

PUC	

ISSN 0103-9741

Monografias em Ciência da Computação
n° 06/13

MR-UDP: Yet another Reliable User Datagram Protocol, now for
Mobile Nodes

Lincoln David Nery e Silva

Markus Endler
Marcos Roriz

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 06/13 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena April, 2013

MR-UDP: Yet another Reliable User Datagram Protocol,
now for Mobile Nodes

Lincoln David Nery e Silva Markus Endler

Marcos Roriz

{lnsilva, endler, mroriz}@inf.puc-rio.br

Abstract. This paper describes the main characteristics and functioning of the Mobile
Reliable UDP (MR-UDP). It extends Reliable UDP and provides reliable connectivity
with mobile clients which execute behind Firewalls with NAT, and which may change
their IP address and port dynamically.

Keywords: mobile communication, middleware, network protocol.

Resumo. Essa monografia descreve as principais características e funcionalidades do
Mobile Reliable UDP (MR-UDP). O protocolo é uma extensão do UDP confiável (Relia-
ble UDP) e permite comunicação confiável com clientes móveis localizados atrás de
Firewalls com NAT. e que podem trocar dinamicamente seus endereços IP ou porta de
conexão.

Palavras-chave: comunicação móvel, middleware, protocolo de rede.

 ii

In charge for publications

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

Table of Contents

1 Introduction 1	
2 Main Characteristics 1	

2.1 Simple flow control 1	
2.2 Use of UUID 2	
2.3 Types of protocol messages 2	
2.4 Retransmission of undelivered messages 3	
2.5 Data segmentation 3	
2.6 Connection management: disconnection detection and Firewall/NAT traversal 3	
2.7 Data serialization and compression 3	
2.8 System overview 4	

3 Some Implementation Details 5	
4 Possible Future Improvements 6	
5 Other Reliable UDP Implementations 6	
6 Conclusion 6	
References 7	

 1

1 Introduction

The MR-UDP aims at providing reliable communication based on UDP from/to mobile
nodes (MNs), with least possible overhead. It extends a Reliable UDP (R-UDP) [1] pro-
tocol with mobility-tolerating features, such as the ability to handle intermittent con-
nectivity, Firewall/NAT traversal and robustness to switching of IP addresses or net-
work interfaces (e.g. Cellular to WiFi, and vice-versa).

 Compared with the original R-UDP, MR-UDP includes mobility-oriented op-
timizations and extensions in following aspects: transparent continuation of a MR-UDP
connection across IP address or port changes; small number of connection maintenance
packets for Firewall/NAT traversal; reduced use of mobile device resources and flexi-
ble use of threads. These optimizations are important for wireless connectivity. For ex-
ample, when a MN enters an area with no - or weak - connectivity, it may suffer a tem-
poral disconnection and when the wireless signal is back, the node may get a new IP
address (via DHCP). In this situation, whenever the disconnection time is shorter than
a threshold (e.g. 30 seconds), MR-UDP will keep the original logical connection and all
buffered UDP packets will be delivered in the original order. MR-UDP is used as the
wireless/mobile communication protocol in the SDDL middleware [2].

 Despite some tests results that show good performance, the MR-UDP was not
designed for continuous, high-performance data transmission, such as multimedia
streaming. Instead, it was designed for the maintenance of large numbers of MN con-
nections and reliable delivery of messages to/from these nodes. It supports applica-
tions where all MNs periodically send some context data in discrete intervals (e.g.
every 10 seconds), rather than continuous streaming, as in multimedia transmissions.

2 Main Characteristics

MR-UDP is implemented in Java, and enhances a publically available Reliable UDP
implementation named Simple R-UDP1. The programming interface provides Reli-
ableClientSocket and ReliableServerSocket classes, which extend the conventional Java
Socket’s programming interface, with the well-known Socket, ServerSocket, Input-
Stream, and OutputStream classes. MR-UDP has several features inherited from Reli-
able UDP, such as: acknowledgment of received data packets; in-order packet delivery
with selective retransmission of lost packets, and over-buffering. In addition, it has the
following singular characteristics that are described in the following sections.

2.1 Simple flow control

A ReliableClientSocket can be used to transfer large amounts of data, by invoking the
send() primitive at high frequency (e.g. every few seconds). At the other end of the
connection, the ReliableServerSocket may handle thousands of simultaneously MR-
UDP connections with remote peers executing the ReliableClientSocket. Since the un-
derlying protocol is UDP, it does not provide any flow control or delivery guaranties.
Reliable UDP implements only a best effort reliable delivery of packets, and hence op-
erating system buffers may suffer overflow when large chunks of data are transmitted
frequently, causing a progressive and silent (without warnings) loss of packets. So, in
order to avoid that the operating system socket looses packets while exposed to bursts

1 Simple	 R-‐UDP:	 http://sourceforge.net/projects/rudp/

 2

of data packet reception, MR-UDP defines a small, configurable waiting time between
consecutive sends, at the sender side. While this flow control is much more simple that
TCPs sliding window protocol, it is quite effective in most cases (i.e. using 1ms inter-
send wait time), and does not require to keep any state of the logic connection.

2.2 Use of UUID

Each node has a unique identifier (UUID) that is generated only once, when the MR-
UDP ReliableClientSocket or ReliableServerSocket object is created for the first time at
a given mobile node (MN). This 128 bits identifier is used by the ReliableServerSocket
to identify the logical connection with each MN, independently of the IP address and
port number being currently used by this MN. Thus, the mobile node may switch net-
works and receive a new IP address, but will still be recognized as the same MN by the
ReliableServerSocket. The UUDI also enables to resynchronize the state of the commu-
nication (by retransmitting buffered packets which were not confirmed) on both con-
nection endpoints. To implement the unique MN identification, MR-UDP maintains an
up-to-date map that records the association between each UUID and its current IP ad-
dress and port, expressed as the function MN-UIID → “MN-IPAddress:Port”. How-
ever, the creation and use of a UUID is not mandatory: i.e. if not used, the MR-UDP
protocol will work as the original R-UDP, without being resilient to IP address and
port changes.

2.3 Types of protocol messages

MR-UDP implements the following types of messages (a.k.a. segments) with the corre-
sponding functions:

• UID Segment – carries the UUID of the sending node. When using the UUID
identification, this segment is periodically sent, which makes it works also as a heart-
beat control message to keep a connection open to a peer node behind a firewall/NAT.
This segment is a genuine increment of MR-UDP as an extension of the original R-UDP
protocol;

• SYN Segment – is used to initiate a new - or reset an existing - connection and
to synchronize the packet sequence numbers. It also contains negotiable parameters
and optional flags;

• DAT Segment – carries a data packet;

• ACK Segment – is used to acknowledge in-order received packets. It has an
ACK sequence number and contains also the sequence number of the next expected
data packet;

• EAK Segment - is used to acknowledge out-of-order received packets. It carries
a list of sequence numbers of the received packets;

• RST Segment – is used to reset the connection by closing and reopening it.
When received, a peer node must not schedule any new packet for transmissions, but
only try to deliver the not yet acknowledged packets;

• FIN Segment – is used to close a connection;

• NUL Segment – in the original R-UDP protocol this message is used to check if
the node at the other end of the connection is still alive (i.e. AreYouAlive? Message).
When received, and if the connection is still active, the peer node must immediately

 3

acknowledge it. In MR-UDP, this segment is used only if a MN does not use UUID for
its identification.

2.4 Retransmission of undelivered messages

MR-UDP maintains a buffer of all “not yet acknowledged” packets for each connection.
For all packets in this buffer, it tries to re-send them a certain number of times, and
wait for the corresponding acknowledgement. When the configured threshold of re-
tries is reached, the node considers that the connection has been dropped, and sends a
FINSegment.

2.5 Data segmentation

Large messages are split into blocks of data, each of which is sent in a separate
DATSegment. The block size is configurable, but in experiments we noticed that block
size of 384KB is a good choice for the mobile network scenario. It minimizes the
chances of dropping packets (due to overload the networking component of the operat-
ing system), and the costs of packet retransmission, while keeping the overhead of ac-
knowledgements manageable and providing a good transmission bandwidth despite
use of the inter-send wait time, MR-UDP’s simple flow control mechanism. The total
size of the MR-UDP buffer is also configurable by a desired number of blocks that must
be retained.

2.6 Connection management: disconnection detection and Firewall/NAT
traversal

Any endpoint of a MR-UDP connection detects a disconnection when: (a) it does not
receive any segments from the remote endpoint for some time interval; (b) it sends a
NULSegment to the remote endpoint and does not receive an ACKSegment back
within some time interval (c) it has reached the re-transmission threshold for non-
acknowledged sent packets (in the connection’s buffer).

When using the UUID identification some disconnections that would happen can be
totally hidden for the application that uses MR-UDP. When a MN experiences a tem-
porary disconnection from its network and gets a new IP address upon the reconnec-
tion, it immediately sends a UIDSegment with its new address. This enables the Reli-
ableServerSocket to learn the node’s new location and update the UUID-IPAddress:
port map. Thus, in this situation the conventional Reliable UDP connection would be
broken, but the MR-UDP continues to work as if the connection were never broken.

Also by using the UIDSegment (or the original NULSegment), a MN behind a
Firewall/NAT can keep a connection active, and allows other nodes to reach it. In
some sense, this mechanism replaces piggybacking of near real-time messages or con-
trol information, as used in other approaches, and makes possible to reach the MN
without the need to wait for a message/signal originated from it.

2.7 Data serialization and compression

Since MR-UDP is targeted at mobile nodes, it is very important to minimize the seriali-
zation time and the compressed data size. The original R-UDP protocol uses Java built-
in serialization mechanism to do these tasks. While this approach works for desktop
and other robust domains it is not appropriate for MNs. The problem is that the built-
in mechanism uses reflection to pack and unpack segments and does not uses a com-
pression algorithm to write and read its data, thus, writing and reading an enormous

 4

volume of redundant data. In MR-UDP, we used a serialization library called Kyro 2
that uses instrumentation to speed up the serialization time and reduce the segment
message size. Through the Kyro instrumentation, we could reduce the segment mes-
sage size by up to 99% and the compression time by approximately 85%.

2.8 System overview

Figure 1 illustrates some of MR-UDP's features and behavior. On the left side, a Reli-
ableServerSocket is handling several connections (ovals) with remote clients by multi-
plexing them over its local port X. A pool of threads does this handling. More specifi-
cally, it shows two connections - and the associated packet buffers - for clients with
UUDIs U1 and U2. Notice that a hashTable, the UUID-IPAddress:port map (purple
box) associates each client to its current Internet address and port. If some of this in-
formation changes for any known client/UUID, for example, if the corresponding MN
is connected to a new network, then the ReliableServerSocket just updates this map.
On the right side, client U1 is serializing and segmenting a message object for trans-
mission into packets and putting these packets, one by one, into the OutBuffer. After
data packet with sequence number 13, D(13), arrives at the ReliableServerSocket, a cor-
responding acknowledge packet, A(13), is sent and received by the ReliableClient-
Socket. Client U2, on the other hand, is reassembling a message object - to be delivered
to the application - from its constituent packets D(2) through D(6). After acknowledg-
ing packet with sequence number 3, data packet D(4) is lost, but D(5) and D(6) arrive.
Client U2 then sends an EAK Segment, EAK(5,6) packet, which causes the Reliable-
ServerSocket to re-transmit data packet D(4). In the meantime, U2 sends another UID
segment to keep the connection through a Firewall open. The Figure also suggests that
MR-UDP just uses a single port (blue dot), associated with the UDP socket.

Figure 1. Schematic view of MR-UDP in action with two clients

2 http://code.google.com/p/kryo

 5

3 Some Implementation Details

Since we wanted the MR-UDP protocol to efficiently handle communication in mobile
networks, it was necessary to implement several optimizations and extensions to the
original R-UDP.

The first one that deserves notice is the use of a pool of threads. In MR-UDP, the
pool of threads has small, configurable number of worker threads, which are automati-
cally allocated as new connections are being handled (by the ReliableServerSocket). By
this, it is able to manage thousands of simultaneous connections. In the original R-UDP
implementation that we used as the starting point of our implementation, every con-
nection used 15 threads! But since threads consume much system resources, this im-
plementation was not scalable, and the result was that many connections were
dropped. As all threads in the original R-UDP were used for timeouts (in a class called
Timer), in MR-UDP we just implemented a more efficient Timer using the pool of
threads. Our tests have shown that with just 3 worker threads, MR-UDP incurs in
much less resource consumption, and is able to handle 5-10 times more connections.

When using a transport protocol over an unreliable network, it is important to en-
able that higher-level protocol layers (such as ClientLib of SDDL) be notified of some
states of message delivery or connectivity. For this reason, in MR-UDP we made some
changes to the message send and acknowledge APIs. We used the Observer design pat-
tern that enables high-level protocol layers to observe and be notified when specific
events happen within MR-UDP. For example, we made MR-UDP inform which was
the ACK number of a message sent, and enriched the internal socket listener to inform
the number of every ACK received. In this manner, the software layer above MR-UDP
can be informed if a message was correctly delivered at its destination, or if a message
was not delivered due to some disconnection.

To keep applications compatible, we made ReliableClientSocket (and Reliable-
ServerSocket) extend the default Java socket classes, which means, that any application
can use these sockets without significant modifications. Basically, MR-UDP’s reliable
socket will be created using another constructor (that will inform the UUID), and noth-
ing else needs to be changed.

Another noteworthy characteristic is that MR-UDP implements the Front Controller
design pattern, allowing the ReliableServerSocket to use a single UDP port for all con-
nections, i.e. through which all inbound and outbound message traffic is multi-
plexed/de-multiplexed. For this, as already mentioned, MR-UDP maintains an up-to-
date map of the MN’s UUID and its current pair (IPAddress: Port).

The Simple R-UDP [4] uses Java built-in serialization mechanism, which is based on
reflection iterations over the segment. While the approach is elegant, as it can be writ-
ten clearly and recursively, it is a slow mechanism due to the high overhead of in-
specting the segment reification (metadata) to pack and unpack messages. To speed up
the serialization process, in MR-UDP, we used Kyro [5], a serialization library that pro-
vides an API for fast and efficient object graph serialization in Java. This library in-
spects the serialization class only once to build a map, which contains a read and write
strategy. The strategy contains general hints on how the data should be written. Using
the Kyro library, we instrumented our entire serialization process and reduced the
message size by up to 99%. For example, a 1112 bytes message could be compressed to
only 9 bytes. Using Kyro we expected the serialization time to be high, since it requires
pre- and post- processing in the serialization task. Surprisingly however, we also no-
ticed that it is very efficient in packing and unpacking messages. For example, in some
cases, the total time for a serialization was reduced by 85% (on average, each segment
took only 7ms to be serialized, instead of the 44ms using Java’s built-in serialization).

 6

Finally, we also did some re-factoring to make MR-UDP Android-compatible, since
some Java constructs were causing problems in some cases (e.g. causing deadlocks)
when running MR-UDP in VM Dalvik.

4 Possible Future Improvements

MR-UDP can still be further improved along several lines, which include:

• Include Error detecting code (a.k.a CRC) into each data packet so that corrupted
packets are discarded at the receiver and later re-transmitted by the sender. This
is particularly important for the ability of re-assembling serialized objects from
its constituent packets.

• Implementation of Quality of Service (QoS) policies for communication, (e.g.
minimum throughput, other message delivery policies; priority lanes; segment
compression levels; data encryption, etc.)

• Port to other Object based languages and mobile platforms, such as Objective C,
for iOS, or C++. This line also requires investigating techniques to express the
data carried by the segments in an external data representation (XDR), such a
XML and JSON.

5 Other Reliable UDP Implementations

There are also some other implementations of RUDP. One of the most complete one is
a .Net implementation called R-UDP[3]. The main features of this implementation are a
KeepAlive message, ordered delivery of packets, Rendezvous mode and NAT tra-
versal, Piggy backing of multiple ACKs in a packet, sliding window using slot tech-
nique and pluggable Congestion protocol and strategy (currently, with two TCP con-
gestion protocols). Moreover, it also uses threads to take advantage parallel processing
on multi-core architectures. This Microsoft version is used in its MediaRoom product
for IPTV service delivery over multicast networks.

Another one is a Java implementation the Simple Reliable UDP [4], implemented by
Adrian Granados, and which is available as open-source under BSD License and was
used as the basis of our implementation. As it name suggests, it includes only the basic
in-order, reliable message delivery features, but does not provide any congestion/flow
control and other optimizations. As mentioned before, it also uses several threads for
each connection, which compromises the protocol’s performance when a large number
of simultaneous connections are required.

6 Conclusion

The MR-UDP is one of the fundamental building blocks of the SDDL middleware,
where it is encapsulated in the ClientLib. MR-UDP has been thoroughly tested and has
delivered good performance in all its deployments so far. A ReliableServerSocket can
well support up to 10.000 connections with RelableClientSockets at MNs which send
their position (GPS coordinates, about 100 bytes) every 6 seconds. And with this load
the Round-Trip-Delay for an Unicast message plus its corresponding acknowledge-
ment take only 50 ms, as discussed in [2]. This scenario would not be supported by the
original R-UDP, since the default Java heap size would be reached with less than 600

 7

connection due the high use of resources, specially the number of threads. Among MR-
UDP’s main advantages are a small footprint, the use of a thread pool, its efficient data
compression mechanism, and the use of UUID as means of unique identification of mo-
bile clients, independently of their current Internet address. MR-UDP can be down-
loaded from http://www.lac-‐rio.com/mr-‐udp

References

[1] Boya, T., Krivoruchka T., CISCO; Reliable UDP Protocol, IETF Internet Draft,
February 99. URL: http://tools.ietf.org/html/draft-ietf-sigtran-reliable-udp-00

[2] L. David, R. Vasconcelos, L. Alves, R. Andre, G. Baptista, M. Endler, A
Communication Middleware Supporting Large scale Real-time Mobile Collaboration,
IEEE 21st International WETICE, Track on Adaptive and Reconfigurable Service-
oriented and component-based Applications and Architectures (AROSA), pp. 54-
59, Toulouse, June 2012

[3] Reliable UDP, Beta 8.0, http://rudp.codeplex.com (last visited: April 2013)
A. Granados, Simple Reliable UDP, http://sourceforge.net/projects/rudp/, 2009.

[4] A. Granados, Simple Reliable UDP, http://Sourceforge.net/projects/rudp/, 2009.

[5] Kryo 2.21 - http://code.google.com/p/kryo/ (last visited: April 2013).

