ISSN 0103-9741

Monografias em Ciéncia da Computacao
n® 04/13

Determining the Boundary Cost and Flexibility

in Wireless Sensor Networks

Adriano Francisco Branco
Noemi de La Rocque Rodriguez
Silvana Rossetto

Departamento de Informatica

PONTIFICIA UNIVERSIDADE CATOLICA DO RIO DE JANEIRO
RUA MARQUES DE SAO VICENTE, 225 - CEP 22451-900
RIO DE JANEIRO - BRASIL

Monografias em Ciéncia da Computacao, No. 04/13 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena April, 2013

Determining the Boundary Cost and Flexibility in
Wireless Sensor Networks

Adriano Francisco Branco Noemi de La Rocque Rodriguez
Silvana Rossetto

{abranco , noemi}@inf.puc-rio.br , silvana@dcc.ufrj.br

Abstract. Several authors have proposed solutions for remotely updating wireless sen-
sor network applications. These proposals usually make a trade-off in flexibility versus
update cost. At one extreme, full-scale binary upgrades provide full flexibility at unac-
ceptable communication cost, while at the other end parameter tuning typically provides
the least expendable but also the least flexible form of updates. In this work, we describe
WDvm, a platform that allows the programmer to experiment with different combina-
tions of flexibility and cost, choosing the best fit for each application. WDvm provides a
virtual machine which runs over TinyOS and which can be installed with different sets
of ready-made components, facilitating tuning of the abstraction boundary that can be
used for reconfiguration. A simple intermediate language runs over this virtual machine.
Parameter-based configuration receives special attention in WDvm. Parameters are di-
rectly integrated into the intermediate language, allowing scripts to act both as simple
parameter redefinitions and to determine new parameter values as a result of arbitrary
operations. In this report, we describe the structure of WDvm and describe some experi-
ments, in which we evaluate the overhead imposed by the virtual machine by comparing
the execution of simple scripts with a TinyOS similar application. We also illustrate,
through an example, the possibility of defining different abstraction boundaries for the
virtual machine.

Keywords: Virtual Machine, Sensor Network, Reprogramming, Reconfiguration

Resumo. Existem véria propostas para atualizagdo remota em redes de sensores
sem fio. Essas propostas, normalmente, trabalham a relagdo entre flexibilidade versus
custo de atualizagdo. Em um extremo a carga completa do arquivo bindrio possibilita
grande flexibilidade com alto custo de comunicac¢do. Por outro lado a reconfiguragéo via
parametros permite um baixo custo de comunicagdo com pouca flexibilidade. Neste tra-
balho descrevemos WDvm, uma plataforma que permite experimentar diferentes com-
binagoes de flexibilidade e custo. WDvm executa uma mdaquina virtual em cima do
TinyOS e pode ser instalada com diferentes conjuntos de componentes. Esses componen-
tes sdo parametrizados e integrados diretamente com uma linguagem intermedidria da
VM. Isso permite que a aplicagdo tenha um maior controle das funcionalidades ajustando
os parametros automaticamente. Nesse relatério descrevemos a estrutura de WDvm e al-
guns experimentos. Avaliamos o “overhead” imposto pelo uso de VM comparando com
a execucdo de aplicagdes similares em TinyOS. Também apresentamos, através de exem-
plos, a possibilidade de definigdo de diferentes fronteiras de abstra¢do para a VM.

Palavras-chave: Mdaquina Virtual, Redes de Sensores, Reprogramagao, Reconfiguragdo

In charge of publications :

Rosane Teles Lins Castilho

Assessoria de Biblioteca, Documentacgao e Informacao
PUC-Rio Departamento de Informatica

Rua Marqués de Sao Vicente, 225 - Gavea

22451-900 Rio de Janeiro RJ Brasil

Tel. +55 21 3527-1516 Fax: +55 21 3527-1530

E-mail: bib-di@inf.puc-rio.br

Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

Contents

1 Introduction
2 Dynamic updates in WSN applications

3 System Description
3.1 WDvm programming model
3.2 WDvm built-in functionalities o L
3.3 Programstructure
3.4 Reconfigurationtool L
3.5 Parameters integration

4 Practical results
4.1 VM Overhead Benchmarking
4.2 Reconfigurationcost
4.3 AbstractionBoundary
44 Results

5 Final Remarks
6 Acknowledgments

References

13
15

17

18

19

1 Introduction

Due to the number of devices involved in a wireless sensor network in applications such
as environmental monitoring or production control, such networks are often built us-
ing devices (motes) with very limited resources. On the other hand, it is also frequently
difficult to recover motes from the position in which they are installed for software cor-
rections or reconfigurations. Thus, several authors have proposed solutions for remotely
updating wireless sensor network applications. As discussed in [1], these proposals usu-
ally make trade-offs in flexibility versus update cost. At one extreme, full-scale binary
upgrades provide full flexibility at unacceptable communication cost, while at the other
end parameter tuning typically provides the least expendable but also least flexible form
of updates.

In this work, we describe WDvm, a platform which allows the programmer to exper-
iment with different combinations of flexibility and cost, choosing the best fit for each
application. WDvm provides a virtual machine which runs over TinyOS and which can
be installed with different sets of ready-made components, facilitating tuning of the ab-
straction boundary that can be used for reconfiguration. A simple intermediate language
runs over this virtual machine.

The idea of allowing the user to fit the abstraction level of the virtual machine to the
set of application domains that the WSN is expected to handle was first proposed by
Levis et al. [2]. In WDvm, we explore the possibility of defining different abstraction
boundaries for the virtual machine but focus on extending the very basic parameter-
based configuration model into simple scripts. Parameters are directly integrated into
the intermediate language, allowing scripts to act both as simple parameter redefinitions
or to incorporate these redefinition in programs.

The remainder of this report is organized as follows. In Section 2, we discuss different
alternatives for dynamic update of WSN applications and the impact of their choices on
cost and performance. In Section 3, we describe the architecture of WDvm and the com-
ponents that are part of its basic structure. Next, in Section 4, we describe some practical
results of the implementation of WDvm over TinyOS2. Finally, Section 5 contains some
final remarks.

2 Dynamic updates in WSN applications

Software updates and corrections are common across all areas of application, but in wire-
less sensor networks, the number of devices involved in applications — and often also
their physical location — makes remote updating specially attractive.

Remote software update necessarily involves the communication cost of sending the
updates over the network. Thus, smaller or less update messages imply less energy spent
by radios. Besides, fault tolerance and version stabilization are also easier to achieve with
smaller messages. Proposed mechanisms for remote reconfiguration and reprogramming
represent different trade-offs between flexibility and cost.

The simplest form of remote reconfiguration is through the redefinition of parame-
ters [3,4]. Small-sized messages can be sent over the network containing (name, value)
pairs. This approach has very low communication cost but has limited power, allowing
running applications to be modified to specific, foreseen, behaviors. This is adequate
for particular scenarios: for instance, Greenstein and others [5] show the benefits of this
approach in tuning the filters to be applied to collected raw data.

At the other end of the spectrum, one can dynamically update the binary code running
on a mote. Because wireless sensor network applications often follow an SPMD (single
program, multiple data) pattern, it is possible to broadcast the binary code without too
much difficulty on the programming aspects. Deluge [6] follows this approach to the
extreme, allowing for updates of a node’s complete binary image. This is of course the
most flexible approach, but incurs in prohibitive costs, as a typical binary image will be
of the order of tens of kilobytes. The SOS [7] operating system allows for partial binary
updates, diminishing costs somewhat.

Several authors have proposed approaches based on virtual machines, defining inter-
mediate combinations of cost and flexibility. One of the first such proposals was that of
Maté [8], which uses a very simple virtual machine running over TinyOS-1. The authors
of Maté themselves later concluded that the virtual machine was too limited to support
higher level programming, and proposed the concept of ASVMs [2] (application specific
virtual machines), which provides a way for the user to explore the boundary between
virtual code and the VM engine. ASVMs are customized for specific domains of appli-
cations, and because of this customization, allow complex operations to be described
in high-density code, reducing interpretation overhead and communication costs. This
idea is further investigated by Balani and others [1] in their proposal of DVM. The au-
thors combine the concept of ASVM with SOS’s capability of updating binary models,
allowing the abstraction boundary provided by the VM to be dynamically modified. Thus
the DVM model supports frequent updates with high-density scripts but also other, less
frequent ones, when major changes in applications are needed, with binary modules.

Our work fits into the ASVM and DSM concepts of providing support for different ab-
straction boundaries. In this work, we concentrate on investigating the range of cost/flex-
ibility combinations that goes from the parameter-based model to full-fledged virtual
machines. We propose a virtual machine which, like ASVM, can be tailored to different
application areas in order to allow for high-density domain-specific code. However, all
parameters of the binary modules that compose an image are exported to the interpreted
language and can be manipulated in the virtual program as predefined variables. Thus,
a parameter-based configuration script can consist of a simple program containing only
assignments to these variables or of programs of arbitrary complexity with accesses to
predefined variables and parameters provided by the runtime image.

3 System Description

The main components of the WDvm system are shown in Figure 1. Module “VM Engine”

Math Aggregation
operations &
Sensors & VI_’I Election
Actuators | ENgine

Timers Communic.
0S

Figure 1: WDvm system modules

is responsible for the operation of the virtual machine. Modules ‘Aggregation & Election”
and ‘Communication” implement frequent interaction patterns and can be parameter-
ized to provide different variants of group operations, leader election, and routing to the
base station. Module “Communication” also implements the support for remote updates.
Modules “Math operations”, “Sensor & Actuator” and “Timers” implement frequently
needed functions for math operations, access to sensors and actuators, and timer control,
respectively.

3.1 WDvm programming model

WDvm is based on an event-driven programming model where each event is treated by a
procedure written in a statically typed script language. In order to simplify the program
control flow, events are queued to be processed after the previous one has finished. Op-
erating system events are treated regardless of the WDvm processing, but in some cases
operating system events may generate new events for the virtual machine. In order to
deal with the limited memory space, we use static memory allocation which allows us
to check all memory allocation during the compilation phase. Besides, the subroutine
scope is restricted (only global entities can be created) and the instructions” parameters
are passed by reference, instead of using a stack.

The engine shown in Figure 2 has a memory area, a Program Counter (PC) registers
stack and a queue of events. The PC on the top of the stack always points to the next
instruction to be performed. Each instruction is handled as an independent task which
must fetch the parameters of the instruction, execute it and increment the current PC at
the end of its execution. The use of independent tasks to process each instruction ensures
that the WDvm script will not block the rest of the system. Each task is scheduled to
run only after the previous task has finished. When the PC stack is empty, the engine
must process the next event from the queue of events. All event is associated to a type
and a numeric identifier. By using this tuple (event type-identifier), the engine finds the
address of the event handler in the event configuration table. This address is pushed as
a new PC register into the PC stack and then a new task is scheduled to process it.

4)
VM Memory PC stack Event Queue

VM
Engine

Figure 2: WDvm Engine

3.2 WDvm built-in functionalities

WDvm offers a set of configurable features in order to facilitate the development of new
applications. These features were identified from the study of the main characteristics
of typical WSN applications as well as WSN macroprogramming models. As examples
of typical applications, we analyzed a simple case of environmental and building moni-
toring and an urban parking application. The programming models studied were: Regi-
ment [9,10], Pleiades [11], Cosmos [12], TinyDB [13], WADL [14] and ATaG [15].

We divide the set of selected features into “local operations” and “distributed oper-
ations”. Local operations include all operations that are internal to a node (mote), such
as timers and sensor reading. Distributed operations include all operations that involve
communication/interaction between nodes (motes) and are typically the most difficult
part of the WSN program implementation. In the next subsections we describe the main
local and distributed operations. The main parameters of all operations are accessible
locally through predefined variables and remotely through the reconfiguration tool.

3.2.1 Local Operations

In addition to the typical system operations, such as arithmetic and flow control, WDvm
offers four types of local entities with particular operations: Timer, LocalEvent, Sensor,
Actuator.

The current version of WDvm allows the creation of a maximum of 8 Timer and 32
LocalEvent. Each Timer has a predefined value (in seconds) for the frequency of the
timer activation and the memory address of the procedure that must be called when the
timer fired event is signalized. The instruction setTimer allows us to start a timer in the
“periodic” or “one-shot” mode, or to stop an active timer. A LocalEvent is a procedure
that is scheduled to run following the “first in first out” policy (each event is completely
processed before start processing the next event from the queue).

Sensor and Actuator are entities that are dependent on the hardware used. Sensors
are devices used to collect data from the monitored environment, while actuators are
devices used to perform actions on that environment, typically in response to the data
analysis. The current version of WDvm includes temperature and light sensors and bat-
tery voltage. The configuration of a sensor defines the address of the procedure to be
performed when a reading is completed and the variable that will receive the value read.
The instruction readSensor triggers the reading of specific sensors. The current version
of WDvm uses leds to simulate actuators.

3.2.2 Distributed Operations

WDvm offers the following distributed operations: Group Builder, Leader Election, Ag-
gregation, Routing to Base Station, and Group Communication;

Communication between nodes/motes is based on the concept of Group Builder. A
node group is formed by all nodes that have the same group parameter value (type iden-
tifier) and are within the area bounded by a maximum number of hops from a message
sender. WDvm allows the creation of a maximum of 32 different types of groups (the
groups may overlap each other). Each group is identified by an 8-bit parameter and by
the number of hops from the sender node of a message. When a node sends a message to
a particular group, the algorithm automatically forwards this message to all neighboring
nodes that also belong to the same group type and group parameter, up to the maximum

4

number of hops. The group functionality provides the following predefined variables as
parameters: Max Hops - Maximum distance in hops inside the group, Group Parameter -
Local Group Type partition ID, Current Leader - If elections is ON, it holds the Current
Leader ID, and Group Flags - Group control flags: Group activity and election mode.
The user can dynamically reconfigure the behavior of the group by modifying the pa-
rameters of interest. As an example, one can change the scope of a group by adjusting
the value of maxHops or reorganize groups changing the value of the group parameter.

The leader election algorithm works over the Group Builder mechanism. Leader flag
defines whether or not the group needs to elect a leader. The default version of the leader
election algorithm is based on the battery power of each node (the node with higher re-
maining power is chosen, and node’s identifiers are used as the tie-breaking criterion
when two or more nodes have the same remaining power). A special flag, called par-
ticipation flag, can be used to dynamically change the status of a node with respect to a
specific group (Whether or not the node is member of the group).

Aggregation operations also work over Group Builder. The application sets the type
of sensor that will be used (physical quantity to be collected) and which kind of aggrega-
tion operation will be applied for the collected values. Optionally, one can define a com-
parison operation and a upper/lower bound value. The operations currently available
are: average, sum, maximum value and minimum value. Comparison operations include:
<, <,>,>,=,#. Instruction aggreg triggers a specific aggregation operation. At the end
of an aggregation operation, an event is queued in order to execute the procedure speci-
fied by the user. The aggregation functionality provides the following predefined vari-
ables as parameters: SensorId - Sensor value to be aggregated, Function - Aggregation
function, CompOper - Comparison operator, RefValue - Reference value used in compar-
isons. It also provides the following predefined variables that can be returned by the
operation: Total nodes - Number of participant nodes in last aggregation, True answer
counter - Number of true results for comparison operation, False answer counter -
Number of false results for comparison operation, and Calculated value - Aggregation
result.

To send and receive messages one must to configure a Message entity containing a
data structure (used to receive the payload of the message) and the address of the pro-
cedure to handle the messages. Every Message have a unique identifier on the network.
When a node receives a valid message, the VM is notified by the operating system and
generates a local event to handle the incoming message, using the procedure address
defined.

The instruction sendMsg allows send a message to the nodes in the same group or to
the base station. It is also possible to reply a message to a requester node in the same
group. Routing to base station is implemented by using a particular routing component
which routes a message to the base station.

3.3 Program structure

A WDvm program consists of a sequence of instances declarations. The current version of
WDvm implements the following entities: Variable, Sensor, Message, Timer, Grouping,
Aggregation, LocalEvent. Variable is used to represent the variables of the program.
Variables can be integer types with or without signal and with 8, 16 or 32 bits. It is also
possible to define simple data structures containing a set of variables. Remaining entities
are related to the other facilities offered by the system. Each one is defined based on a set
of parameters whose values are provided when the instance is created.

A WDvm program is organized in two main areas: Data/Configuration and Pro-
cedures. The Data/Configuration area is divided into sections for entity instantiation.
Global variables and some of entities parameters can be referenced directly by the user
program. The Procedure area contains the code (procedures) of the user program. Each
procedure is identified by its start address.

We define a set of mnemonics and a compiler that converts the user program to the
VM bytecodes. The set of instructions/mnemonics of the current version of WDvm is
presented in Table 1.

Table 1: WDvm Instruction Set

’ Mnemonic \ Definition

add, sub +, -
mult, div | ¥,/
inc, dec increment-of-1,

decrement-of-1
compare | Comparison operation

cast Type conversion
call Unconditional jump
if, ifelse Conditional jump
where Conditional jump with
repetition
ret, end Return to jump origins

setGroup | Set group flag
setTimer | Set timer to start or stop
genEvent | Generate a local event
aggreg Starts an aggregation
setVar Set a value into a variable
readSensor | Start a sensor reads
setActuator | Writes a value into an ac-
tuator
sendMesg | Sends a message to a
Group or to the Base-
Station

3.4 Reconfiguration tool

To allow remote reconfiguration and reprogramming, we built a tool that can load a new
program (VM bytecode) or update specific sections of the VM memory. The protocol for
bytecode reprogramming is based on flood dissemination. Each new program version is
uniquely identified and it is automatically disseminated to the entire network. Versioning
allows nodes to retrieve the latest version of the program from their neighbors, in case
they are not active during the dissemination phase.

The memory update protocol allows us to disseminate selective parameters for cer-
tain types of nodes or groups. To minimize the cost of the dissemination protocol, we
build small routing tables that are updated with the information loaded by the latest
messages routed by the node to the base station. Messages are also associated with a
unique version identifier and each node maintains a small history of the last messages.
Thus outdated nodes can retrieve the latest messages from its neighbors. The tool trans-

mits a reconfiguration message with up to 18 bytes. These bytes may contain continuous
or not continuous VM memory region sections. Each section is represented by 2 + n bytes
containing the starting address, the value n and the n data bytes.

3.5 Parameters integration

WDvm combines three principles to explore the use of parameters and increase flexibility
in the reconfiguration: (i) the features of the runtime are generic and their parameters are
exposed as program variables; (ii) any user program variable or constant can be treated as
a parameter; (iii) the reconfiguration tool has indexed access to the VM memory, therefore
it is possible to override the values of program variables and constants.

The item (i) allows the user application or the reconfiguration tool to have remote
access to the parameters associated with the runtime functionality, making functional
changes even more flexible. The item (ii) facilitates the creation of configurable applica-
tions, increasing the possibilities for future adjustments. With the item (iii) the user has
remote access to manipulate any program value as a reconfiguration parameter. Items (i)
and (ii) enable the implementation of scenarios where a simple configuration parameter
can triggers the reconfiguration of a set of parameters.

4 Practical results

We implemented WDvm in TinyOS-2. Besides the basic components of TinyOS, the basic
WDvm image includes the CTP (Collection Tree Protocol) component [16]) for routing
messages from motes to the base station. The protocols for group communication and
data dissemination were built over the primitives for communication between nodes.
Control of procedures and events in the virtual machine were easily developed over
nesC/TinyOS programming model. WDvm currently runs on the MicaZ mote [17] cou-
pled with MDA100.

In this section, we conduct evaluations of WDvm from three different points of view.
In Section 4.1, we try to estimate the overhead incurred by interpretation. To this end, we
compare computing-intensive code written in WDvm and in the native nesC program-
ming language. Next, in Section 4.2, we measure the cost of updating an application.
Finally, in Section 4.3, we illustrate the possibility of working at different abstraction
boundaries, and measure the cost of writing a given application working at different ab-
straction levels.

We used the Avrora instruction-level simulator [18] to simulate the MicaZ hardware
in the controlled tests.

4.1 VM Overhead Benchmarking

We use two different tests to evaluate the overhead incurred by the VM as compared with
direct execution over TinyOS. In the first test, we run a simple CPU-bound application: a
loop that continuously increments a value. This would be an extremely uncharacteristic
pattern for sensor network applications, which typically pass through relatively long
intervals of quiescence, followed by short periods of activity, triggered by external events.
The idea of this test is to stress the processing capacity of WDvm to the limit. In the
second test, we measure the overhead of the VM in a more typical scenario, in which the
application repeatedly reads data from a sensor in a loop.

In each test, we run both variants of the application for five minutes. At interval of ten
seconds, the applications send the value of the loop counter to the base station.

In both tests, programs are coded with event-based loops. In the nesC/TinyOS ver-
sions, each iteration posts a task representing the following one. In WDvm, each iteration
generates a local event with the same intent. The CTP component is used both in the im-
plementation of the VM runtime and in the nesC/TinyOS versions.

To compare the results, we use two metrics. The first one is the total number of itera-
tions executed along the five minutes that the applications are left running. This number
is the value of the counter sent to the base station at time 300s. One of the advantages of
this metric is that it could be used on real motes as well as on the simulator. The second
metric we use is the total number of cycles in Active and Idle state !. The values for this
metric were obtained through the simulations on Avrora.

4.1.1 Scenario 1 - CPU-bound Application

Table 2 presents the results obtained with Avrora for our first test scenario. In the nesC
version, the main loop is executed in a TinyOS task that contains only two commands:
the loop counter increment(++ in C) and the the (re)post of the task itself. In WDvm, the
loop is the main procedure executed by the VM, with three commands: the loop counter
increment, the instruction that generates a local event, and the end of procedure instruc-
tion. This local event makes the VM post a task that (re)initiates the main procedure.

Table 2: CPU-bound Test

Metric Program Version
WDvm(a) | nesC(b) | b/a
loop counter 1,573,794 9,902,517 | 6.29
active cycles | 2,177,237,555 | 2,211,835,350 | 1.02
idle cycles 34,602,445 4,650 | 0.0

As expected in loops with no blocking operations, the CPU was kept busy almost
100% of the execution time. The cost of interpretation becomes explicit in the value of
the loop counter obtained at time 300s. The TinyOS version ran 6.29 times the iterations
executed by the VM version.

We also executed this same test directly on a MicaZ mote. The relation between the
values obtained for the loop counter were quite close to the ones from the simulation.
(Values were respectively 1,573,729 and 9,902,222.)

We can compute the number of cycles per instruction in WDvm if we consider that
the main loop of our test script involves three instructions and divide the total number
of CPU cycles by the final value of the counter (number of times that the loop was exe-
cuted) multiplied by three. The result is 461 cycles, which is close to the 400-cycles value
obtained in the micro-benchmark of ASVM (section 4.5 §2 of [2]) and to the value of 550
cycles reported for DVM (section 4.1 §2 for [1]).

ITinyOS keeps the CPU in idle state when the task queue is empty. The CPU goes into active state when
it receives an interruption.

4.1.2 Scenario 2 - |0-bound application

In this test, the application repeatedly reads the sensor and increments the loop value
when the sensor returns a value. In the nesC version, the main loop is a TinyOS event
handler that again contains two commands: the loop counter increment (++ in C) and
the call sensor.read() call, which initiates a new sensor reading. At this point, TinyOS
places the CPU in Idle state. When an interruption occurs, TinyOS generates a new task
to (re)execute the event handler. In the WDvm version, the loop is the main procedure
for the VM, and also contains two commands: the loop counter increment and the in-
struction for requesting a value from the sensor. After this request, the VM becomes idle
awaiting new events, and again TinyOS puts the CPU in Idle state. When an interruption
occurs, TinyOS generates a task to execute the event handler for the sensor, and this in
turn generates en event for the VM. The VM then posts a task to (re)initiate the main
procedure.

Table 3 presents the results for this scenario.

Table 3: 10-bound Test

Program Version
WDvm(a) | nesC(b) | b/a
loop counter 29,977 29,948 | 1.00
active cycles 235,063,740 116,793,767 | 0.50

idle cycles | 1,976,776,260 | 2,095,046,233 | 1.06

Metric

In this case, predictably, CPU active time was much less than in the first scenario.
CPU was idle around 90%-95% of the time. The two variants executed approximately
the same number of interactions in the 300 seconds of execution time. As regards CPU
cycles, however, the WDvm version needed around double the cycles used by nesC. In
WDvm, CPU was active 10% of the time, while in nesC only 5%.

Direct execution on the MicaZ mote again produced results close to the simulator’s:
the value of the counter was 29,994 for the WDvm version and 29,997 for the nesC one.

In WDvm, approximately 100 iterations were executed per second. In ASVM, in a
similar test, the ratio of 312.5 iterations per second was obtained (5000 loops per 16.0 sec
in section 4.5 §4 of [2]). The difference in values was apparently due to the analog-digital
conversion in sensor readings, as in our case the number of iterations was the same as
that of direct execution over nesC/TinyOS.

The results for this second scenario give us an important insight about the real costs
incurred by interpretation. Although the execution of interpreted code is more expensive
than that of the native, nesC, code, this difference practically disappears in an I/O bound
pattern, which although extreme in this case, is closer to the typical pattern for wireless
sensor network applications.

4.2 Reconfiguration cost

In this section, we try to estimate the cost of disseminating new code for WDvm. This cost
depends on several factors, such as the number of nodes, the topology of the network,
the dissemination algorithm, and the noise/failure conditions that can lead to retrans-
missions. In this work, we stick to measures that are independent from the network,
and use the number of bytes (and consequent number of messages) as our metrics for
reconfiguration cost.

In section 4.2.1, we compare reprogramming costs in WDvm and nesC by measuring
the size, in bytes, of complete applications written for the WDvm default image and in
nesC. In the next Section, we measure reconfiguration costs by looking at a parameterized
alarm-oriented application and analyzing different reconfiguration alternatives.

4.2.1 Reprogramming Cost

In this Section, we compare the size, in bytes, of applications written in WDvm with their
counterparts coded directly over TinyOS. This is of course the advantageous situation for
a virtual machine, as in WDvm only the script needs to be transferred to motes, while in
TinyOS one must transfer the whole binary image. Nevertheless, it is useful to have a
more exact idea of the difference between the two approaches.

For the nesC/TinyOS applications, application size is obtained from the compiler. In
the case of WDvm applications, we measure the size of the code in the files generated
by the compilation procedure. We consider that messages can hold up to 24 bytes to
estimate the number of messages necessary for reprogramming the network with these
applications, assuming the default 28-byte message size of TinyOS with 4 bytes used by
the control protocol.

Table 4 presents the values we obtained for three applications. The first value in each
cell indicates the number of bytes and the second one, in square brackets, the number of
required messages. The first application is the famous Blink example from the TinyOS
tutorial. This is a good example because it uses no special components, only timers and
leds. In the WDvm version we kept the same structure of Blink.nc, using three timer
entities. Application RdLoop1 is the same application used in Section 4.1.2 in its WDvm
and nesC versions. Application RdLoop2 is a version of RdLoop1 for nesC without the CTP
component.

Table 4: Reprogramming Cost

A Program Version
PP "WDvm() | nesC(b) b/a
Blink 63 [3] 2048 [86] | 32.5
rdLoopl 80 [4] 18188 [758] | 254.8
rdLoop2 13022 [543] | 162.8
Units: Bytes [Messages]

The Blink application illustrates the cases in which the nesC application requires no
auxiliary components for communication. The large difference to the value in rdLoopl
is due to the latter’s use of components for radio communication and message routing
(CTP). In the nesC version, the CTP component is included in the generated code, while
in WDvm it is pre-loaded in the motes. Application rdLoop2 attains an intermediate value
because it does not use CTP, but still relies on basic communication components (With
rdLoop2, we are simulating a situation in which the programmer knows he will not need
a given module. In the specific case of rdLoop2, the application runs without routing —
each node involved is in the direct range of the base station.).

4.2.2 Reconfiguration Cost

We now try to evaluate the cost of reconfiguration using WDvm’s resources for parame-
ter manipulation, through an application that explores the flexibility of parameter-based

10

reconfiguration in WDvm. As we did for reprogramming, we measure the cost of this
reconfiguration by measuring the number of bytes to be disseminated.

Listings 1 and 2 present an application that involves remote configuration and auto-
tuning. The application monitors the average temperature as measured by motes in well-
lighted points. The user must remotely define the threshold for a place to be regarded as
“well-lighted”.

The basis of the application is the algorithm for group creation available in the de-
fault WDvm runtime. The average value is computed by the aggregation modules, at all
nodes participating in a single group (corresponding to nodes at well-lighted spots). The
coordinator node is defined statically, and in our example is node with ID 2. Each node
decides whether it participates or not in the group, according to its luminosity reading
and to the current threshold.

The application uses two timers, one for monitoring the PHOTO sensor and another
one for triggering value aggregation. Initially, the application sets both timers.

When the monitoring timer is fired (event PhotoFired), the script requests a read-
ing from the luminosity sensor (line 20 in Listing 2). When the light reading is ready,
event PhotoDone is signaled (line 23) and the resulting value is compared to parameter
Photolevel and the setGroup instruction is used to include or remove the node from the
group (lines 27 and 30).

When the aggregation timer is fired (event TempFired), the node verifies whether it is
the group coordinator, and if so, starts aggregation (line 6). When aggregation is com-
pleted (event AggDone), the coordinator sends the result (configured to be the average
value in the declarations section) to the base station (line 13).

Listing 1: Parametrized App. - Declarations

// IPSNAppCl — Dynamic aggregation
#StructsDef
msglDef : // Msg struct def
U1e6 count
U1i6 result

O ® N U e W N e

#VarsSpace
msgiDef msgl // Msg struct data
ul6 PhotoValue // Sensor data
ul6 PhotoLevel // Level Param

=
S)

#SensorsSpace
PHOTO PhotoDone PhotoValue

o
ja

12| #MsgsSpace

13 1 dummy msgl // Message def

14| #TimersSpace

15 1 PhotoFired 20 // Periodic Timer
16| 2 TempFired 60 // Periodic Timer
17| #GroupSpace

18 1 0 3 true off O // Group def

v| #AggregSpace

[
=]

// Aggregation def
1 AggDone 1 TEMP ul6 avg gte O

N
=

This application requires two parameters from the user: variable Photolevel indicates
the threshold level for a point to be considered well-lighted and the CoordId variable
indicates the ID of the coordinator node.

11

Listing 2: Parametrized App. - Procedures

#FunctionsArea

main: // Init proc
setTimer PERIODIC 1 // Start timer 1
setTimer PERIODIC 2 // Start timer 2
end

TempFired: // Timer fired
compare EQ MOTEID 2
if U16 StartAgg // If ID=10,call startAgg

e e N S

end
0| StartAgg: // Start aggregation
1 aggreg 1
12 end
13| AggDone: // Aggregation ended

o
'S

set msgl.count agl.count
set msgl.result agl.value.Ul6
sendMsg BS 1 msgl // Send wvalue to BS
end

dummy :
end

PhotoFired: // Timer fired
readSensor PHOTO
end

PhotoDone: // Photo sensir done
compare GT PhotoValue Photolevel
ifelse U16 InGroup OutGroup
end

InGroup: // Group IN
setGroup IN_GROUP 1
end

OQutGroup: // Group OUT
setGroup OUT_GROUP 1
end

#EndPoint

WOW W W RN NN NN NNN N R s s
QX RN 2, S 0 ® N U A W N =, O W0 ® N G

The declaration section uses the following parameters from binary entities: timer pe-
riod (Timer), maximum hops on group definition (Group), sensortype and aggregation
function (Aggregation).

A typical use of reconfiguration in this application would be to redefine threshold and
timer periodicity. Using 16-bit values for each of these, it would be possible to dissemi-
nate their reconfiguration with a single message.

We can derive the maximum capacity for a reconfiguration message used in the recon-
figuration tool presented in Section 3.4. Table 5 presents some examples of the number of
parameters that is supported by a reconfiguration message as a function of the size of pa-
rameters and of their distribution in memory. We consider that the size and distribution
are homogeneous among all the parameters in one same message (It would, however,
be possible to combine different sizes and memory distributions, providing the 24-byte
limit is respected).

The largest possible number of parameters is 22, obtained when using a sequential dis-
tribution with 8-bit parameters. Greater capacities occur when parameters are allocated
sequentially in memory. So that the user can take advantage of this, WDvm allocates
parameters in the same order that the user defines them in the program. The only excep-

12

Table 5: Total parameters per message

TR Parameter Size
Distribution g 4 16 bits | 32 bits
Sequential 22 11 5

Non-sequential 8 6 4

Unit: Parameters

tion is for parameters of runtime components, because these values are allocated in the
configuration section and are interleaved with other configuration data.

If necessary, more than one message can be used to update parameters. However, be-
cause the reconfiguration message need contain only the parameters that undergo modi-
fications, it is often possible to work with a single message.

This example intends to illustrate some of the flexibility of parameters in WDvm. The
programmer can use reconfiguration messages to modify both parameters that he de-
fined in his own application and that are predefined in WDvm’s binary modules.

4.3 Abstraction Boundary

In this section we illustrate the trade-offs of choosing different abstraction boundaries for
the virtual machine. We compare two versions of an application that aggregates values,
written over different sets of components.

Our example application periodically calculates the average value read by sensors in
a group of nodes. A node acting as group leader requests values from its neighbors, and
when it receives their answers calculates the average and sends the result to the base
station. Both variants shown here use WDvm runtime components for group communi-
cation and leader election.

The first version is shorter because it uses a runtime component for aggregation. The
second, longer, version, implements aggregation in WDvm’s scripting language. This
version uses a different WDvm image, compiled without the aggregation component.
We can thus compare the gains and losses in memory usage and in application code.

4.3.1 Short version

Listing 3 presents the declaration section and listing 4 presents the code for the short
variant of the aggregation application. The program maintains a periodic timer. When
this timer generates an event (PeriodFired), the program verifies whether it is the group
leader. Leader election is parameterized in the group definition and executed by a run-
time component. If the node is the group leader, it executes instruction aggreg 1 to trigger
aggregation. The aggregation procedure is performed by another runtime component.
When aggregation is complete and the result is available, this component generates an
event (AggDone). The main program then prepares a message and sends it to the base
station.

4.3.2 Long version

Listing 5 presents the declaration section and listing 6 presents the code for the long ver-
sion of our application. The program structure remain the same, but now aggregation

13

e e N S

e
® N Uk W N = O

O O N O Ul R W N =

NN s e ks s s s s
N = © 0w 0 NN U e W N = O

is performed by the script. The aggregation protocol uses two types of messages. The
tirst is used by the group leader to request sensor readings from the other group mem-
bers. The second type of message is used by each non-leader node to answer the leader’s

Listing 3: Short Version (Declarations)

// IPSNAppBl — Periodic

aggregation

// Using runtime aggregation component

#StructsDef
msglDef :
U1e
U16
#VarsSpace
msglDef msgl
ul6 PhotoValue
#MsgsSpace
1 dummy msgil
#TimersSpace
1 PeriodFired 10
#GroupSpace
1 0 2 true active O
#AggregSpace

count
result

1 AggDone 1 PHOTO ulé6

// Msg struct def

// data

//

Msg struct
Sensor data

// Message def

// Periodic Timer
// Group def

// Aggregation def
avg gte O

Listing 4: Short Version - (Procedures)

#FunctionsArea
main:
div MOTEID 10
cast U8 RESULT.U16

// Init proc
// Find Group ID

set grl.param RESULT.U8

setTimer PERIODIC 1
end
PeriodFired:

compare EQ MOTEID gri.

// Start timer 1

// Timer fired

leader

if U16 StartAgg // If Leader ,call startAgg
end

StartAgg: //Starts aggregation
aggreg 1
end

AggDone: // Aggregation ended

set msgl.count agl.count
set msgl.result agl.value.Ul6

sendMsg BS 1 msgl
end

dummy :
end

#EndPoint

// Send wvalue to BS

request.

When the periodic timer fires, the node checks whether it is the leader, and if so, it now
generates internal event StartAgg; the scripts reacts by initializing the total of received
answers, activating a timeout Timer, and sending the request message to group members.
When an answer message is received, event RecRetGr1 is generated. The program reacts

14

by incrementing the total of received answers and adding the received value to variable
Total. When the aggregation timeout triggers event TimeoutFired, the program computes
the average and sends it in a message to the base station.

The listing also includes the program for group members that are not leaders. Event
RecGrl indicates that a request message has been received. At this point, the program
request a reading from the sensor. When this is done (event SensorDone), the node sends
the new value to the group leader.

Listing 5: Complex Version (Declarations)

// IPSNAppB2 — Periodic aggregation
// Using pure script
#StructsDef
msglDef : // Msg struct def
U1l6 count
U16 value

e e I S

#VarsSpace
ulé Count
u3?2 Total
10 msglDef msgl // Msg struct data
1 ulé PhotoValue // Sensor data

[
N

#SensorsSpace
PHOTO SensorDone PhotoValue

i
w

14| #MsgsSpace
15 1 RecGrl msgl // Message 1 def
16| 2 RecRetGrl msgl // Message 2 def
17| #TimersSpace
18 1 PeriodFired 10 // Periodic Timer
19 2 TimeoutFired 2 // Time—Out Timer
20| #GroupSpace
211 1 0 2 true active O // Group def

4.4 Results

Table 6 presents the size, in bytes, and the number of messages necessary for the dissem-
ination of the short and long versions. Table 7 presents the amount of memory used for
code (ROM) and data (RAM), also for both versions. As a basis for comparison, we also
show in this table the number of messages that would be necessary to disseminate the
binary code.

Table 6: Applications byte size

App version
Simple(a) | Complex(b) | (b —a)
] Code size \ 130 [6] \ 232 [10] \ 102 [5] ‘
Units: Bytes [Messages]

The long version of our aggregation application occupies 232 bytes, 102 more than the
short one. This represents an increase of 66% in the number of messages needed. If we
were to transfer remotely the 5,020 bytes of binary code for the components we removed,
we would need 210 messages.

The removal of the aggregation code from the WDvm binary image freed 157 bytes of

15

Listing 6: Complex Version (Procedures)

1| #FunctionsArea

2lmain: // Init proc

3 div MOTEID 10 // Find Group ID

4 cast U8 RESULT.U16

5 set grl.param RESULT.U8

6 setTimer PERIODIC 1 // Start timer 1

7 end

g| PeriodFired: // Timer fired

9 compare EQ MOTEID grl.leader

10 if U16 StartAgg // If Leader ,call startAgg
11 end

2| StartAgg: // Start aggregation
13 set Count O

14 set Total O

15 set msgl.value MOTEID

16 setTimer ONESHOT 2 // Start timeout

17| sendMsg GR 1 msgl 1 // Request wvalues

18 readSensor PHOTO // Read local sensor
19 end

20| RecRetGr1l: // Save reads

21 inc Count

2 cast U32 msgl.value

23 add Total RESULT.U32

24 set Total RESULT.U32

25 end

2| TimeoutFired: // Final Aggreg

27 set msgl.count Count

28 cast U32 Count

29 div Total RESULT.U32 // avg()

30 cast ulé RESULT.U32

31 set msgl.value RESULT.U16

3 sendMsg BS 1 msgl // Send wvalue to BS
33 end

3| RecGri: // Receive request
35 readSensor PHOTO // Read local sensor
36 end

37| SensorDone : //Proc. local sensor
38 compare EQ MOTEID gril.leader

39 ifelse U8 SensorLeader SensorOthers

40 end

41| SensorLeader: // Leader sensor

42 inc Count

43 cast U32 PhotoValue

44 add Total RESULT.U32

45 set Total RESULT.U32

46 end

47| SensorOthers: // Others sensor

48 set RESULT.U16 msgl.value

49 set msgl.value PhotoValue

50 sendMsg GRND 1 msgl 1 RESULT.U16

51 end

52| #EndPoint

RAM. This released space could be used to allow more complex programs to be written

16

Table 7: WDvm runtime memory size

Embedded Aggregation
with(a) | without(b) (a—Db)
ROM | 53.2198 [2217] | 48178 [2008] | 5020 [210]
RAM 3560 3403 157

Units: Bytes [Messages] or Bytes

for the VM. The support for aggregation included in the default binary image of WDvm
is obviously much more complex than the aggregation performed by our script. It allows
different aggregation operations to take place simultaneously and provides a choice of
reduction operations. However, it can be the case that the programmer knows that this
richer support will not be needed in a given application domain.

This example, although simple, shows concretely the trade-off between functionality
in the VM runtime and memory usage. A richer set of components in the runtime means
that script can be simpler to write and smaller to send over the network, but on the
other hand leaves less memory available for unforeseen needs. Our goal with WDvm
is to allow the programmer to explore a range of abstraction levels. For mature projects,
possibly most of the functionality can be installed as binary runtime components, leaving
only fine adjustments to be done through parameters. For more experimental settings,
the programmer could initially install only a very basic set of components on the motes
and remotely program them with more complex scripts.

5 Final Remarks

In this report, we discussed WDvm, a virtual machine for mote devices used in wireless
sensor networks. WDvm'’s goal is to allow the programmer to explore different abstrac-
tion boundaries between the binary image, containing the set of runtime components
initially installed on the mote, and the virtual machine script, which can be remotely
updated. This goal is in line with that of ASVM [2] and DVM [1], but in WDvm we
investigate a seamless transition between parameter-based and script-based reconfigu-
ration. The promotion of parameters and variables to language-level elements allowed
us to integrate the VM programs with the runtime components. A script can vary from
simple assignments to parameters to quite sophisticated code containing decisions based
on values made available by the runtime. This allows different classes of users to rely on
the same set of tools.

Our practical experiments showed that, as expected, the virtual machine extracts a
significant overhead for processing. However, we were also able to put his overhead in
some perspective when analyzing an I/O-intensive application, showing that the cost of
external actions and events can dwarf the differences in processing costs. A systems such
as WDvm can be used to prototype applications in laboratories or testbeds, tuning the
amount of flexibility and desired performance needed for a specific applications domain.

As future work, we intend to revisit the original classes of applications that inspired
our set of runtime components and evaluate WDvm'’s use on them.

We understand that the WDvm scripting language is not at this point an attractive lan-
guage for programmer use. The operation codes and parameter definition conventions
are designed to be mapped directly into the intermediary byte language used by the VM
and do not make easy reading or writing. There are two directions on which we intend

17

to work to enhance usability. In the first place, this first version of the scripting language
had the main intention of investigating whether the virtual machine approach would be
worthwhile for limited platforms such as the MicaZ. Because we think our results are
quite encouraging, we now intend to enhance our compiler, allowing the programmer to
write tractable scripts. In the second place, this work is part of a larger project in which
we are interested in alternatives for macroprogramming [9,12]. Our goal in the future is to
use the language we describe in this report as the target language for a macroprogram-
ming compiler.

6 Acknowledgments

This work has been partially supported by CNPq - Conselho Nacional de Desenvolvi-
mento e Pesquisa and by FAPER] - Fundacdo de Amparo a Pesquisa do Estado do Rio de
Janeiro (grant E-26/110.320/2011).

18

References

[1]

2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

BALANI, R.; HAN, C.-C.; RENGASWAMY, R. K.; TSIGKOGIANNIS, I. ; SRIVAS-
TAVA, M.. Multi-level software reconfiguration for sensor networks. In: PRO-
CEEDINGS OF THE 6TH ACM & IEEE INTERNATIONAL CONFERENCE ON EM-
BEDDED SOFTWARE, EMSOFT ‘06, p. 112-121, New York, NY, USA, 2006. ACM.

LEVIS, P; GAY, D. ; CULLER, D.. Active sensor networks. In: PROCEEDINGS
OF THE 2ND CONFERENCE ON SYMPOSIUM ON NETWORKED SYSTEMS DE-
SIGN & IMPLEMENTATION - VOLUME 2, NSDI'05, p. 343-356, Berkeley, CA,
USA, 2005. USENIX Association.

STEINE, M.; VIET NGO, C.; SERNA OLIVER, R.; GEILEN, M.; BASTEN, T,
FOHLER, G. ; DECOTIGNIE, J.-D.. Proactive reconfiguration of wireless sensor
networks. In: PROCEEDINGS OF THE 14TH ACM INTERNATIONAL CONFER-
ENCE ON MODELING, ANALYSIS AND SIMULATION OF WIRELESS AND MO-
BILE SYSTEMS, MSWiM ’11, p. 31-40, New York, NY, USA, 2011. ACM.

KOGEKAR, S.; NEEMA, S.; EAMES, B, KOUTSOUKOS, X.; LEDECZI, A. ;
MAROTI, M.. Constraint-guided dynamic reconfiguration in sensor networks.
In: PROCEEDINGS OF THE 3RD INTERNATIONAL SYMPOSIUM ON INFOR-
MATION PROCESSING IN SENSOR NETWORKS, IPSN ‘04, p. 379-387, New York,
NY, USA, 2004. ACM.

GREENSTEIN, B.; PESTEREV, A.; MAR, C.; KOHLER, E.; JUDY, J.; FARSHCHI,
S. ; ESTRIN, D.. Collecting high-rate data over low-rate sensor network
radios. Technical report, University of California eScholarship Repository
[http:/ /repositories.cdlib.org/cgi/0ai2.cgi] (United States), 2007.

HUI, J. W,; CULLER, D.. The dynamic behavior of a data dissemination proto-
col for network programming at scale. In: PROCEEDINGS OF THE 2ND INTER-
NATIONAL CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS,
SenSys 04, p. 81-94, New York, NY, USA, 2004. ACM.

HAN, C.-C.; KUMAR, R.; SHEA, R.; KOHLER, E. ; SRIVASTAVA, M.. A dynamic
operating system for sensor nodes. In: PROCEEDINGS OF THE 3RD INTER-
NATIONAL CONFERENCE ON MOBILE SYSTEMS, APPLICATIONS, AND SER-
VICES, MobiSys ‘05, p. 163-176, New York, NY, USA, 2005. ACM.

LEVIS, P; CULLER, D.. Maté: a tiny virtual machine for sensor networks. In:
ASPLOS-X: PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON
ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OPER-
ATING SYSTEMS, p. 85-95, New York, NY, USA, 2002. ACM.

NEWTON, R.; MORRISETT, G. ; WELSH, M.. The regiment macroprogramming
system. In: IPSN '07: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFER-
ENCE ON INFORMATION PROCESSING IN SENSOR NETWORKS, p. 489-498,
New York, NY, USA, 2007. ACM.

NEWTON, R.; WELSH, M.. Region streams: functional macroprogramming for
sensor networks. In: DMSN ’04: PROCEEEDINGS OF THE 1ST INTERNATIONAL
WORKSHOP ON DATA MANAGEMENT FOR SENSOR NETWORKS, p. 78-87,
New York, NY, USA, 2004. ACM.

19

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

KOTHARI, N.; GUMMADI, R.; MILLSTEIN, T. ; GOVINDAN, R.. Reliable and
efficient programming abstractions for wireless sensor networks. PLDI '07: Pro-
ceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design
and Implementation, p. 200-210, 2007.

AWAN, A.; JAGANNATHAN, S. ; GRAMA, A.. Macroprogramming heteroge-
neous sensor networks using cosmos. In: PROCEEDINGS OF THE 2ND ACM
SIGOPS/EUROSYS EUROPEAN CONFERENCE ON COMPUTER SYSTEMS 2007,
EuroSys "07, p. 159-172, New York, NY, USA, 2007. ACM.

MADDEN, S. R.; FRANKLIN, M. J.; HELLERSTEIN, J. M. ; HONG, W.. Tinydb: an
acquisitional query processing system for sensor networks. ACM Transactions on
Database Systems, 30(1):122-173, 2005.

CERVANTES, H.; DONSEZ, D. ; TOUSEAU, L.. An architecture description lan-
guage for dynamic sensor-based applications. In. CONSUMER COMMUNICA-
TIONS AND NETWORKING CONFERENCE, 2008. CCNC 2008. 5TH IEEE, p. 147-
151, Jan. 2008.

BAKSHI, A.; PRASANNA, V. K;; REICH, J. ; LARNER, D.. The abstract task
graph: a methodology for architecture-independent programming of networked
sensor systems. In: PROCEEDINGS OF THE 2005 WORKSHOP ON END-TO-END,
SENSE-AND-RESPOND SYSTEMS, APPLICATIONS AND SERVICES, EESR "05, p.
19-24, Berkeley, CA, USA, 2005. USENIX Association.

GNAWALLI O.; FONSECA, R.; JAMIESON, K.; MOSS, D. ; LEVIS, P.. Collection tree
protocol. In: PROCEEDINGS OF THE 7TH ACM CONFERENCE ON EMBEDDED
NETWORKED SENSOR SYSTEMS, SenSys ‘09, p. 1-14, New York, NY, USA, 2009.
ACM.

CROSSBOW. Micaz datasheet. Product folder, 2004.

TITZER, B. L.; LEE, D. K. ; PALSBERG,].. Avrora: scalable sensor network simu-
lation with precise timing. In: PROCEEDINGS OF THE 4TH INTERNATIONAL
SYMPOSIUM ON INFORMATION PROCESSING IN SENSOR NETWORKS, IPSN
‘05, Piscataway, NJ, USA, 2005. IEEE Press.

20

