
 

 

 

PUC 
 

ISSN 0103-9741 
 

Monografias em Ciência da Computação 
n° 05/13 

 

A Self-Organizing and Normative Piloting System 
 

Manoel Teixeira de Abreu Netto 
Carlos José Pereira de Lucena 

Baldoino Fonseca dos Santos Neto 
Elder José Cirilo Reioli 

Firmo Freire 
 

 
Departamento de Informática 

 

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900 

RIO DE JANEIRO - BRASIL 
 

 

 



 

 

Monografias em Ciência da Computação, No. 05/13 ISSN: 0103-9741 
Editor: Prof. Carlos José Pereira de Lucena April, 2013 

A Self-Organizing and Normative Piloting System * 
Manoel Teixeira de Abreu Netto, Carlos José Pereira de Lucena, Baldoino 

Fonseca dos Santos Neto, Elder José Cirilo Reioli, Firmo Freire 
 mnetto@inf.puc-rio.br, lucena@inf.puc-rio.br, bneto@inf.puc-rio.br, ereioli@inf.puc-

rio.br, firmo@les.inf.puc-rio.br 

Abstract. The services and technologies inherent to computer networks have become 
part of society. However, its management by human administrators came at high cost 
and it is prone to failure, and the simple automation of management through software 
components may worsen the situation due to the wide variety of systems and 
unexpected behaviors. Autonomic networks were proposed to deal with this 
management problem by enabling systems to self-manage. But, in order to perform a 
self-management in an optimal, robust and secure way it is necessary to have a piloting 
system. The main goal of a piloting system is to regulate and adapt the virtual net-
work in response to changing context in accordance with applicable high-level goals 
and policies. In this context, this report presents a self-organizing and normative 
piloting system that aims to govern the entities of the network in a decentralized way. 
Moreover, we provide a simulation environment that enable users to experiment and 
observe the network behavior in face of the application of different normative and 
organizational configurations of the piloting plane. 
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Resumo. Os serviços e tecnologias inerentes às redes de computadores já se tornaram 
parte da sociedade. Entretanto, seu gerenciamento por administradores humanos vem 
a um alto custo e suscetível a falhas, ademais, a simples automação deste 
gerenciamento através de componentes de software pode piorar a situação por conta 
da extensa variedade de sistemas e comportamentos inesperados. Para lidar com esses 
problemas uma das soluções propostas são as Redes Autonômicas, que permitem um 
autogerenciamento do sistema. Porém, para realizar essa tarefa de forma otimizada, 
robusta e segura é necessário possuir um sistema de pilotagem. O principal objetivo de 
um sistema de pilotagem é regular e adaptar a rede virtual de forma que esta possa 
responder às mudanças de contexto de acordo com políticas e objetivos de alto nível. 
Neste cenário, este relatório apresenta um sistema de pilotagem normativo e auto-
organizável que atua no governo e gerenciamento das entidades da rede virtual numa 
abordagem descentralizada. Ademais, provemos um ambiente de simulação que 
permite usuários experimentarem e observarem o comportamento da rede virtual em 
face à aplicação de diferentes configurações de normas e de organizações do plano de 
pilotagem. 
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Introduction 
Computer networks have become part of society. Its services and technology have 
multiplied and they have become essential to the global economy. Its management by 
human administrators, however, became costly and prone to failure, and the simple 
automation of management through software components may worsen the problem 
due to the wide variety of systems and unexpected behaviors. Autonomic networks 
were proposed to deal with this management problem. They represent a specific topic 
in the area of autonomic computing, a term coined by IBM, intended to deal with 
complexity by enabling systems to self-manage. Today, it is also advocated the 
approach of plural-ism of architectures for the future Internet over the one-size-fits-all 
TCP/IP [Turner and Taylor, 2005]. This new approach defines that network providers 
should be splitted in service and infrastructure providers [Feamster et. al., 2007] and 
proposes the use of virtualization [Anderson et al., 2005]. Users request network 
services from the service providers, which instantiate virtual networks over the 
substrate provided by the infrastructure providers. Each virtual network can have its 
own protocols and configurations, in accordance with the objectives of the service 
running on it, and must have isolation, i.e., the operation of virtual networks does not 
cause interference between them, although they are on the same infrastructure. 

To achieve these objectives in an optimal, robust and secure way it is necessary to 
have a piloting system. A piloting system, used to control and manage the virtual net-
works, can be seen as an aggregation of two specific planes: a knowl edge plane and an 
orchestration plane. The knowledge plane is in charge of recovering the knowledge 
useful for feeding the control and management algorithms. The orchestration plane, on 
the other hand, is in charge of indicating the course of the virtual network.  The 
advantage of the piloting system is the possibility to adapt in real time through the 
management and orchestration plane. The piloting process aims to adapt the virtual 
network to new conditions and to take advantage of the intelligent decisions to 
alleviate the global network. Therefore, the role of the piloting system is to govern and 
adapt the virtual network in response to changing context in accordance with 
applicable high-level goals and policies. It supervises and integrates all other planes’ 
behavior, ensuring integrity of management and control operations. In this context, the 
use of a multi-agent system permits the achievement of a more attractive orchestration 
process due to the following points: (1) each agent holds different processes (dynamic 
planners, low coupling); (2) the agents are cooperative and reactive, in the sense that 
they are able to use a privileged view of their neighbors and individual knowledge 
together. 

As mentioned, the purpose of the piloting system described in this report is to 
regulate and integrate the behaviors of the network in response to changing context 
and in accordance with applicable high-level norms. Norm is a regulation mechanism 
that defines a set of rules to the system agents in order to ensure a social order that 
enables the achievement of the global goal of the organization. Our piloting system can 
be seeing as a self-organizing control framework into which any number of network 
devices can be plugged into or out of in order to achieve the required service level 
agreement. Therefore it hosts several self-organizing piloting systems each one 
managed by a piloting agent. Each agent maintains its own knowledge base consisting 
of a set of data models about the physical and virtual devices. In this way, agents 
manage a virtual devices by following a set of norms and using a set of knowledge. 
Moreover, agents can communicate and cooperate with each other by using behaviors. 
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In addition to the piloting system, we have implemented a simulation environment 
which allows users to experiment with agent-oriented pilot plans. Our simulation 
environment integrates an user interface with a normative multi-agent system and a 
virtualization environment. This environment was implemented in Java and the 
Gingko [Ginkgo, 2008] platform that supports the implementation of the multi-agent 
system.  We are using the OpenFlow [McKeown et al., 2008] system to simulate the 
virtual networks. Moreover, we have developed a programming interface that allows 
the integration of the simulation environment with any virtualization environment. 

Background 

Multiagent Systems 

Multi‐agent systems [Ferber, 1999] are composed of intelligent entities, called agents, 
that have the capabilities needed to make the network autonomic. As shown in [Ferber, 
1999]: (1) they are able to communicate, (2) possess their own resources, (3) perceive 
their environment, (4) have a partial representation of their environment, (5) have a 
behavior which aims at realizing their goals.  

Thanks to such properties, multiagent systems can constitute a good tool to provide 
the autonomic scheme by guaranteeing the different characteristics which seem 
necessary to reach an autonomic behavior. In the following, we describe in more detail 
multiagent systems characteristics: 

• Decentralization: The multi‐ agent approach is decentralized by definition and 
this decentralization aims at overcoming the incapacity of the classic Artificial 
Intelligence to operate in the current systems that are more and more distributed 
and decentralized. No agent possesses a global vision of the system and the 
decisions are taken in a totally decentralized way;  

• Reactivity: One of the basic attributes of an agent is to be situated (situatedness, 
[Brooks, 1985]). That is, an agent is a part of an environment and it reacts 
according to what it perceives of this environment. The reactivity characteristic is 
very important in a context of highly dynamic networks, in which the decisions 
have to suit current conditions.; 

• Proactivity: The agent is capable of setting goals and realizing them by executing 
plans, interacting with other agents, etc. In this case, the agent has more 
knowledge of its capabilities and on those of the other agents and is able to set up 
a strategy allowing it to evolve in its environment and to reach its objectives;  

• Sociability: The multi‐ agent approach provides the ability to distribute the 
intelligence among different agents composing the system. This implies that an 
agent can handle some tasks individually but cannot do everything by itself. It 
needs to cooperate with the other agents and to rely on their help to get better 
results;  

• Adaptability: In order to provide more flexibility, researchers are interested in 
using learning techniques (e. g., genetic algorithm [Berger and Rosenschein, 
2004], reinforcement learning [Dutta et al., 2005], etc.) to face unexpected 
situations. If we return to the autonomic networks, using agents having learning 
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capacity can be very beneficial and allows for a more effective adaptation to the 
evolutions of the networking domain. 

 

Norms 

According to [Tuomela, 1995] a norm has a general structure of a group of agents. 
Thus, a norm consists of four components: the addressees’ agents, the action to be 
performed by them and, finally, the circumstances under which the action must be 
carried out [Tuomela and Bonnevier-Toumela, 1992], [Tuomela, 1995], [Tuomela and 
Bonnevier-Toumela]. Moreover, [Tuomela, 1995] classifies norms as one of two kinds: 
rules or (r-norms), and social norms or (s-norms). 

Rules represent explicit agreements among agents, and are created by an authority. 
Rules are subdivided into two further classes as follows. Formal rules are those that 
include legal sanctions such as laws and regulations, and informal rules that are not in 
written form but communicated orally and include informal sanctions. 

Social norms are norms accepted not through agreement but through mutual beliefs, 
and are also divided into two classes: conventions, which concern the whole society or 
social class and have social sanctions, such as approval or disapproval; and group-
specific norms, which concern a group of agents in a society. 

[Tuomela, 1995] also explains the conditions under which either rules or social 
norms ought to be fulfilled by the members of a group; these conditions cause a norm 
to be enforced and can be described, as follows: (i) promulgation condition refers to the 
fact that norms must be issued by an authority; (ii) accessibility condition states that all 
members of the group acquire the belief that they ought to comply with the norm; (iii) 
if many members of the group fulfill the norm, or at least are disposed to do so, it is 
said that the pervasiveness condition is satisfied; (iv) the motivational condition is met 
when at least some members sometimes fulfill the norm because they believe it is true 
and that they ought to do so; (v) the sanction condition refers to the existence of social 
pressure against members that deviate from the norm, and ,finally, (vi) for a rule, the 
acceptance condition is the conjunction of the promulgation and accessibility 
conditions, whereas for a proper social norm to be accepted, only the accessibility 
condition is needed. Thus, contrary to rules, s-norms do not need to be issued by an 
authority, but they have to be recognized as norms for all the members in a group. In 
this work, we consider rules as mechanism to regulate the agent’s behaviors. 

Self-Organization 

The approach of self-organizing systems has increased its relevance and is used to deal 
with complex domains. The use of this approach enables the development of 
decentralized systems that exhibit certain dynamicity and adaptability to couple with 
previously unknown perturbations [Serugendo et al., 2004]. According to principles of 
self-organization, each component of the autonomic system obtains and maintains only 
local information available in the environment, in a decentralized way and without any 
external control, being restricted only to local interactions. It is based on these 
interactions that the system exhibits it macroscopic behavior, which may be observed 
from a global point of view. The multiagent system paradigm has been considered a 
promising solution for the building of self-organized systems [Sycara, 1998]. According 
to [Serugendo et al., 2005] self-organization systems can be classified, as follows:  
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 Strong self-organizing systems: are those where there is no explicit control, 
whether internal or external. 

 Weak self-organizing systems: are those where there is a re-organization 
through actions of center or planned internal control. 

Additionally, the behaviors of a self-organization system can be characterized by the 
following properties (mandatory or optional): 

• Absence of an explicit external control - This is a mandatory property that 
indicates that the system is autonomous, which defines change and that its 
organization is based exclusively on internal decisions and does not follow any 
external control to perform a (re-) organization. This property refers to the “self’ 
of self-organization. 

• Decentralized control. A self-organizing system can work under decentralized 
control. In this case, there is no internal central authority or centralized 
information flow. In this way, the access to global information is limited by local 
interactions, which are governed by simple rules. This property is generally not 
mandatory, as we can see it in natural self-organizing systems, such as the bees.  

• Dynamic Operation - This mandatory property is associated the evolution of the 
system. Considering that the organization evolves independently of any external 
control, this property implies in the self-organization process. 

Related Works 
Telecommunications Network Management systems are a type of system that can be 
categorized as large, complex and unpredictable. Current research focuses on policy 
based management and autonomous systems, using a variety of languages and 
technologies. The four main Autonomic Network Management systems are ANEMA 
[Derbel et al., 2009], FOCALE [Jennings et al., 2007] and Pronto [Sheridan-Smith et al., 
2006]. We describe, critique and compare them with our piloting approach. 

In ANEMA, the high-level objectives of the human administrators and the users are 
captured and expressed in terms of Utility Function policies through a set of 
mechanisms. The Goal policies describe the high-level management directives needed 
to guide the network to achieve the previous utility functions. Finally, the ‘behavioral’ 
policies describe the behaviors that should be followed by network equipment to react 
to changes in their context and to achieve the given ‘Goal’ policies. 

To demonstrate the capacities of the ANEMA architecture, they explained how it 
should be instantiated in a multiservice IP network and how the proposed utility-
based analytical models were used. The results confirmed that the proposed model 
allows specifying the optimal feasible state. However the result state is still not the 
optimal one. They also implemented a simulator of the system and perform a set of 
simulations based on several proposed scenarios.  

One problem to be solved in ANEMA is how the autonomic routers diffuse the 
information to others routers on the environment. Another issue that is not so clear is 
how deep is the coupling between the stock router and an autonomic one. The 
ANEMA focuses on the self-configuration and a little on the self-optimization aspect, 
thus is not a complete autonomic solution, as our piloting approach. Neither they use 
biological inspired solutions. 
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On the other hand, FOCALE, Foundation Observation Comparison Action Learn 
rEason, propose the use of information and ontological modeling to capture 
knowledge relating to network capabilities, environmental constraints, and business 
goals and policies, together with reasoning and learning techniques, to enhance and 
evolve this knowledge. Also, to deliver full autonomic network management 
capabilities FOCALE introduce decentralized processes and algorithms into the 
network infrastructure modeled on various biological processes found in the nature 
world. As ANEMA, FOCALE uses policy-based network management system, 
incorporating translation/code generation processes that automatically configure 
network elements in response to changing business goals and/or environment context. 

FOCALE have as a base element an AME (Autonomic Management Element) which 
handles a managed resource, be it single device or network, that is the same idea of our 
piloting agent. Also, FOCALE is based on the MAPE control loop described by 
[Kephart and Chess, 2003], and used by our solution, the Monitor, Analyze, Plan and 
Execute loop, but reduced to a maintenance control loop and an adjustment control 
loop. 

Finally, Pronto specifies a Policy-based service definition language to describe 
services and the system model through service definitions. The language merely allows 
those services to be described by a network engineer, but it is responsibility of the 
management system to use the policies within the service definition to construct and 
manage individual services. 

Policies can also be applied to a pluggable and automated management software 
component known as a Domain Expert. These components transform policies at a high 
level of abstraction into corresponding lower-level policies. A QoS Domain Expert 
instance with dynamic behavior will be used if congestion is detected, the Domain 
Expert will modify the low-level policies to reduce the Committed Information Rate 
(CIR) of each service. 

Basically, the Pronto solution specifies a domain specific policy language, which 
defines desired parameters of each network device. There isn’t an autonomic module 
or agent for each network element, but a virtual device, which controls the 
configuration of the associated network device. Here, the term virtual device is not the 
same as we use in our piloting network. The authors didn’t describe the whole 
architecture, so we don’t know if it is centralized or distributed, or how the policies are 
diffused to others devices to couple with unpredictable situation. They do not use 
agents or biological inspired solution. 

A Self-Organizing and Normative Piloting System 
In order to provide autonomy to the virtual networks, we developed a multiagent self-
organizing and normative piloting system. The idea is to adjust the network flow and 
routes in an autonomic way, without any explicit central control, maintaining the 
quality of service defined in the SLA and controlling the agents behaviors through 
norms. So, the virtual networks devices have a piloting agent responsible to capture 
and diffuse information among neighbors and act in the configuration and 
management of the router under a local perspective. 
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Figure 1 – Neighborhood 

The piloting system operates mainly in the core network, i.e. the routers, as Figure 1 
shows. Initially, agents are assigned to each router, and immediately retrieve 
information from the router they belong, like the routes they attend. After this step, the 
agent will be aware of the norms (i. e., SLA and QoS requirements) that need to couple 
and the normative regulation system can prohibit access to the network to those agents 
that violate the norms. Essentially, agents can play  the following conducts: (Abiding) 
always abides by the norm; (Violating) may violate the norm; (Friendly) always 
consents to interact with others agents; and (Hiding) will avoid interact with those that 
violate norms.  

To complete the information relevant to the piloting system, agents make contact 
with the others agents on their neighborhood using the behaviors defined in Section 
4.1. The neighborhood in the piloting system is defined as the node (router) connected 
by a link, or just one hop. For example, in Figure 1, the Router #3 has as neighbors the 
Routers #2, #4 and #5. Thus, for each router in the neighborhood will be requested its 
routing table according to the routing table of the requester, its capacity to meet QoS, 
its current load and its average load. The latter information is requested randomly or 
just before a decision-making, i.e., after exceeding a threshold load. Being aware of the 
neighboring node ability will enable the agent to delegate or ask for routes in the 
inability to meet a particular request, or provide services in accordance with the 
requirements of quality requested. 

Agent Behaviors 

The piloting agents behaviors are: 

• Collect Behavior: This behavior is responsible for collecting and storing data 
from the local and the neighborhood routers, the latter executed by the behavior 
Request Information Behavior. 

• Analyze Behavior: This behavior analyzes the data collected and checks if they 
are in accordance with the quality policies required. It is also responsible for 
activating the decision behavior, described below. 
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• Decision Behavior: This behavior is composed of mechanisms and algorithms of 
decision making restricted to the data collected locally. It is possible to extend 
this approach to define different mechanisms for decision in accordance with the 
needs of the piloting system. 

• Response Information Behavior: This behavior is responsible for serving the 
information request from the neighboring agents; routing tables, current and 
average load are sent. This behavior can be extended to address the need of other 
types of information in accordance with the piloting system. 

• Request Information Behavior: Behavior responsible for requesting the local 
information necessary for analysis and decision making of the piloting system. 

• Create Router Behavior: This behavior comes into play when after the decision 
process, the action to be taken is to create a new virtual router to meet the actual 
demand of the network. Thus, this behavior contact the network simulation 
engine requesting the instantiation of a new virtual router. 

• Create Piloting Agent Behavior: Complementing the previous behavior, this 
behavior is instructed to ask the agent platform the instantiation of a new 
piloting agent to control the new virtual router. 

• Delegate Route Behavior: This behavior is responsible for delegating the 
adherence to a particular flow to a virtual router in the neighborhood. It can be 
activated either after creating a new virtual router, as the perception of a 
neighbor with load available to meet current demand. 

• Inform Route Behavior: Behavior used to communicate to the neighboring 
router, which is a flow generator, that the route was modified to conform with 
the actual quality criteria, and therefore the router need to update its routing 
table. 

Acting on a QoS Failure or Malfunction 

Essentially, this is a feature of the self-configuration and self-healing autonomic 
piloting system. When answering a particular request for data traffic, the router and 
therefore its pilot agent, will know which conditions and QoS must be satisfied. So, 
monitoring the router performance, like quality requirements, that can be configured at 
runtime by the network administrator, initializes the agent actions. Thus, once the 
agent detects a non-fulfillment, or the inability to meet quality concerns by the router, 
it considers whether they have enough information from their neighbors to be able to 
make a decision. If the agent finds that the information is outdated and that the 
problem is yet just a trend, it will request updated information from its neighbors, 
however, always monitoring the current performance of the router. After obtaining 
these data, the agent uses their algorithms and behaviors for deciding on their actions 
to solve the current problem in a decentralized approach. 

Thus, the agent analyzes the routing tables of its neighbors verifies if it also serves 
the route that currently requires higher quality and it also checks if the neighbor has 
available load to provide. In a positive case, the agent will delegate this data stream to 
the neighboring router, performing a piloting action at runtime. However, if no 
neighbor is able to meet such demand, the agent will instantiate a new virtual router, 
associate a new piloting agent and then delegate the flow to the new virtual router. 
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After that, the agent must communicate with the other neighbor from where the flow is 
coming, to change the route. A simple scenario is shown in Section 6 . 

In case of malfunction, the agent can replicate all the routes it serves to a new virtual 
router, and trigger an alarm for a human intervention to address the occurrence of the 
error, as this would be outside the scope of agent autonomy. 

A Simulation Environment 
We have implemented a simulation environment for the scenario previous described. 
We also have implemented the solution presented in Section 4 . See Figure 2 for a 
screenshot of the simulator. The aim of the simulation environment is to provide users 
with the functionality to experiment with agent-oriented pilot plans. 

 
Figure 2 - Simulation Environment GUI 

Following the architecture outlined in Section 5.1 , each node represents a virtual 
device. Internally the simulator maintains three different types of data: 

• the virtual devices and the current value of their observed properties;  

• the routes; and 

• the routers that compose the virtual network. 

Each time the simulation clock is incremented, the virtualization environment is 
consulted, and the properties values of each device are updated. Therefore, each agent 
is responsible for managing its local data using the API explained in Section 5.2 . Once 
the multiagent system decided to instantiate or change the virtual network, it executes 
the solution outlined in Section 4 , and wait for the new set of virtual routers/routes. 
The difference between the new set of routers/routes and the older one is computed 
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and used to instantiate a new virtual network using the API. In reality, the algorithm 
may behave in different ways. To illustrate these different behaviors, the simulator 
offers the ability to modify the different agent’s behaviors (see Section 6) and 
simulation parameters, such as: amount of data and data transfer rate. For example, if 
an agent has a Violating behavior and there is a rule defining that “if the data transfer 
rate is below a threshold, the agent has to reject the requests to transfer data”, such 
agent can violate such rule. Otherwise, if the agent has a Abiding behavior, it will 
fulfill the rule, i.e., it will not transfer data and a new virtual router must be defined. 

Architecture Overview 

 
Apêndice 1  Figure 3 - Simulator Architecture 

The architecture of our proposed simulation environment is composed of three 
elements: (i) an user interface; (ii) a normative multiagent system; and (iii) a 
virtualization environment. The user interface provides users with the functionality to 
visualize the network and control simulation parameters. The multiagent environment 
implements the algorithms as presented in Section 4 . Finally, the virtualization 
environment provides access to virtual devices and means to instantiate and re-
instantiate virtual networks. 

The communication between the user interface and the simulation environment is 
performed via a standardized programming interface (see Section 5.2 ). The advantage 
of the programming interface is to decouple the normative multiagent system from the 
virtualization environment. Therefore, the simulation environment can be easily 
portable across multiple virtualization environments (e.g., Xen [Chisnall, 2007], 
OpenFlow). 

GUI 

The graphical user interface allows users to experiment with the proposed pilot 
system.  The user interface provides users with the functionality to visualize the 
network topology, devices and routes. In addition it allows users to control some 
simulation parameters like the: max number of virtual routes that can be instantiated in 
each simulation and the behaviors that agents may assume. The GUI was implemented 
in Java using the JUNG library to represent the network topology. JUNG [JUNG, 2001] 
(Java Universal Network/Graph Framework) is a library that provides a common and 
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extensible language for the modeling, analysis, and visualization of data that can be 
represented as a network. The JUNG architecture is designed to support a variety of 
representations of entities and their relations, such as directed and undirected graphs, 
graphs with parallel edges, and so on. It also provides a mechanism for annotating 
graphs, entities, and relations with metadata. This have facilitated the creation of the 
functionalities that examine the relations between devices as well as the properties 
attached to each device and relation. 

Ginkgo 

The agents were implemented using the Ginkgo platform, through the construction of 
several behaviors. Using those behaviors the agents can exchange information among 
neighbors, store, analyze and decide what to do to attend the imposed QoS 
requirement, for example. The Ginkgo Distributed Network is an agent platform based 
on autonomic networks. It has the building blocks for the development of a piloting 
system for computer networks. The framework allows the creation of lightweight and 
portable agents, which facilitates its implementation in heterogeneous environments: 
routers, switches, hosts, wired and wireless networks. The agents play the role of the 
autonomic manager of autonomic computing. With distributed managers near its 
managed elements, monitoring can be done locally. The platform also allows the 
formation of clusters of agents in neighborhoods. Neighbors exchange information and 
get a situated view of the network. Thus, besides the local environment, the agent is 
aware of other network places. This information is stored in the knowledge base that 
has an information model to facilitate communication between agents. Other data 
repository is the policy file, which contains rules of the application. In our pilot system, 
rules are interpreted as norms. The behaviors described in Section 4.1 are realized as 
Gingko behaviors. They feed the knowledge base, perceive and predict threatening 
events and perform changes on the managed virtual devices. In Gingko agents also 
may have a dynamic planner that, with information in the knowledge base and the 
rules in the policy file, changes p arameters of the behaviors and controls the life cycle 
of the agent. This makes possible to develop the properties of self-configuration, self-
healing, self-optimizing and self-protection in the network, which promote the self-
management. 

OpenFlow 

For the virtual network, the OpenFlow system was used. The OpenFlow provides an 
open protocol to program the flow table in di fferent switches and routers. A network 
administrator can partition traffic into production and research flows. Researchers can 
control their own flows – by choosing the routes their packets follow and the 
processing they receive. In this way, researchers can try new routing protocols, security 
models, addressing schemes, and even alternatives to IP. On the same network, the 
production traffic is isolated and processed in the same way as today. 

In order to connect the OpenFlow system and the Ginkgo platform we used the 
Beacon controller, which is a Java-based OpenFlow controller, built on an OSGI [OSGI, 
2011] framework, allowing OpenFlow applications built on the platform to be started, 
stopped, refreshed, installed at run-time, without disconnecting switches. Beacon has 
the following features that helped us on the development of the simulation 
environment:  
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• Cross-platform - Runs anywhere Java runs (including embedded devices, e. g., 
switches and routers); 

• Dynamic - Code and resource bundles can be started, stopped, refreshed, 
installed at runtime, including dependent bundles, without disconnecting 
switches; 

• Embedded J2EE Webserver [Perrone, 2003]- Jetty [Jetty, 2011] is optionally 
embedded enabling a fully capable enterprise webserver; 

• Unit testing - Support for JUnit [JUnit, 2011] unit testing; 

• Maven [Maven, 2011] - Beacon can be built using Maven, and exported to Maven 
and P2 repositories. 

• Performance - Beacon has been tested and shown to service 250,000 L2 switch 
Packet-In requests per second in single threaded mode on a 2.4ghz Core 2 
processor using 512MB of RAM. Widening the thread count to 3 increases 
performance to 340,000 Packet-Ins/s. 

Programming Interface 

The programming interface defines how to integrate the simulation environment with 
any virtualization environment. This section provides a comprehensive description of 
the proposed programming interface. The aim of the interface is to allow the 
simulation environment to perform tasks such as: (i) obtaining the available physical 
devices and routes; (ii) getting the instantiated virtual network; (iii) observing values of 
devices properties; and (iv) reconfigure the virtual network. Figure 4 provides an 
overview of the concepts that compose the interface. 

 
Figure 4 - API Class Diagram 

The Device concept represents the physical network devices, such as routers. Each 
device has a unique ID, a name and a set of Property elements. A property is a pair of 
name and value uniquely identified by an ID. The routing tables are represented by the 
Route concept. A route maintains the linked devices and is identified by an ID. A 
virtual network is a sub set of the set of routes that compose the physical network. 
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In order to manage the virtual network, the programming interface provides a 
function that supports the piloting system to manage the virtual network by adding 
and removing routes and devices, accordingly. Therefore the setVirtualNetwork 
(addRoutes, removeRoutes) function receive as input two parameters: (i) the 
addRoutes parameter is a list of routes that will be part of the virtual network; and (ii) 
the removeRoutes parameter is a list of routes that will be removed from the virtual 
network. The following are the six functions that can be used to obtain information 
from the network: 

• devices = getDevices() returns all devices that are part of the virtual network 
as descriptors used to refer to the devices in subsequent calls. 

• device = getDevice(deviceID) returns the device descriptor identified by the 
deviceID. When the device does not exist it returns an invalid descriptor. 
The deviceID is only a symbolic link and must be managed by the virtual 
environment plugin. 

• value = getPropertyValues(deviceID, propertyID) returns the value of the 
property identified by the propertyID from the device identified by the 
deviceID. When the property and/or device do not exist it returns an invalid 
descriptor. 

• routes = getRoutes() returns the routing table of all devices as route 
descriptors. The routes are used to compute new virtual networks. 

• routes = getRoute(deviceID) return the routing table of a given device 
identified by the deviceID. 

• routes = getVirtualNetwork() return the set of routes that defines a virtual 
network. 

Usage Scenario 
In order to demonstrate the piloting system with the driving simulation environment, 
we implemented a virtual network in OpenFlow and their respective piloting agents in 
Ginkgo. For the sake of simplicity, we used a linear topology to demonstrate the 
application of the simulator and the proposed piloting plane. In Figure 5 we have the 
initial representation of the topology used. After the instantiation of the network 
elements, the agents begin the process of data collection. For this scenario, we have as a 
neighbor of router #1 the router #2 and vice versa. Therefore, the router #1 will run the 
Collect Behavior for collect its routing and cargo information, as well as the Request 
Information Behavior to request relevant data from the router #2, which responds 
through the Response Information Behavior. The router #2 performs the same collect 
process. 
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Figure 5 - Virtual Network Topology 

To begin the simulation process, the Client requests a stream service from the 
Stream Server, which is attended by a route composed by two virtual routers in the 
network. This stream request must meet certain criteria of quality of service (QoS), 
agreed in the Service Level Agreement (SLA). Initially, the routers are idle, and 
promptly attend to the requested stream with the required quality. We can observe in  
Figure 6 that the router #2 is in accordance with the QoS criteria. 
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Figure 6 - Router #2 respecting the QoS criteria 

When starting transmission, the piloting agents verify the service quality 
attendance. However, to generate a disturbance in this scenario, we started a massive 
data transfer from the File Server to the Backup Server. Notably, this transfer will 
compromise the router # 2, which becomes overloaded and unable to meet the quality 
required by the stream service, which initiates a process of quality norm violation. 
Figure 7 shows the router #2 overloaded and so violating the QoS norm. 
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Figure 7 - Router #2 violating the QoS norm 

Thus, the piloting agent realizes this disorder, and as a way to solve it starts 
searching for neighbors who have load available and meet the same segment of the 
route. However, as can be seen, no neighbor is able to meet this request. Thus, the 
piloting agent of the router #2, communicates with the Beacon controller, using the 
Create Router Behavior, to request the instantiation of a new virtual router on the 
network. After the construction of this new router #3, the piloting agent runs the 
Create Agent Behavior to allocate an agent to the router #3. Then the route in question, 
from router #1 to the Stream Server, is delegated to the router #3 through Route 
Delegate Behavior, and finally the Inform Route Behavior informs the router #1 about 
such modification in the route, as we can see in Figure 8. 
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Figure 8 - Final Topology 

Through the Figure 9, we can view the information being displayed on the interface 
of the simulation environment. It is important to note that between the period of non-
compliance of quality criteria and its solution, the piloting agent of router #2 is 
violating the norms of quality. Also, in the same figure we also note the fall of the QoS 
attendance of the transmission, and their improvement after the creation of router #3. 
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Figure 9 - Virtual Network fulfilling the QoS norm 

Conclusion 
This work presented a conceptual piloting system based on self-organizing and 
normative multiagent system, which taking advantage of the intelligent decisions 
performed by piloting agents, needed to govern and adapt the virtual network in 
response to changing context. Besides the piloting system, we have implemented a 
simulation environment which supports users to test and analyze different normative 
and organizational configurations of the piloting multiagent net-work.  

 Now, we are working on the evolution of the simulation environment in order 
to enable the piloting agents to execute new behaviors and adopt new normative con-
ducts. In addition, we intend to enable users to apply different self-organizing 
strategies and verify the system behavior in face of the application of such strategies. 
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