
from the Network EPAs, improving the overall system throughput. Since each moni-
tored node sends data to a specific Network EPA, the overall system average through-
put is the sum of the average throughput of all Network EPAs. This demonstrates the
benefits of the distributed deployment of Network EPAs.

Regarding network bandwidth usage (not addressed in this test), it is reasonable to as-
sume that the periodicity of events with coarser-grained abstraction levels is in general
lower than the frequent sending of events with finer-grained abstraction levels. In ap-
plications where the fine-grained events are still necessary for other inferences or sys-
tem functionalities (e.g. the Own Ship Position is necessary for a control station to
show the location of nodes in a map), these events will be propagated through the
DDSTM domain only to the interested parties, not affecting the other nodes.

Figure 4. Overall system average throughput with different event abstraction levels

and EPN distribution models

7 Visualization

This work is primarily focused on the middleware aspects to support applications and
visualization techniques at a higher level and it is not the goal of this paper to evaluate
the level of SA provided to users, or its actual impact on operational performance. In
[2] we presented a measurement on the value of integrating the underlying communi-
cation infrastructure and the network-ready applications, on rotorcraft for improving
operational performance.

A test with a visualization tool was used to serve as a functional evaluation of the ca-
pabilities provided by the underlying middleware architecture. In the context of the

 11

representative scenario presented in Section 4, we illustrate the use of a visualization
tool which benefits from the middleware architecture, and how it shows the example
SoI. Figure 5 shows a screenshot of a Google EarthTM application, showing the coast of
Rio de Janeiro state and rotorcraft nodes (represented in MIL-STD-2525A symbology)
flying between land bases and offshore platforms. The nodes in green are inside the
specified range from PoIs (i.e. land bases), and the ones in red are out of range from
PoIs.

Figure 5. Real-time visualization with Google EarthTM, showing rotorcraft nodes flying

between land bases and oil platforms in the coast of Rio de Janeiro

8 Related Work

The use of middleware to support applications that enhance SA (e.g. visualization ap-
plications) is addressed by other work, such as [3] and [21]. The authors of [3] present a
visualization tool and a middleware architecture, based on CORBA for client-server
communication between monitored nodes and an infrastructure of services. Commer-
cial solutions, like Solipsys Tactical Display Framework (TDF) [21] provide middle-
ware and advanced visualization solutions for many types of mission-critical systems.

In general, the integration of pure visualization applications (e.g. FalconView [20])
with any type of middleware has the potential to benefit users with enhanced SA.
Many different academic and commercial middleware implementations provide event-
based communication and distributed event processing, such as [14-18; 21; 26; 27]. The
benefits of our middleware architecture come from the combination of using real-time
data-centric publish-subscribe communication model with advanced QoS features pro-
vided by the DDSTM Specification, Semantic Interoperability, and Distributed Complex
Event Processing, provided by the modules and APIs presented in this work. To the
best of our knowledge, none of the distributed event processing middleware solutions
combines all these features. The middleware presented in this work can be integrated
in any desired visualization tool or framework, and the use of Google EarthTM was
due to its simplicity in providing an initial experimentation.

 12

9 Conclusions

In this work we presented a middleware architecture to support net-ready applications
that can enhance SA, with capabilities such as Real-Time Peer-to-Peer Data-Centric
Publish/Subscribe Communication, QoS Management, Semantic Interoperability and
Distributed Complex Event Processing for the detection of SoIs. A representative sce-
nario and a SoI instantiation to be detected by the system were presented. Simulations
with the detection of the SoI were performed, and a visualization tool was used to il-
lustrate the capabilities of the proposed architecture, in the context of the representa-
tive scenario. Performance results show that the distribution of EPAs and the use of
coarse-grained event abstractions improve the overall system scalability regarding the
throughput in processing events. The use of coarse grained event abstraction levels
partially removed the processing load from the infrastructure, taking advantage of the
processing power present in nodes, and also potentially reducing network bandwidth
usage, which is very important in resource constrained mobile networks.

References

[1] Endsley, M.R., 1995. Toward a theory of situation awareness in dynamic sys-
tems. Human Factors: The Journal of the Human Factors and Ergonomics Socie-
ty 37, 1, 32-64.

[2] T.A. DuBois, B. Blanton, F. Reetz III, M. Endler, W. Kinahan, G.L.B. Baptista, and
Johnson, R.L., 2012. Open Networking Technologies for the Integration of Net-
Ready Applications on Rotorcraft. In Proceedings of the Annual conference of
the American Helicopter Society (2012).

[3] Feibush, E., Gagvani, N., and Williams, D., 2000. Visualization for situational
awareness. Computer Graphics and Applications, IEEE 20, 5, 38-45.

[4] OMG, 2006. Data-Distribution Service for Real-Time Systems (DDS).

[5] CoreDX DDS Data Distribution Service Middleware, TwinOaks Computing, Inc.
http://www.twinoakscomputing.com/coredx

[6] PrismTech, PrismTech, OpenSplice DDS. www.opensplice.com

[7] RTI, RTI Connext DDS. www.rti.com

[8] Luckham, D.C., 2001. The power of events: an introduction to complex event
processing in distributed enterprise systems. Addison-Wesley Longman Pub-
lishing Co., Inc. Boston, MA, USA.

[9] Eugster, P.T., Felber, P.A., Guerraoui, R., and Kermarrec, A.M., 2003. The Many
Faces of Publish/Subscribe. ACM Computing Surveys 35, 2, 114-131.

[10] Cugola, G. and Margara, A., 2010. Processing flows of information: From data
stream to complex event processing. Technical report, Politecnico di Milano,
2010. Submitted for Publication.

[11] SYBASE, SAP Sybase Event Stream Processor CEP.
http://www.sybase.com/products/financialservicessolutions/complex-event-
processing

 13

[12] Esper, Esper. http://esper.codehaus.org/

[13] TIBCO, TIBCO Business Events. http://www.tibco.com/products/business-
optimization/complex-event-processing/businessevents/default.jsp

[14] Oracle, Oracle CEP.
http://www.oracle.com/technetwork/middleware/complex-event-processing

[15] StreamBase, StreamBase CEP. http://www.streambase.com

[16] Etzion, O. and Niblett, P., 2010. Event processing in action. Manning Publica-
tions Co.

[17] Papaemmanouil, O., Cetintemel, U., and Jannotti, J., 2009. Integrating Pub-Sub
and Stream Processing for Internet-Scale Monitoring.

[18] Fidler, E., Jacobsen, H.A., Li, G., and Mankovski, S., 2005. The PADRES Distrib-
uted Publish/Subscribe System.

[19] Mahlinh, D., 1973. Coordinate Systems and Map Projections. George Philip and
Sons Publishers, London.

[20] Georgia Tech Research Institute, FalconView.
http://www.falconview.org/trac/FalconView

[21] Raytheon, Solipsys Tactical Display Framework (TDF).
http://www.solipsys.com/tdf/

