
ISSN 0103-9741

Monografias em Ciência da Computação

no 17/12

Virtual Environment Simulations (VES) with

MABS: an approach to tame tardiness in

Java-based simulation systems

Pier-Giovanni Taranti

Carlos J. P. de Lucena

Ricardo Choren

Pierre Bommel

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 17/12 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena December, 2012

Virtual Environment Simulations (VES) with MABS: an
approach to tame tardiness in Java-based simulation

systems

Pier-Giovanni Taranti Carlos J. P. de Lucena
Ricardo Choren1

Pierre Bommel2

1SE/8 - IME, Brazil
2 CIRAD - UPR GREEN, France

taranti@inf.puc-rio.br , lucena@inf.puc-rio.br , choren@ime.eb.br , bommel@cirad.fr

Resumo. Simulações de Ambiente Virtuais (VES) são um tipo especial de simulação,
normalmente utilizadas para implementar jogos e jogos sérios com representação espa-
cial. Um exemplo de jogo sério é uma simulação utilizada para apoiar Jogos de Guerra.
Simulações Baseadas em Sistemas Multiagentes (MABS) são adequadas para implemen-
tar estas simulações devido a sua habilidade em tratar complexidade e modelagem de
atores individuais. Contudo, o avanço do tempo da simulação nestas simulações é um
desafio, devido a existência de tardiness no sistema. Esta situação é pior em MABS que
utilizem Java, devido a particularidades desta tecnologia. Este trabalho apresenta uma
abordagem para controlar o tardiness e auxiliar o desenvolvimento de VES utilizando o
paradigma de orientação a agentes.

Palavras-chave: Simulação Baseada em Multiagentes, atrasos em tempo de simulação

Abstract. Virtual Environment Simulations (VES) are a special type of simulation,
often used to implement games and serious games with virtual space representation.
An example of serious games is the simulation used to support War Games. MABS is
suitable to implement these simulation due their ability to handle with complexity and
individual actors modeling. However, the simulation time advance in this simulation
is challenging, due to the existence of tardiness in the system. This situation is worst
in Java-based MABS, because of Java technology particularities. This paper presents an
approach to tame this tardiness and help the development of these cited VES using agent
oriented paradigm.

Keywords: Multi-Agent Based Simulation, Tardiness

0Accepted in MAS&S’2012

In charge of publications :

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

Sumário

1 Introduction 1

2 Challenges to implement VES using MABS 2

3 Taming the Tardiness in VES 3
3.1 The approach implementation . 3

4 A Study of Usage 6
4.1 Simulation time advancing . 6
4.2 Tardiness in simulation time . 7
4.3 Spatial Error . 9

5 Related Work 11

6 Conclusion and Future Work 12

References 13

iii

1 Introduction

A particular type of simulation is the Virtual Environment Simulation (VES) [1], which
intend to create a computer-generated virtual environment, in which users can be embed-
ded. These simulations differ from others in one important aspect: the virtual scenario
must represent a plausible scenario, that is, the general picture of the simulation need
to be perceived as a possible situation by the users. Another aspect of VES is that these
simulations are often Real-Time Simulations or Scaled-Time Simulations, which means
that the simulation time advances in a linear relation with the physical time.

War games simulators are an example of VES usage. In these simulations, military
units such as helicopters, ships and fighters are represented in a virtual space. Each
unit has cinematic behavior and can interact with each other. The context of each unit is
composed by social and spatial factors, besides the existence of rules and, possibly, norms
to be obeyed. An overview of War Games is presented in [2]. The War Games itself will
not be discussed in this paper, but the technology used to implement the simulation that
supports these games.

Multi-Agent Based Simulation (MABS) are a suitable approach to model and imple-
ment these war games, since representing units as agents allows to: implements classes
of units in agents and reuse them in other scenario; create a model adherent to the real
world, in which each agent has the autonomy to act in the virtual environment; imple-
ment artificial intelligence algorithms in the agents, in order to provide more realistic
behavior to the simulation agents.

In addition, the real system is complex, since actions of individual units at micro le-
vel could affect the overall state of the system at macro level. Multi-Agent paradigm is
suitable to model and implement complex systems, due to their capability to model and
represent this micro level [3, 4].

Although the advantages in using agent paradigm in the war games simulators, there
is an issue that makes this use difficult: when simulation agents control their advance in
the simulation time, a situation similar to parallel simulation emerges. The time synchro-
nization takes a major role in this case: if agents are not capable to execute the simulated
actions in the correct time, errors will appear in the simulation. This error is called tardi-
ness. As an example, an agent that represents a fighter could not detect an enemy when
users expect that it does.

The time synchronization is challenging when working with Java-based MABS, since
details related to the Java technology will insert unpredicted delays in the simulation.
Some examples are: the VM implementation, the Garbage Collector or the mechanism
used to verify the correct instant to execute a scheduled task.

This paper presents a work that aims to support the development of simulators and
simulations engines for MABS that use scaled time approach and developed with Java te-
chnology, and, in this way, support the development of VES with MABS with individual
agents representing simulated entities. The approach is composed by an architecture to
control the advance of the simulation time ensuring that the tardiness is tamed at levels
established by the simulation designer. To accomplish this goal, an agent-based architec-
ture is provided to replace the simulation clock.

This is an on-going work, and its previous results and outputs were published in [5,
6]. The specific contribution of this text is the inclusion of support for geo-referenced
simulations, beside the improvements in the algorithms used to control the simulation
time advance.

1

This paper is organized as follows: section II presents some challenges to implement
VES using MABS; section III presents the proposed approach; a study of usage is presen-
ted in section IV; section V discusses Related Work; and the Conclusion is presented in
section VI.

2 Challenges to implement VES using MABS

Modeling the simulated system as actors with actions is a natural option for designers
of war games: in the real world military units are autonomous, they act following some
plan, and each one has specific state. In addition, each military unit is situated [7], that is,
each action should consider the spatial and organizational situation, respecting norms.
As already stated, the use of agents in this domain provides a set of advantages such as
software reuse, social ability, ease to implement IA algorithms, and others.

To gain these advantages, actors should be implemented as individual agents, and
these must have the control over their state in the simulation. This means that agents have
the control over the simulated events’ execution and over the advance of the simulation
time. As a whole, each agent acts as an individual model in the simulation, and the
simulation itself takes the form of a parallel simulation. Each simulated event is a tuple
(e, ts), where e is the simulated event and ts is the simulated time when the event must
be executed. The simulated time, or logical time, is the abstraction that represents the
physical time in the simulation.

However, to achieve ts is challenging in Java-based systems. There are three main
issues that influence the final delays: First, the Java Threads have a non-preemptive
scheduling mechanism, and the Java VM itself does not specify how Java-Threads are
mapped to the Operational System (OS) Threads. It is not possible to foresee the conse-
quences of OS threads suspension on the Java based system in execution. Second, the
garbage collector (GC) affects the Java-based system in execution every time it performs
a memory collection. Finally, the time schedule mechanism in Java uses verifications
such as i f (now >= t). Often the value of now is greater than t, and we have a delay
of ((−1).(t − now)). The delay in executing a scheduled action is called tardiness. The
tardiness level is also affected by resources availability in the host, such as memory and
CPU time.

VES often have some flexibility, admitting small delays in the instant when actions are
executed, if the overall simulation consistence is not affected. As an example, if the user
is observing a gunfire in the simulation, he expects that the flash will happen before the
sound. Otherwise, the realism of the simulation will be lost. However, there is not any
significant influence if the sound occurs 100ms or 200ms after the flash.

In these VES, and specifically in war games, the delays have consequence on the spa-
tial representation, since a delay in updating a unit position will insert spatial error in
the virtual space. Although some flexibility should be accepted, there is a limit, and this
limit is the half of the least detection range in the simulated system, as a general rule.

Thus, to implement VES in MABS we do not need to eliminate the tardiness in the
system, but to tame this tardiness to established limits that ensure the simulation consis-
tence. In the next section an approach to this issue is presented.

2

3 Taming the Tardiness in VES

An important consideration about tardiness is its relation with the real time that agents
have to compute. This time have relation with the period tr1 − tr0, where tr1 is the instant
in real time when the agent must execute e1 to achieve ts1, in the scheduled action (e1, ts1),
and tr0 is the instant when the simulated action entered in the scheduled events queue.
The cited relation was shown in [8, 9].

In scaled-time simulations, ts is function of tr, that is ts = tr.K, where K is a cons-
tant Linear Coefficient. We propose that, in order to provide a sufficient period tr0 − tr1
for agents executing actions (e1, e2, .., en), we could replace the constant K by a function
f (x, y, z, ...).

The set (x, y, z, ..) is composed by meaning variables which the values should be in-
formed periodically at execution time. Some examples of these variables are: greater
tardiness in a period, number of measures greater than the established limit in a period
and bias of the tardiness.

3.1 The approach implementation

The proposed function is implemented in an algorithm used to control a centralized si-
mulation clock component. This clock is responsible for: collecting all values for the
meaning variables used in f ; calculating the current f (x, y, z..); applying this value to
update the simulation time value; and providing the current simulation time to agents in
execution time.

The approach considers that the simulation agents implement the interface and the
algorithm to individually inform their tardiness in execution time and is an evolution of
the work presented in [5, 6]. The implementation of the proposed concepts was made on
the MASP platform, presented in the cited work.

The very difference between this paper and the previous two works is the ability in
treating MABS with agents that move in the virtual space using different and variable
speeds. This spatial representation of the virtual environment may be in the main me-
mory or in a spatial database compliant with OpenGIS standards [10].

For accommodating this new abilities, the MASP architecture was modified to solve
some concurrency issues, and a spatial representation for simulations was provided.
The MASP allows to represent the spatial virtual environment in memory or in a loose-
coupled approach between the MABS and the GIS database. These techniques are dis-
cussed in [11, 12].

The algorithm that implements the f function was evolved to work not only with
simulations that uses the stepped-time approach to advance the simulation time, but
also the next-event approach. These two approaches are the main ways to advance the
simulation time, and are described in [13–15]. The current architecture is presented in
the Component Diagram (fig. 1) and some components are individually treated due to
concurrency issues.

The VirtualSpaceHandler component is the connection point with the GIS. The geo-
graphical positioning may be treated in memory or persisted in a database. The current
implementation uses PostgreSQL with POSTGIS. The architecture main piece is the algo-
rithm that is used to dynamically update the f (x, y, z..) value that determines the Simu-
lation Time advance over the Real Time (i.e the physical time), and this algorithm is in

3

Figura 1: Proposed Architecture

the SimulationClockControlApproach component.

This algorithm was evolved to support MABS in which agents could change their
behaviors period, being indifferent to these. This is important to allows simulation agents
to change their speed in the virtual environment during the simulation. Beside these
characteristics, the algorithm needs to be able to maintain the f (x, y, z..) value at a level
that ensures a tardiness below the maximum level admitted and, moreover, be able to
speed-up the simulation, when it is possible.

The simplified class diagram of the current implementation for simulation-time con-
trol approach is shown in figure 2. This diagram presents the main classes that compose
the simulation clock and its control mechanism.

The current algorithms periodically verifies the major tardiness, the tardiness bias, or
tendency, and the number of tardiness occurrences greater than a specific level in a pe-
riod. This information is used as input to define a new value to f , which will slow down,
speed up, or maintain steady the simulation time advance. This code is implemented in
the SimulationClockControl class.

As stated in the previous works, the approach is being continually improved. This
occurs mainly because of the increasing complexity of the experiments used to test this
approach. The goal is to obtain a solution to support VES implementation using MABS,
which implies in supporting geo-referenced simulations where agents with very different
speeds may control and alter their update period. The next section shows the current
results.

4

Figura 2: Class Diagram

5

4 A Study of Usage

In order to test the proposed approach, a scenario with 500 agents was instantiated re-
presenting actors, with different speed limits and acceleration. The values, all in the
International System of Units (SI) are presented in the table 1.

For each type, 100 agents were instantiated with a behavior for modifying the speed
and the course in a random way, but respecting the initial parameters. The maximum
spatial error admissible in the simulation was 500 meters. The agents are programmed to
adjust their control loop period in order to meet this 500 meters constrain. The initial rate
for the simulation was 5:1, which means that in ts = 0, f = 5 . The maximum tardiness
admissible was 10% of the expected period for a control loop execution and the tardiness
level to trigger the control approach was 2% of the control-loop period. The algorithm
was adjusted to perform 4 tardiness verifications and one for the simulation speed-up
during the period of the major control loop informed by the simulation agents.

The experiment used two samples: the control sample ran without interference, re-
maining with ts = 5.tr during all experiment, and the main sample used the settings
described above and ts = f (tardiness, bias, number o f tardiness).tr. The experiments are
recorded as comma-separated files (.csv), and later those files were analyzed using R
software [16].

Both simulation for collecting the samples were executed in the same environment,
a personal computer with a i7 CPU and 8 GB of RAM. The Operational System used
was the OpenSuse 12.1 (a linux flavor) in command line mode, that is, without graphical
interface. Services, such as network and printer server were deactivated in order to avoid
interferences in the collected data.

The results are presented in graphs, and these are discussed one by one, as follows:

4.1 Simulation time advancing

The proposed approach relies on the concept that if tardiness could be detected at execu-
tion time, then it is possible to change the f value in order to give more execution time
for the simulation system and, as a consequence, it is also possible to tame the tardiness
and the spatial error in MABS.

A consequence of this approach is the reduction of the simulation time performed.
At constant rate, using ts = 5.tr and 25 minutes of simulation a total of 125 minutes of
simulation time is obtained. On the other hand, the main sample was able to perform
only 2.3 minutes of simulation time in the same period (figure 3).

This difference occurred because of the automatic reduction of the f value, which

Tabela 1: Simulation Scenario

Agent Type Min Speed Max Speed Max Acel.
Fighter 150 300 2.0
Helicopter 5 60 0.8
Frigate 4 20 0.3
Submarine 1 10 0.2
Submarine (N) 4 20 0.2

6

Figura 3: Main Sample – Simulation Time & Real Time

started as f = 5, done by the architecture implementation in execution time. The graph
shown in figure 4 depicts that the f value, that had started with value 5, decreased fast
and reached some stability near 0.3

Figura 4: Main Sample – f value x Real Time

These two graphs show the cost of the approach. The next two subsections present
the advantages of it usage.

4.2 Tardiness in simulation time

One of the goals of the approach is to tame the tardiness in relation to the simulation time.
Initially the graphs of the figures 5 and 6 present the control sample information, that uses
the fixed relation ts = 5.tr. In graph 5, the Tardiness histogram, it is observed that the
tardiness varies from 0 to 6, approximately, in a distribution similar to an exponential.

7

The later graph shows the tardiness occurrence during the simulation execution. This
graph shows that the tardiness is distributed along the time and the boxplot also confirms
that the tardiness does not have a normal distribution, complying with the histogram. In
this representation is possible to see that almost all tardiness measures are below 2.3, and
bigger values are statistically classified as outlines.

Figura 5: Control Sample – Tardiness Histogram

Figura 6: Control Sample – Tardiness & Simulation Time / Boxplot

The next two graphs (figures 7 and 8) represent the situation of the main sample, with
the f value automatic control mechanism activated. In the first one, it is possible to see a
similar behavior, however the values are very different: almost all sample is below 0.01 of
tardiness, which means less than 1% of delay. Another observation is that the tardiness
decreased along the time of execution (figure 8), in a contrast with the control sample
behavior (figure 6). This happens because of the f value variation, saw in figure 4. After
the system achieves a stable situation the tardiness tends to be distributed along the time

8

axis. In the boxplot, it is possible to observe that the greater values for outlines are below
0.06, which is according the limit established as a parameter (0.1).

Figura 7: Main Sample – Tardiness Histogram

Figura 8: Main Sample – Tardiness & Simulation Time / Boxplot

4.3 Spatial Error

The spatial error is critical when working with geo-referenced actors that move around a
virtual space, since a wrong positioning may prevent that agents detect each other when
this is expected to happen. As a consequence, agents will not consider the presence of
others when performing their decision making.

When agents have the full control of their control loop, it is expected that different
levels of tardiness appear. Since the act of update the position in the virtual space (or
in the GIS) is a periodical behavior, a wrong positioning occurs as a consequence of this

9

behavior tardiness. In other words, if an agent is expected to advance 2 meters in 100ms,
and it only has success in performing this update in 120ms, the final position may be
wrong by 0.4 meters. These spatial errors can lead agents to fail several times in detecting
other agents inside the virtual space, affecting the overall behavior of the simulation.

The figures 9 and 10 show the spatial error recorded from the Control Sample. The his-
togram shows occurrences of spatial errors greater than 4,000 meters. The second shows
that the error is regularly distributed during the execution time, and that the majority of
the errors are below 1,500 meters. It is highlighted that approximately 25% of the measu-
res are between 500 and 1,500 meters, a value greater than the established as acceptable
in the simulation initial parameters, which compromises the results of this simulation.

Figura 9: Control Sample – Spatial Error Histogram

Figura 10: Control Sample – Spatial Error & Simulation Time / Boxplot

The algorithm that controls the updating of the f value was specifically modified to
reduce also the spatial error. For that, agents confirm the current simulation time and

10

will update its position on GIS using the current information, not only the expected. The
dilatation of the real time available for computing new states helps to reduce the spatial
error for all simulation agents.

In figure 11, from the main sample, it is shown that the spatial error was tamed to
limits between 0 and 250 meters, below the level established as critical for this simulation.
An interesting point is the concentration of spatial errors in some values, such as 20, 50
and 100 meters. This information indicates that some modifications in the algorithm is
still desirable, in order to search a distribution more compliant with the normal.

Figura 11: Main Sample – Spatial Error Histogram

The figure 12 is another spatial error view obtained from the main sample. The graph
shows a regular boxplot, with outlines lesser then 200 meters, in absolute value. The
quartile distribution of the measures was considered acceptable in research. The spatial
error was also regularly distributed along the real time axis.

Both graphs indicate that the spatial error will occur, however they will be bounded
by the established limits. This situation observed in– silico represents a possible situation
in the real world.

5 Related Work

Our bibliographic research did not have success in locating other work that aims to solve
similar issues.

A number of works were used as reference and are related to some part of this work,
and some of these papers are referenced in this work. Some papers were already pu-
blished by the authors, presenting other stages of the work.

Specifically about the spatial error in simulations, there are a number of approaches
to reduce the error by estimation, but these approaches address the simulated word re-
presentation for each simulator in parallel and distributed simulation. Some of these
approaches can be seen in [1]. However the problem addressed by this research is the
spatial error caused inside the simulator due to the tardiness in performing the updates.
The work also discusses the coupling of GIS and MABS.

11

Figura 12: Main Sample – Spatial Error & Simulation Time / Boxplot

The work JiST [17] discuss simulation time issues when executing simulations im-
plemented in Java, and provides an approach to eliminate this error by substituting the
system time by a logical time advancing, without relation with the real time advance.
This approach is not suitable to scaled time simulations and does not support MABS.

The work [18, 19] presents an approach to handle time issues in MAS, that is useful
for MABS, too. The work differs conceptually from this, since it does not enforce a rela-
tionship between logical and real time and, in this sense, does not support the execution
of VES. These works have inserted the concept of time model, in which agents’ actions
and deliberations have a proper logical time associated.

About the dilatation of the K value in ts = K.tr , the only reference verified was [20].
The JACK documentation informs that it is possible to handle the K, however this docu-
mentation does not inform if it is possible to act on the K value during the simulation.
The tardiness and the spatial error are not discussed in the documentation.

6 Conclusion and Future Work

This work presented an approach to implement MABS in which the simulation time is
advanced using an individual time-stepped mechanism. The approach is addressed to
tame tardiness and spatial error to established limits and, with this, to ensure that the
simulation represents a possible scenario of the real system.

The approach considers agent–centered turns, in which each agent can control its ad-
vance in relation of the simulation time and is based in a central simulation clock. Agents
feedback of tardiness and step-time are used to modify the linear coefficient between real
and simulation in run time. This modification is performed by an agent-based compo-
nent that uses an algorithm developed for this specific task.

A conceptual agent architecture is presented, and also its implementation. The pre-
sented examples indicated that the approach has success in taming the tardiness and the
spatial error. However it is desirable to refine the algorithm that controls the f value,
in order to obtain a spatial error distribution more compliant with the normal distribu-

12

tion. This result will allow the use of some statistic tools to treat the error in real time,
additionally to the current approach.

The current status of the research indicates that it is possible to develop MABS to
support war games and other applications, ensuring that the error will not overpass some
established limits.

Referências

[1] FUJIMOTO, R. M.. Parallel and Distributed Simulation Systems. Wiley Series on
Parallel and Distributed Computing. John Wiley & Sons Inc., 2000.

[2] PERLA, P. P.. The art of wargaming: a guide for professionals and hobbyists.
Naval Institute Press, 1990.

[3] MOFFAT, J.. Complexity theory and network centric warfare. Information age
transformation series. DoD Command and Control Research Program, 2003.

[4] PIDD, M.. Systems Modelling: Theory and Practice. Wiley and Sons, LTD, Chi-
chester, England, 2004.

[5] TARANTI, P. G.; LUCENA, C. J. P. ; CHOREN, R.. Mabs com turnos centrados
em agentes e implementadas em java: controlando atrasos em relacao ao tempo
de simulacao. In: ANAIS DO II WORKSHOP SOBRE SISTEMAS DE SOFTWARE
AUTONOMOS (AUTOSOFT 2011) - CBSOFT 2011, p. 40–49, Sao Paulo, 2011. SBS.

[6] TARANTI, P.-G.; DE LUCENA, C. J. P. ; CHOREN, R.. An architecture to tame si-
mulation time tardiness in ads. In: PROCEEDINGS OF THE 2011 WORKSHOP ON
AGENT-DIRECTED SIMULATION AT THE 2011 SPRING SIMULATION MULTI-
CONFERENCE, ADS ’11, p. 29–36, San Diego, CA, USA, 2011. Society for Computer
Simulation International.

[7] DEY, A.. Understanding and using context. Personal and Ubiquitous Computing,
5(1):4–7, 2001.

[8] TARANTI, P.-G.; LUCENA, C. J. P. D. ; CHOREN, R.. A quantitative study about
tardiness in java-based multi-agent systems. In: AGENT SYSTEMS, THEIR ENVI-
RONMENT AND APPLICATIONS (WESAAC), 2011 WORKSHOP AND SCHOOL
OF, p. 37 –44, Curitiba, Parana, Brazil, april 2011. Print ISBN: 978-1-4673-0735-2.

[9] TARANTI, P. G.; CHOREN, R. ; LUCENA, C. J. P.. A quantitative study about
the hidden risk of using time-scheduler mechanisms to control execution flow
in jade-based mas. In: PROCEEDINGS OF I WORKSHOP ON AUTONOMOUS
SOFTWARE SYSTEMS (AUTOSOFT) AT FIRST BRAZILIAN CONFERENCE ON
SOFTWARE: THEORY AND PRACTICE (CBSOFT), p. 61–70. SBC, outubro 2010.

[10] OPEN GEOSPATIAL CONSORTIUM. OpenGIS standards.
http://www.opengeospatial.org/standards/, 2011.

[11] GONÇALVES, A.; RODRIGUES, A. ; CORREIA, L.. Multi-Agent Simulation within
Geographic Information Systems. In: PROCEEDINGS OF THE 5TH INTERNATI-
ONAL WORKSHOP ON AGENT-BASED SIMULATION (ABS-2004), p. 107–112.,
Lisboa, Portugal., 2004.

13

[12] PARKER, D.. GIS, Spatial Analysis and Modelling, chapter Integration of Geo-
graphic Information Systems and Agent-Based Models of Land Use: Prospects and
Challenges, p. 403–422. ESRI Press, Redlands, CA, 2005.

[13] SHANNON, R. E.. Systems Simulation: the art and science. Prentice Hall, 1975.

[14] LAW, A.; KELTON, D.. Simulation Modeling and Analysis 2nd. McGraw-Hill,
New York, NY, 1991.

[15] ZEIGLER, B. P.; PRAEHOFER, H. ; KIM, T. G.. Theory of modeling and design -
integrating discrete event and continous complex dynamic systems (2. ed.). Aca-
demic Press, 1999.

[16] R DEVELOPMENT CORE TEAM. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria, 2011. ISBN
3-900051-07-0.

[17] BARR, R.; HAAS, Z. J. ; VAN RENESSE, R.. Jist: an efficient approach to simulation
using virtual machines. Software: Practice and Experience, 35(6):539–576, 2005.

[18] HELLEBOOGH, A.; HOLVOET, T.; WEYNS, D. ; BERBERS, Y.. Towards time ma-
nagement adaptability in multi-agent systems. In: Kudenko, D.; Kazakov, D. ;
Alonso, E., editors, ADAPTIVE AGENTS AND MULTI-AGENT SYSTEMS II, vo-
lumen 3394 de Lecture Notes in Computer Science, p. 88–105. Springer Berlin /
Heidelberg, 2005.

[19] HELLEBOOGH, A.; VIZZARI, G.; UHRMACHER, A. ; MICHEL, F.. Modeling dy-
namic environments in multi-agent simulation. Autonomous Agents and Multi-
Agent Systems, 14(1):87–116, February 2007.

[20] JACK. Jack Intelligent Agents, software agent system.
http://aosgrp.com/products/jack/index.html, 2011.

14

	Introduction
	Challenges to implement VES using MABS
	Taming the Tardiness in VES
	The approach implementation

	A Study of Usage
	Simulation time advancing
	Tardiness in simulation time
	Spatial Error

	Related Work
	Conclusion and Future Work
	References

