

PUC

ISSN 0103-9741

Monografias em Ciência da Computação
n° 05/13

A Self-Organizing and Normative Piloting System

Manoel Teixeira de Abreu Netto
Carlos José Pereira de Lucena

Baldoino Fonseca dos Santos Neto
Elder José Cirilo Reioli

Firmo Freire

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 05/13 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena April, 2013

A Self-Organizing and Normative Piloting System *
Manoel Teixeira de Abreu Netto, Carlos José Pereira de Lucena, Baldoino

Fonseca dos Santos Neto, Elder José Cirilo Reioli, Firmo Freire
 mnetto@inf.puc-rio.br, lucena@inf.puc-rio.br, bneto@inf.puc-rio.br, ereioli@inf.puc-

rio.br, firmo@les.inf.puc-rio.br

Abstract. The services and technologies inherent to computer networks have become
part of society. However, its management by human administrators came at high cost
and it is prone to failure, and the simple automation of management through software
components may worsen the situation due to the wide variety of systems and
unexpected behaviors. Autonomic networks were proposed to deal with this
management problem by enabling systems to self-manage. But, in order to perform a
self-management in an optimal, robust and secure way it is necessary to have a piloting
system. The main goal of a piloting system is to regulate and adapt the virtual net-
work in response to changing context in accordance with applicable high-level goals
and policies. In this context, this report presents a self-organizing and normative
piloting system that aims to govern the entities of the network in a decentralized way.
Moreover, we provide a simulation environment that enable users to experiment and
observe the network behavior in face of the application of different normative and
organizational configurations of the piloting plane.

Keywords: Network Virtualization, Self-Organization, Multi-agents System.

* This work has been sponsored by the FAPERJ.

 ii

Monografias em Ciência da Computação, No. 05/13 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Abril, 2013

A Self-Organizing and Normative Piloting System *
Manoel Teixeira de Abreu Netto, Carlos José Pereira de Lucena, Baldoino

Fonseca dos Santos Neto, Elder José Cirilo Reioli, Firmo Freire
 mnetto@inf.puc-rio.br, lucena@inf.puc-rio.br, bneto@inf.puc-rio.br, ereioli@inf.puc-

rio.br, firmo@les.inf.puc-rio.br

Resumo. Os serviços e tecnologias inerentes às redes de computadores já se tornaram
parte da sociedade. Entretanto, seu gerenciamento por administradores humanos vem
a um alto custo e suscetível a falhas, ademais, a simples automação deste
gerenciamento através de componentes de software pode piorar a situação por conta
da extensa variedade de sistemas e comportamentos inesperados. Para lidar com esses
problemas uma das soluções propostas são as Redes Autonômicas, que permitem um
autogerenciamento do sistema. Porém, para realizar essa tarefa de forma otimizada,
robusta e segura é necessário possuir um sistema de pilotagem. O principal objetivo de
um sistema de pilotagem é regular e adaptar a rede virtual de forma que esta possa
responder às mudanças de contexto de acordo com políticas e objetivos de alto nível.
Neste cenário, este relatório apresenta um sistema de pilotagem normativo e auto-
organizável que atua no governo e gerenciamento das entidades da rede virtual numa
abordagem descentralizada. Ademais, provemos um ambiente de simulação que
permite usuários experimentarem e observarem o comportamento da rede virtual em
face à aplicação de diferentes configurações de normas e de organizações do plano de
pilotagem.

* Este trabalho foi financiado pela FAPERJ.

 iii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

mailto:bib-di@inf.puc-rio.br�

 iv

Table of Contents

1 Introduction 1
2 Background 2

2.1 Multiagent Systems 2
2.2 Norms 3
2.3 Self-Organization 3

3 Related Works 4
4 A Self-Organizing and Normative Piloting System 5

4.1 Agent Behaviors 6
4.2 Acting on a QoS Failure or Malfunction 7

5 A Simulation Environment 8
5.1 Architecture Overview 9

A1.1 5.1.1 GUI 9
A1.2 5.1.2 Ginkgo 10
A1.3 5.1.3 OpenFlow 10

5.2 Programming Interface 11
6 Usage Scenario 12
7 Conclusion 17
References 17

 1

Introduction
Computer networks have become part of society. Its services and technology have
multiplied and they have become essential to the global economy. Its management by
human administrators, however, became costly and prone to failure, and the simple
automation of management through software components may worsen the problem
due to the wide variety of systems and unexpected behaviors. Autonomic networks
were proposed to deal with this management problem. They represent a specific topic
in the area of autonomic computing, a term coined by IBM, intended to deal with
complexity by enabling systems to self-manage. Today, it is also advocated the
approach of plural-ism of architectures for the future Internet over the one-size-fits-all
TCP/IP [Turner and Taylor, 2005]. This new approach defines that network providers
should be splitted in service and infrastructure providers [Feamster et. al., 2007] and
proposes the use of virtualization [Anderson et al., 2005]. Users request network
services from the service providers, which instantiate virtual networks over the
substrate provided by the infrastructure providers. Each virtual network can have its
own protocols and configurations, in accordance with the objectives of the service
running on it, and must have isolation, i.e., the operation of virtual networks does not
cause interference between them, although they are on the same infrastructure.

To achieve these objectives in an optimal, robust and secure way it is necessary to
have a piloting system. A piloting system, used to control and manage the virtual net-
works, can be seen as an aggregation of two specific planes: a knowl edge plane and an
orchestration plane. The knowledge plane is in charge of recovering the knowledge
useful for feeding the control and management algorithms. The orchestration plane, on
the other hand, is in charge of indicating the course of the virtual network. The
advantage of the piloting system is the possibility to adapt in real time through the
management and orchestration plane. The piloting process aims to adapt the virtual
network to new conditions and to take advantage of the intelligent decisions to
alleviate the global network. Therefore, the role of the piloting system is to govern and
adapt the virtual network in response to changing context in accordance with
applicable high-level goals and policies. It supervises and integrates all other planes’
behavior, ensuring integrity of management and control operations. In this context, the
use of a multi-agent system permits the achievement of a more attractive orchestration
process due to the following points: (1) each agent holds different processes (dynamic
planners, low coupling); (2) the agents are cooperative and reactive, in the sense that
they are able to use a privileged view of their neighbors and individual knowledge
together.

As mentioned, the purpose of the piloting system described in this report is to
regulate and integrate the behaviors of the network in response to changing context
and in accordance with applicable high-level norms. Norm is a regulation mechanism
that defines a set of rules to the system agents in order to ensure a social order that
enables the achievement of the global goal of the organization. Our piloting system can
be seeing as a self-organizing control framework into which any number of network
devices can be plugged into or out of in order to achieve the required service level
agreement. Therefore it hosts several self-organizing piloting systems each one
managed by a piloting agent. Each agent maintains its own knowledge base consisting
of a set of data models about the physical and virtual devices. In this way, agents
manage a virtual devices by following a set of norms and using a set of knowledge.
Moreover, agents can communicate and cooperate with each other by using behaviors.

 2

In addition to the piloting system, we have implemented a simulation environment
which allows users to experiment with agent-oriented pilot plans. Our simulation
environment integrates an user interface with a normative multi-agent system and a
virtualization environment. This environment was implemented in Java and the
Gingko [Ginkgo, 2008] platform that supports the implementation of the multi-agent
system. We are using the OpenFlow [McKeown et al., 2008] system to simulate the
virtual networks. Moreover, we have developed a programming interface that allows
the integration of the simulation environment with any virtualization environment.

Background

Multiagent Systems

Multi‐agent systems [Ferber, 1999] are composed of intelligent entities, called agents,
that have the capabilities needed to make the network autonomic. As shown in [Ferber,
1999]: (1) they are able to communicate, (2) possess their own resources, (3) perceive
their environment, (4) have a partial representation of their environment, (5) have a
behavior which aims at realizing their goals.

Thanks to such properties, multiagent systems can constitute a good tool to provide
the autonomic scheme by guaranteeing the different characteristics which seem
necessary to reach an autonomic behavior. In the following, we describe in more detail
multiagent systems characteristics:

• Decentralization: The multi‐ agent approach is decentralized by definition and
this decentralization aims at overcoming the incapacity of the classic Artificial
Intelligence to operate in the current systems that are more and more distributed
and decentralized. No agent possesses a global vision of the system and the
decisions are taken in a totally decentralized way;

• Reactivity: One of the basic attributes of an agent is to be situated (situatedness,
[Brooks, 1985]). That is, an agent is a part of an environment and it reacts
according to what it perceives of this environment. The reactivity characteristic is
very important in a context of highly dynamic networks, in which the decisions
have to suit current conditions.;

• Proactivity: The agent is capable of setting goals and realizing them by executing
plans, interacting with other agents, etc. In this case, the agent has more
knowledge of its capabilities and on those of the other agents and is able to set up
a strategy allowing it to evolve in its environment and to reach its objectives;

• Sociability: The multi‐ agent approach provides the ability to distribute the
intelligence among different agents composing the system. This implies that an
agent can handle some tasks individually but cannot do everything by itself. It
needs to cooperate with the other agents and to rely on their help to get better
results;

• Adaptability: In order to provide more flexibility, researchers are interested in
using learning techniques (e. g., genetic algorithm [Berger and Rosenschein,
2004], reinforcement learning [Dutta et al., 2005], etc.) to face unexpected
situations. If we return to the autonomic networks, using agents having learning

 3

capacity can be very beneficial and allows for a more effective adaptation to the
evolutions of the networking domain.

Norms

According to [Tuomela, 1995] a norm has a general structure of a group of agents.
Thus, a norm consists of four components: the addressees’ agents, the action to be
performed by them and, finally, the circumstances under which the action must be
carried out [Tuomela and Bonnevier-Toumela, 1992], [Tuomela, 1995], [Tuomela and
Bonnevier-Toumela]. Moreover, [Tuomela, 1995] classifies norms as one of two kinds:
rules or (r-norms), and social norms or (s-norms).

Rules represent explicit agreements among agents, and are created by an authority.
Rules are subdivided into two further classes as follows. Formal rules are those that
include legal sanctions such as laws and regulations, and informal rules that are not in
written form but communicated orally and include informal sanctions.

Social norms are norms accepted not through agreement but through mutual beliefs,
and are also divided into two classes: conventions, which concern the whole society or
social class and have social sanctions, such as approval or disapproval; and group-
specific norms, which concern a group of agents in a society.

[Tuomela, 1995] also explains the conditions under which either rules or social
norms ought to be fulfilled by the members of a group; these conditions cause a norm
to be enforced and can be described, as follows: (i) promulgation condition refers to the
fact that norms must be issued by an authority; (ii) accessibility condition states that all
members of the group acquire the belief that they ought to comply with the norm; (iii)
if many members of the group fulfill the norm, or at least are disposed to do so, it is
said that the pervasiveness condition is satisfied; (iv) the motivational condition is met
when at least some members sometimes fulfill the norm because they believe it is true
and that they ought to do so; (v) the sanction condition refers to the existence of social
pressure against members that deviate from the norm, and ,finally, (vi) for a rule, the
acceptance condition is the conjunction of the promulgation and accessibility
conditions, whereas for a proper social norm to be accepted, only the accessibility
condition is needed. Thus, contrary to rules, s-norms do not need to be issued by an
authority, but they have to be recognized as norms for all the members in a group. In
this work, we consider rules as mechanism to regulate the agent’s behaviors.

Self-Organization

The approach of self-organizing systems has increased its relevance and is used to deal
with complex domains. The use of this approach enables the development of
decentralized systems that exhibit certain dynamicity and adaptability to couple with
previously unknown perturbations [Serugendo et al., 2004]. According to principles of
self-organization, each component of the autonomic system obtains and maintains only
local information available in the environment, in a decentralized way and without any
external control, being restricted only to local interactions. It is based on these
interactions that the system exhibits it macroscopic behavior, which may be observed
from a global point of view. The multiagent system paradigm has been considered a
promising solution for the building of self-organized systems [Sycara, 1998]. According
to [Serugendo et al., 2005] self-organization systems can be classified, as follows:

 4

 Strong self-organizing systems: are those where there is no explicit control,
whether internal or external.

 Weak self-organizing systems: are those where there is a re-organization
through actions of center or planned internal control.

Additionally, the behaviors of a self-organization system can be characterized by the
following properties (mandatory or optional):

• Absence of an explicit external control - This is a mandatory property that
indicates that the system is autonomous, which defines change and that its
organization is based exclusively on internal decisions and does not follow any
external control to perform a (re-) organization. This property refers to the “self’
of self-organization.

• Decentralized control. A self-organizing system can work under decentralized
control. In this case, there is no internal central authority or centralized
information flow. In this way, the access to global information is limited by local
interactions, which are governed by simple rules. This property is generally not
mandatory, as we can see it in natural self-organizing systems, such as the bees.

• Dynamic Operation - This mandatory property is associated the evolution of the
system. Considering that the organization evolves independently of any external
control, this property implies in the self-organization process.

Related Works
Telecommunications Network Management systems are a type of system that can be
categorized as large, complex and unpredictable. Current research focuses on policy
based management and autonomous systems, using a variety of languages and
technologies. The four main Autonomic Network Management systems are ANEMA
[Derbel et al., 2009], FOCALE [Jennings et al., 2007] and Pronto [Sheridan-Smith et al.,
2006]. We describe, critique and compare them with our piloting approach.

In ANEMA, the high-level objectives of the human administrators and the users are
captured and expressed in terms of Utility Function policies through a set of
mechanisms. The Goal policies describe the high-level management directives needed
to guide the network to achieve the previous utility functions. Finally, the ‘behavioral’
policies describe the behaviors that should be followed by network equipment to react
to changes in their context and to achieve the given ‘Goal’ policies.

To demonstrate the capacities of the ANEMA architecture, they explained how it
should be instantiated in a multiservice IP network and how the proposed utility-
based analytical models were used. The results confirmed that the proposed model
allows specifying the optimal feasible state. However the result state is still not the
optimal one. They also implemented a simulator of the system and perform a set of
simulations based on several proposed scenarios.

One problem to be solved in ANEMA is how the autonomic routers diffuse the
information to others routers on the environment. Another issue that is not so clear is
how deep is the coupling between the stock router and an autonomic one. The
ANEMA focuses on the self-configuration and a little on the self-optimization aspect,
thus is not a complete autonomic solution, as our piloting approach. Neither they use
biological inspired solutions.

 5

On the other hand, FOCALE, Foundation Observation Comparison Action Learn
rEason, propose the use of information and ontological modeling to capture
knowledge relating to network capabilities, environmental constraints, and business
goals and policies, together with reasoning and learning techniques, to enhance and
evolve this knowledge. Also, to deliver full autonomic network management
capabilities FOCALE introduce decentralized processes and algorithms into the
network infrastructure modeled on various biological processes found in the nature
world. As ANEMA, FOCALE uses policy-based network management system,
incorporating translation/code generation processes that automatically configure
network elements in response to changing business goals and/or environment context.

FOCALE have as a base element an AME (Autonomic Management Element) which
handles a managed resource, be it single device or network, that is the same idea of our
piloting agent. Also, FOCALE is based on the MAPE control loop described by
[Kephart and Chess, 2003], and used by our solution, the Monitor, Analyze, Plan and
Execute loop, but reduced to a maintenance control loop and an adjustment control
loop.

Finally, Pronto specifies a Policy-based service definition language to describe
services and the system model through service definitions. The language merely allows
those services to be described by a network engineer, but it is responsibility of the
management system to use the policies within the service definition to construct and
manage individual services.

Policies can also be applied to a pluggable and automated management software
component known as a Domain Expert. These components transform policies at a high
level of abstraction into corresponding lower-level policies. A QoS Domain Expert
instance with dynamic behavior will be used if congestion is detected, the Domain
Expert will modify the low-level policies to reduce the Committed Information Rate
(CIR) of each service.

Basically, the Pronto solution specifies a domain specific policy language, which
defines desired parameters of each network device. There isn’t an autonomic module
or agent for each network element, but a virtual device, which controls the
configuration of the associated network device. Here, the term virtual device is not the
same as we use in our piloting network. The authors didn’t describe the whole
architecture, so we don’t know if it is centralized or distributed, or how the policies are
diffused to others devices to couple with unpredictable situation. They do not use
agents or biological inspired solution.

A Self-Organizing and Normative Piloting System
In order to provide autonomy to the virtual networks, we developed a multiagent self-
organizing and normative piloting system. The idea is to adjust the network flow and
routes in an autonomic way, without any explicit central control, maintaining the
quality of service defined in the SLA and controlling the agents behaviors through
norms. So, the virtual networks devices have a piloting agent responsible to capture
and diffuse information among neighbors and act in the configuration and
management of the router under a local perspective.

 6

Figure 1 – Neighborhood

The piloting system operates mainly in the core network, i.e. the routers, as Figure 1
shows. Initially, agents are assigned to each router, and immediately retrieve
information from the router they belong, like the routes they attend. After this step, the
agent will be aware of the norms (i. e., SLA and QoS requirements) that need to couple
and the normative regulation system can prohibit access to the network to those agents
that violate the norms. Essentially, agents can play the following conducts: (Abiding)
always abides by the norm; (Violating) may violate the norm; (Friendly) always
consents to interact with others agents; and (Hiding) will avoid interact with those that
violate norms.

To complete the information relevant to the piloting system, agents make contact
with the others agents on their neighborhood using the behaviors defined in Section
4.1. The neighborhood in the piloting system is defined as the node (router) connected
by a link, or just one hop. For example, in Figure 1, the Router #3 has as neighbors the
Routers #2, #4 and #5. Thus, for each router in the neighborhood will be requested its
routing table according to the routing table of the requester, its capacity to meet QoS,
its current load and its average load. The latter information is requested randomly or
just before a decision-making, i.e., after exceeding a threshold load. Being aware of the
neighboring node ability will enable the agent to delegate or ask for routes in the
inability to meet a particular request, or provide services in accordance with the
requirements of quality requested.

Agent Behaviors

The piloting agents behaviors are:

• Collect Behavior: This behavior is responsible for collecting and storing data
from the local and the neighborhood routers, the latter executed by the behavior
Request Information Behavior.

• Analyze Behavior: This behavior analyzes the data collected and checks if they
are in accordance with the quality policies required. It is also responsible for
activating the decision behavior, described below.

 7

• Decision Behavior: This behavior is composed of mechanisms and algorithms of
decision making restricted to the data collected locally. It is possible to extend
this approach to define different mechanisms for decision in accordance with the
needs of the piloting system.

• Response Information Behavior: This behavior is responsible for serving the
information request from the neighboring agents; routing tables, current and
average load are sent. This behavior can be extended to address the need of other
types of information in accordance with the piloting system.

• Request Information Behavior: Behavior responsible for requesting the local
information necessary for analysis and decision making of the piloting system.

• Create Router Behavior: This behavior comes into play when after the decision
process, the action to be taken is to create a new virtual router to meet the actual
demand of the network. Thus, this behavior contact the network simulation
engine requesting the instantiation of a new virtual router.

• Create Piloting Agent Behavior: Complementing the previous behavior, this
behavior is instructed to ask the agent platform the instantiation of a new
piloting agent to control the new virtual router.

• Delegate Route Behavior: This behavior is responsible for delegating the
adherence to a particular flow to a virtual router in the neighborhood. It can be
activated either after creating a new virtual router, as the perception of a
neighbor with load available to meet current demand.

• Inform Route Behavior: Behavior used to communicate to the neighboring
router, which is a flow generator, that the route was modified to conform with
the actual quality criteria, and therefore the router need to update its routing
table.

Acting on a QoS Failure or Malfunction

Essentially, this is a feature of the self-configuration and self-healing autonomic
piloting system. When answering a particular request for data traffic, the router and
therefore its pilot agent, will know which conditions and QoS must be satisfied. So,
monitoring the router performance, like quality requirements, that can be configured at
runtime by the network administrator, initializes the agent actions. Thus, once the
agent detects a non-fulfillment, or the inability to meet quality concerns by the router,
it considers whether they have enough information from their neighbors to be able to
make a decision. If the agent finds that the information is outdated and that the
problem is yet just a trend, it will request updated information from its neighbors,
however, always monitoring the current performance of the router. After obtaining
these data, the agent uses their algorithms and behaviors for deciding on their actions
to solve the current problem in a decentralized approach.

Thus, the agent analyzes the routing tables of its neighbors verifies if it also serves
the route that currently requires higher quality and it also checks if the neighbor has
available load to provide. In a positive case, the agent will delegate this data stream to
the neighboring router, performing a piloting action at runtime. However, if no
neighbor is able to meet such demand, the agent will instantiate a new virtual router,
associate a new piloting agent and then delegate the flow to the new virtual router.

 8

After that, the agent must communicate with the other neighbor from where the flow is
coming, to change the route. A simple scenario is shown in Section 6 .

In case of malfunction, the agent can replicate all the routes it serves to a new virtual
router, and trigger an alarm for a human intervention to address the occurrence of the
error, as this would be outside the scope of agent autonomy.

A Simulation Environment
We have implemented a simulation environment for the scenario previous described.
We also have implemented the solution presented in Section 4 . See Figure 2 for a
screenshot of the simulator. The aim of the simulation environment is to provide users
with the functionality to experiment with agent-oriented pilot plans.

Figure 2 - Simulation Environment GUI

Following the architecture outlined in Section 5.1 , each node represents a virtual
device. Internally the simulator maintains three different types of data:

• the virtual devices and the current value of their observed properties;

• the routes; and

• the routers that compose the virtual network.

Each time the simulation clock is incremented, the virtualization environment is
consulted, and the properties values of each device are updated. Therefore, each agent
is responsible for managing its local data using the API explained in Section 5.2 . Once
the multiagent system decided to instantiate or change the virtual network, it executes
the solution outlined in Section 4 , and wait for the new set of virtual routers/routes.
The difference between the new set of routers/routes and the older one is computed

 9

and used to instantiate a new virtual network using the API. In reality, the algorithm
may behave in different ways. To illustrate these different behaviors, the simulator
offers the ability to modify the different agent’s behaviors (see Section 6) and
simulation parameters, such as: amount of data and data transfer rate. For example, if
an agent has a Violating behavior and there is a rule defining that “if the data transfer
rate is below a threshold, the agent has to reject the requests to transfer data”, such
agent can violate such rule. Otherwise, if the agent has a Abiding behavior, it will
fulfill the rule, i.e., it will not transfer data and a new virtual router must be defined.

Architecture Overview

Apêndice 1 Figure 3 - Simulator Architecture

The architecture of our proposed simulation environment is composed of three
elements: (i) an user interface; (ii) a normative multiagent system; and (iii) a
virtualization environment. The user interface provides users with the functionality to
visualize the network and control simulation parameters. The multiagent environment
implements the algorithms as presented in Section 4 . Finally, the virtualization
environment provides access to virtual devices and means to instantiate and re-
instantiate virtual networks.

The communication between the user interface and the simulation environment is
performed via a standardized programming interface (see Section 5.2). The advantage
of the programming interface is to decouple the normative multiagent system from the
virtualization environment. Therefore, the simulation environment can be easily
portable across multiple virtualization environments (e.g., Xen [Chisnall, 2007],
OpenFlow).

GUI

The graphical user interface allows users to experiment with the proposed pilot
system. The user interface provides users with the functionality to visualize the
network topology, devices and routes. In addition it allows users to control some
simulation parameters like the: max number of virtual routes that can be instantiated in
each simulation and the behaviors that agents may assume. The GUI was implemented
in Java using the JUNG library to represent the network topology. JUNG [JUNG, 2001]
(Java Universal Network/Graph Framework) is a library that provides a common and

 10

extensible language for the modeling, analysis, and visualization of data that can be
represented as a network. The JUNG architecture is designed to support a variety of
representations of entities and their relations, such as directed and undirected graphs,
graphs with parallel edges, and so on. It also provides a mechanism for annotating
graphs, entities, and relations with metadata. This have facilitated the creation of the
functionalities that examine the relations between devices as well as the properties
attached to each device and relation.

Ginkgo

The agents were implemented using the Ginkgo platform, through the construction of
several behaviors. Using those behaviors the agents can exchange information among
neighbors, store, analyze and decide what to do to attend the imposed QoS
requirement, for example. The Ginkgo Distributed Network is an agent platform based
on autonomic networks. It has the building blocks for the development of a piloting
system for computer networks. The framework allows the creation of lightweight and
portable agents, which facilitates its implementation in heterogeneous environments:
routers, switches, hosts, wired and wireless networks. The agents play the role of the
autonomic manager of autonomic computing. With distributed managers near its
managed elements, monitoring can be done locally. The platform also allows the
formation of clusters of agents in neighborhoods. Neighbors exchange information and
get a situated view of the network. Thus, besides the local environment, the agent is
aware of other network places. This information is stored in the knowledge base that
has an information model to facilitate communication between agents. Other data
repository is the policy file, which contains rules of the application. In our pilot system,
rules are interpreted as norms. The behaviors described in Section 4.1 are realized as
Gingko behaviors. They feed the knowledge base, perceive and predict threatening
events and perform changes on the managed virtual devices. In Gingko agents also
may have a dynamic planner that, with information in the knowledge base and the
rules in the policy file, changes p arameters of the behaviors and controls the life cycle
of the agent. This makes possible to develop the properties of self-configuration, self-
healing, self-optimizing and self-protection in the network, which promote the self-
management.

OpenFlow

For the virtual network, the OpenFlow system was used. The OpenFlow provides an
open protocol to program the flow table in di fferent switches and routers. A network
administrator can partition traffic into production and research flows. Researchers can
control their own flows – by choosing the routes their packets follow and the
processing they receive. In this way, researchers can try new routing protocols, security
models, addressing schemes, and even alternatives to IP. On the same network, the
production traffic is isolated and processed in the same way as today.

In order to connect the OpenFlow system and the Ginkgo platform we used the
Beacon controller, which is a Java-based OpenFlow controller, built on an OSGI [OSGI,
2011] framework, allowing OpenFlow applications built on the platform to be started,
stopped, refreshed, installed at run-time, without disconnecting switches. Beacon has
the following features that helped us on the development of the simulation
environment:

 11

• Cross-platform - Runs anywhere Java runs (including embedded devices, e. g.,
switches and routers);

• Dynamic - Code and resource bundles can be started, stopped, refreshed,
installed at runtime, including dependent bundles, without disconnecting
switches;

• Embedded J2EE Webserver [Perrone, 2003]- Jetty [Jetty, 2011] is optionally
embedded enabling a fully capable enterprise webserver;

• Unit testing - Support for JUnit [JUnit, 2011] unit testing;

• Maven [Maven, 2011] - Beacon can be built using Maven, and exported to Maven
and P2 repositories.

• Performance - Beacon has been tested and shown to service 250,000 L2 switch
Packet-In requests per second in single threaded mode on a 2.4ghz Core 2
processor using 512MB of RAM. Widening the thread count to 3 increases
performance to 340,000 Packet-Ins/s.

Programming Interface

The programming interface defines how to integrate the simulation environment with
any virtualization environment. This section provides a comprehensive description of
the proposed programming interface. The aim of the interface is to allow the
simulation environment to perform tasks such as: (i) obtaining the available physical
devices and routes; (ii) getting the instantiated virtual network; (iii) observing values of
devices properties; and (iv) reconfigure the virtual network. Figure 4 provides an
overview of the concepts that compose the interface.

Figure 4 - API Class Diagram

The Device concept represents the physical network devices, such as routers. Each
device has a unique ID, a name and a set of Property elements. A property is a pair of
name and value uniquely identified by an ID. The routing tables are represented by the
Route concept. A route maintains the linked devices and is identified by an ID. A
virtual network is a sub set of the set of routes that compose the physical network.

 12

In order to manage the virtual network, the programming interface provides a
function that supports the piloting system to manage the virtual network by adding
and removing routes and devices, accordingly. Therefore the setVirtualNetwork
(addRoutes, removeRoutes) function receive as input two parameters: (i) the
addRoutes parameter is a list of routes that will be part of the virtual network; and (ii)
the removeRoutes parameter is a list of routes that will be removed from the virtual
network. The following are the six functions that can be used to obtain information
from the network:

• devices = getDevices() returns all devices that are part of the virtual network
as descriptors used to refer to the devices in subsequent calls.

• device = getDevice(deviceID) returns the device descriptor identified by the
deviceID. When the device does not exist it returns an invalid descriptor.
The deviceID is only a symbolic link and must be managed by the virtual
environment plugin.

• value = getPropertyValues(deviceID, propertyID) returns the value of the
property identified by the propertyID from the device identified by the
deviceID. When the property and/or device do not exist it returns an invalid
descriptor.

• routes = getRoutes() returns the routing table of all devices as route
descriptors. The routes are used to compute new virtual networks.

• routes = getRoute(deviceID) return the routing table of a given device
identified by the deviceID.

• routes = getVirtualNetwork() return the set of routes that defines a virtual
network.

Usage Scenario
In order to demonstrate the piloting system with the driving simulation environment,
we implemented a virtual network in OpenFlow and their respective piloting agents in
Ginkgo. For the sake of simplicity, we used a linear topology to demonstrate the
application of the simulator and the proposed piloting plane. In Figure 5 we have the
initial representation of the topology used. After the instantiation of the network
elements, the agents begin the process of data collection. For this scenario, we have as a
neighbor of router #1 the router #2 and vice versa. Therefore, the router #1 will run the
Collect Behavior for collect its routing and cargo information, as well as the Request
Information Behavior to request relevant data from the router #2, which responds
through the Response Information Behavior. The router #2 performs the same collect
process.

 13

Figure 5 - Virtual Network Topology

To begin the simulation process, the Client requests a stream service from the
Stream Server, which is attended by a route composed by two virtual routers in the
network. This stream request must meet certain criteria of quality of service (QoS),
agreed in the Service Level Agreement (SLA). Initially, the routers are idle, and
promptly attend to the requested stream with the required quality. We can observe in
Figure 6 that the router #2 is in accordance with the QoS criteria.

 14

Figure 6 - Router #2 respecting the QoS criteria

When starting transmission, the piloting agents verify the service quality
attendance. However, to generate a disturbance in this scenario, we started a massive
data transfer from the File Server to the Backup Server. Notably, this transfer will
compromise the router # 2, which becomes overloaded and unable to meet the quality
required by the stream service, which initiates a process of quality norm violation.
Figure 7 shows the router #2 overloaded and so violating the QoS norm.

 15

Figure 7 - Router #2 violating the QoS norm

Thus, the piloting agent realizes this disorder, and as a way to solve it starts
searching for neighbors who have load available and meet the same segment of the
route. However, as can be seen, no neighbor is able to meet this request. Thus, the
piloting agent of the router #2, communicates with the Beacon controller, using the
Create Router Behavior, to request the instantiation of a new virtual router on the
network. After the construction of this new router #3, the piloting agent runs the
Create Agent Behavior to allocate an agent to the router #3. Then the route in question,
from router #1 to the Stream Server, is delegated to the router #3 through Route
Delegate Behavior, and finally the Inform Route Behavior informs the router #1 about
such modification in the route, as we can see in Figure 8.

 16

Figure 8 - Final Topology

Through the Figure 9, we can view the information being displayed on the interface
of the simulation environment. It is important to note that between the period of non-
compliance of quality criteria and its solution, the piloting agent of router #2 is
violating the norms of quality. Also, in the same figure we also note the fall of the QoS
attendance of the transmission, and their improvement after the creation of router #3.

 17

Figure 9 - Virtual Network fulfilling the QoS norm

Conclusion
This work presented a conceptual piloting system based on self-organizing and
normative multiagent system, which taking advantage of the intelligent decisions
performed by piloting agents, needed to govern and adapt the virtual network in
response to changing context. Besides the piloting system, we have implemented a
simulation environment which supports users to test and analyze different normative
and organizational configurations of the piloting multiagent net-work.

 Now, we are working on the evolution of the simulation environment in order
to enable the piloting agents to execute new behaviors and adopt new normative con-
ducts. In addition, we intend to enable users to apply different self-organizing
strategies and verify the system behavior in face of the application of such strategies.

References

TURNER, J.; TAYLOR, D. Diversifying the internet. In: Global Telecommunications
Conference, 2005. GLOBECOM ’05. IEEE, vol. 2, pp. 6 pp. –760, December 2005.

FEAMSTER, N.; GAO, L.; REXFORD, J. How to lease the internet in your spare time.
In: SIGCOMM Comput. Commun. Rev., vol. 37, pp. 61–64, January 2007.

ANDERSON, T.; PETERSON, L.; SHENKER, S.; TURNER, J. Overcoming the internet
impasse through virtualization. In: Computer, vol. 38, no. 4, pp. 34 – 41, April 2005.

GINKGO NETWORKS. Ginkgo distributed network piloting system. Technical
Report. Ginkgo Networks, Sept. 2008.

 18

McKEOWN, N.; ANDERSON, T.; BALAKRISHNAN, H.; PARULKAR, G.; L.
PETERSON, L.; REXFORD, J.; SHENKER, S.; TURNER, J. OpenFlow: Enabling
innovation in campus networks. In: ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 69–74, Apr. 2008.

FERBER, J. Multi‐ Agent System: An Introduction to Distributed Artificial
Intelligence. Harlow: Addison Wesley Longman, 1999.

BROOKS, R. A. A Robust Layered Control System for a Mobile Robot. IEEE Journal of
Robotics and Automation, Vol. 2, No. 1, March 1986, pp. 14–23; September 1985.

BERGER, M.; ROSENSCHEIN, J. S. When to Apply the Fifth Commandment: The
Effects of Parenting on Genetic and Learning Agents. AAMAS’2004, New York, USA.
ACM, pp 19‐ 23, July 2004.

DUTTA, P. S.; JENNINGS, N.; MOREAU, L. Cooperative Information Sharing to
Improve Distributed Learning in Multi‐ Agent Systems. Journal of Artificial
Intelligence Research, Vol. 24, pp 407‐ 463, 2005.

TUOMELA, R. The Importance of Us: A Philosophical Study of Basic Social Norms.
Stanford University Press, 1995.

TUOMELA, R.; BONNEVIER-TOUMELA, M. Social norms, task, and roles. Technical
Report HL-97948, University of Helsinki, Helsinki, 1992.

TUOMELA, R.; BONNEVIER-TOUMELA, M. Norms and agreements. European
Journal of Law, Philosophy and Computer Sience, 5:41–46, 1995.

SERUGENDO, G. Di M.; FOUKIA, N.; HASSAS, S.; KARAGEORGOS, A.;
MOSTFAOUI, S. K.; RANA, O. F.; ULIERU, M.; VALCKENAERS, R.; AART, C. Van.
Self-organisation: Paradigms and applications. In: Giovanna Di Marzo Serugendo,
Anthony Karageorgos, Omer F. Rana, and Franco Zambonelli, editors, Engineering
Self-Organising Systems: Nature-Inspired Approaches to Software Engineering,
volume 2977 of LNCS (LNAI), pages 1-19. Springer, May 2004.

SYCARA, K. Multiagent Systems. Artificial Intelligence, vol. 10, no. 2, pages 79-93,
1998.

SERUGENDO, G. Di M.; GLEIZES, M. P.; KARAGEORGOS, A. Self-Organisation in
MAS. Knowledge Engineering Review 20(2):165-189, Cambridge University Press,
2005.

CHISNALL, D. The Definitive Guide to the Xen Hypervisor. Prentice Hall, 2007.

JUNG. Available at: http://jung.sourceforge.net/ Accessed in July/2011.

OSGI. Available at: http://www.osgi.org/Main/HomePage Accessed in July/2011.

PERRONE, P. J. J2EE Developer's Handbook. Indianapolis, Indiana: Sam's Publishing,
2003.

Jetty. Available at: http://jetty.codehaus.org/jetty/ Accessed in July/2011.

JUnit. Available at: http://www.junit.org/ Accessed in July/2011.

Maven. Available at: http://maven.apache.org/ Accessed In July/2011.

SHERIDAN-SMITH, N.; O’NEILL, T.; LEANEY, J.; HUNTER, M. A policy-based
service definition language for service management. In: Network Operations and
Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, April 2006, pp. 282–293.

 19

DERBEL, H.; AGOULMINE, N.; SALAN, M. Anema: Autonomic network
management architecture to support self-configuration and self-optimization in ip
networks. Computer Networks, vol. 53, no. 3, pp. 418 – 430, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/B6VRG-4TW14YJ-3/2/
41147806c839b89928697fc9b724d880

JENNINGS, B.; MEER, S. van der; BALASUBRAMANIAM, S.; BOTVICH, D.;
FOGHLU, M.; DONNELLY, W.; STRASSNER, J. Towards autonomic management of
communications networks. Communications Magazine, IEEE, vol. 45, no. 10, pp. 112–
121, October 2007.

KEPHART, J. O.; CHESS, D. M.; The Vision of Autonomic Computing. Computer, vol.
36, no. 1, pp. 41-50, Jan. 2003

	A Self-Organizing and Normative Piloting System
	Manoel Teixeira de Abreu Netto
	Carlos José Pereira de Lucena
	Baldoino Fonseca dos Santos Neto
	Elder José Cirilo Reioli
	Firmo Freire
	Introduction
	Background
	Multiagent Systems
	Norms
	Self-Organization

	Related Works
	A Self-Organizing and Normative Piloting System
	Agent Behaviors
	Acting on a QoS Failure or Malfunction

	A Simulation Environment
	Architecture Overview
	GUI
	Ginkgo
	OpenFlow

	Programming Interface

	Usage Scenario
	Conclusion

