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Editor: Prof. Carlos José Pereira de Lucena December, 2013

Comparing Recommendation Approaches for

Dataset Interlinking

Giseli Rabello Lopes

1
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Abstract. Whenever a dataset t is published on the Web of Data, an exploratory search
over existing datasets must be performed to identify those datasets that are potential can-
didates to be interlinked with t. This technical report introduces and compares two ap-
proaches to address the dataset interlinking recommendation problem, respectively based
on Bayesian classifiers and on Social Network Analysis techniques. Both approaches de-
fine rank score functions that explore the vocabularies, classes and properties that the
datasets use, in addition to the known dataset links. After extensive experiments using
real-world datasets, the results show that the rank score functions achieve a mean average
precision of around 60%. Intuitively, this means that the exploratory search for datasets
to be interlinked with t might be limited to just the top-ranked datasets, reducing the cost
of the dataset interlinking process.

Keywords: Linked Data, data interlinking, recommender systems, Bayesian classifier,
social networks

Resumo. Sempre que um conjunto de dados t é publicado naWeb de Dados, uma pesquisa
exploratória sobre os conjuntos de dados existentes deve ser realizada para identificar
aqueles conjuntos de dados que são potenciais candidatos a serem interligados com t.
Este relatório técnico introduz e compara duas abordagens para endereçar o problema
de recomendação de interligações de conjuntos de dados, respectivamente, baseadas em
classificadores bayesianos e em técnicas de análise de redes sociais. Ambas abordagens
definem funções de escore para ranqueamento que exploram os vocabulários, classes e



propriedades que os conjuntos de dados utilizam, em adição aos links conhecidos entre os
conjuntos de dados. Após efetuar extensivos experimentos utilizando conjuntos de dados
reais, os resultados mostraram que as funções de escore para ranqueamento obtiveram
uma média da precisão média (MAP) em torno de 60%. Intuitivamente, isto significa que
uma busca exploratória por conjuntos de dados para serem interligados com t poderia ser
limitada a apenas os conjuntos de dados no topo do ranking, reduzindo o custo do processo
de interligação de conjuntos de dados.

Palavras-chave: Dados interligados, interligação de dados, sistemas de recomendação,
classificadores bayesianos, redes sociais
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1 Introduction

Over the past years there has been a considerable movement towards publishing data
on the Web following the Linked Data principles [1]. According to those principles, to
be considered a 5-star, a dataset must comply with the following requirements: (i) be
available on the Web; (ii) be available as machine-readable structured data; (iii) be in
a non-proprietary format; (iv) use open standards from W3C (i.e. RDF and SPARQL)
to identify resources on the Web; and (v) be linked to other people’s data to provide
additional data. This paper addresses the last requirement.

Briefly, in the context of Linked Data, a dataset is a set of RDF triples. A resource
identified by an RDF URI reference s is defined in a dataset t i↵ s occurs as the subject
of a triple in t.

A feature of a dataset is a vocabulary URI, a class URI or a property URI used in
triples of the dataset. One may then represent the dataset by one or more of its features.

Let t and u be two datasets. A link from t to u is a triple of the form (s, p, o) such
that s is defined in t and o is defined in u. We say that t is linked to u, or that u is linked
from t, i↵ there is at least a link from t to u. We also say that u is relevant for t i↵ there
is at least a resource defined in u that can be linked from a resource defined in t.

The dataset interlinking recommendation problem can then be posed as follows:

Given a finite set of datasets D and a dataset t, compute a rank score for each

dataset u 2 D such that the rank score of u increases with the chances of u

being relevant for t.

To address the dataset interlinking recommendation problem, this paper proposes and
compares two approaches respectively based on Bayesian classifiers and on Social Network
link prediction measures. Both approaches define rank score functions that explore the
dataset features and the known links between the datasets. The experiments used real-
world datasets and the results show that the rank score functions achieve a mean average
precision of around 60%. Intuitively, this means that a dataset interlinking tool might
limit the search for links from a dataset t to just the top ranked datasets with respect to
t and yet find most of the links from t.

The rest of the paper is organized as follows. Section 2 introduces our proposed ap-
proaches based on Bayesian classifiers and on Social Network Analysis techniques. Section
3 presents the experiments conducted to test and compare the approaches. Section 4 dis-
cusses related work. Finally, Section 5 contains the conclusions and directions for future
work.

2 Ranking Techniques

Sections 2.1 and 2.2 introduce two approaches to compute rank score functions, leaving a
concrete example to Section 2.3.

2.1 Bayesian ranking

This section defines a rank score function inspired on conditional probabilities. However,
we note that the rank score is not a probability function. We proceed in a stepwise fashion
until reaching the final definition of the rank score function, in Equation 9.
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Let D be a finite set of datasets, di be a dataset in D and t be a dataset one wishes
to link to datasets in D. Let T denote the event of selecting the dataset t, Di denote the
event of selecting a dataset in D that has a link to di, and Fj denote the event of selecting
a dataset that has feature fj (recall that a feature of a dataset is a vocabulary URI, a
class URI or a property URI used in triples of the dataset).

We tentatively define the rank score function as a conditional probability:

score0(di, t) = P (Di|T ) (1)

that is, score0(di, t) is the conditional probability that Di occurs, given that T occurred.
As required, this score function intrinsically favors those datasets with the highest chance
of defining links from t.

We then rewrite score0, using Bayes’s rule, as follows:

score1(di, t) =
P (T |Di)

P (T )
P (Di) (2)

As in Bayesian classifiers [2, 3], by representing t as a bag of features F = {f1, ..., fn},
one may rewrite score1 as:

score2(di, t) =
P ({f1, ..., fn}|Di)

P ({f1, ..., fn})
P (Di) (3)

By the naive Bayes assumption [2, 3], P ({f1, f2, ..., fn}|Di) can be computed by mul-
tiplying conditional probabilities for each independent event Fj (the event of selecting
datasets with just the feature fj). Moreover, P ({f1, ..., fn}) does not change the rank or-
der because it is the same for all di. Hence, we remove this term. The new score function
becomes:

score3(di, t) =

0

@
Y

j=1..n

P (Fj |Di)

1

A
P (Di) (4)

The final score function is obtained from score3 by replacing the product of the prob-
abilities by a summation of logarithms, with the help of auxiliary functions p and q that
avoid computing log(0).

Intuitively, the definitions of functions p and q penalize a dataset di when no dataset
with feature fj is linked to di or when no dataset is linked to di. The definitions depend
on choosing a constant C that satisfies the following restriction (where m is the number
of datasets in D and n is the number of features considered):

C < min(C 0
, C

00) (5)

C

0 = min{P (Fj |Di) 2 [0, 1] / P (Fj |Di) 6= 0 ^ j 2 [1, n] ^ i 2 [1,m]}
C

00 = min{P (Di) 2 [0, 1] / P (Di) 6= 0 ^ i 2 [1,m]}

Then, p is defined as follows:

p(Fj , Di) =

(
C, ifP (Fj |Di) = 0

P (Fj |Di), otherwise
(6)
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Intuitively, p avoids computing log(P (Fj |Di)) when P (Fj |Di) = 0, that is, when no dataset
with feature fj is linked to di. In this case, di is penalized and p(Fj , Di) is set to C.

Likewise, q is defined as follows:

q(Di) =

(
C, ifP (Di) = 0

P (Di), otherwise
(7)

Intuitively, q avoids computing log(P (Di)) when P (Di) = 0, that is, when no dataset is
linked to di. In this case, di is also penalized and q(Di) is set to C.

We define the final rank score function in two steps. We first define:

score(di, t) =

0

@
X

j=1..n

log(p(Fj , Di))

1

A+ log(q(Di)) (8)

and then eliminate p(Fj , Di) from Equation 8 :

score(di, t) = c |Ni|+

0

@
X

fj2Pi

log(P (Fj |Di))

1

A+ log(q(Di)) (9)

where

• c = log(C)

• Ni = {fj 2 F/P (Fj |Di) = 0}

• Pi = F �Ni

In particular, we note that, when t does not have any feature (i.e., when n = 0), the
score function takes into account only the unconditional probability P (Di). In this case,
the most popular datasets, such as DBpedia1 and Geonames2, will be favored by the score
function at the expenses of perhaps more appropriate datasets. The ranking may not
be accurate in such borderline cases, but a popularity-based ranking is preferable to no
ranking at all, when nothing is known about t.

Equation 9, therefore, defines the final score function that induces the ranking of the
datasets in D (from the largest to the smallest score). Section 2.3 illustrates how the score
is computed.

Based on the maximum likelihood estimate of the probabilities [3] in a training set of
datasets, the above probabilities can be estimated as follows:

P (Fj |Di) =
count(fj , di)Pn
j=1 count(fj , di)

(10) P (Di) =
count(di)Pm
i=1 count(di)

(11)

where count(fj , di) is the number of datasets in the training set that have feature fj and
that are linked to di, count(di) is the number of datasets in the training set that are linked
to di, disregarding the feature set. Thus, for any dataset t represented by a set of features,
the rank position of each of the datasets in D can be computed using Equations 7, 9, 10
and 11.

1
http://dbpedia.org/

2
http://www.geonames.org/
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Note that Equation 10 depends on the correlation between fj and di in the training
set. This means that the higher the number of datasets correlating feature fj with links
to di, the higher the probability in Equation 10. Moreover, as Equation 4 depends on the
joint probability of the features fj of t, the higher the number of features shared by t and
the datasets linked to di with high probability, the higher score(di, t) will be. That is, if
the set of features of t is very often correlated with datasets that are linked to di and t is
not already linked to di, then it is recommended to try to link t to di.

Finally, we stress that, if a dataset t exhibits a set of features F , one can choose any
subset of F as the representation of t. Thus, each possible representation may generate
di↵erent rankings with di↵erent performances and one cannot predict in advance which
representation will generate the best ranking. Section 3 then compares the results obtained
for several di↵erent feature sets.

2.2 Social Network-based ranking

In Social Networks Analysis (SNA), the network is typically represented as a graph, where
the nodes are the entities (e.g., users, companies) and the edges are the relationships
between them (e.g., follows, shares, befriends, co-authorships). In SNA, the link prediction

problem refers to the problem of estimating the likelihood of the existence of an edge
between two nodes, based on the already existing edges and on the attributes of the nodes
[4]. We propose to analyze the dataset interlinking recommendation problem in much the
same way as the link prediction problem.

As in Section 2.1, let D be a finite set of datasets, di be a dataset in D and t be a
dataset one wishes to link to datasets in D. Recall again that a feature of a dataset is a
vocabulary URI, a class URI or a property URI used in triples of the dataset.

The Linked Data network forD is a directed graph such that the nodes are the datasets
in D and there is an edge between datasets u and v in D i↵ there is a link from u to v.

The similarity set of a dataset t, denoted St, is the set of all datasets in D that have
features in common with t. The popularity set of a dataset di 2 D, denoted Pdi , is the set
of all datasets in D that have links to di.

Among the traditional measures adopted for link prediction [5, 4], we will use Pref-
erential Attachment and Resource Allocation. Indeed, the results reported in [6], which
analyzed the dataset interlinking recommendation problem using just the existing links,
indicate that these two measures achieved the best performance.

Preferential Attachment. The Preferential Attachment score estimates the possibility
of defining a link from t to di as the product of the cardinality of the similarity set of t,
denoted |St|, and the cardinality of the popularity set of di, denoted |Pdi |, and is defined
as follows:

pa0(t, di) = |St|⇥ |Pdi | (12)

However, since |St| is independent of di, this term does not influence the rank score of
the datasets. Thus, we may ignore it and define pa as follows:

pa(t, di) = |Pdi | (13)

Resource Allocation. Let dj be a dataset in D, distinct from di. Intuitively, if there are
links from t to dj and from dj to di and there are many other datasets that have links to
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dj , then dj must be a generic dataset (eg. DBpedia, Geonames, etc.). Therefore, dj does
not necessarily suggest any possible link from t to di. On the other hand, if there are not
many datasets that have links to dj , then this might be a strong indication that dj is a
very particular dataset for both t and di and, therefore, a link from t to di might as well
be defined. Thus, the strength of the belief in the existence of a link from t to di increases
inversely proportional to the number of datasets which have links to dj , i.e., depends on
the cardinality of the popularity set of dj , again denoted

��
Pdj

��.
The Resource Allocation score estimates the possibility of defining a link from t to di

as a summation of the inverse of the cardinality of the popularity set of the datasets in
the intersection of the datasets linked from t, which is the similarity set St of t, and the
datasets linked to di, which is the popularity set Pdiof di, and is defined as follows:

ra(t, di) =
X

dj2St\Pdi

1��
Pdj

�� (14)

Combined score. To obtain more accurate results, we combined the two previous scores
into one new score, defined as follows:

score(t, di) = ra(t, di) +
pa(t, di)

|D | (15)

This final score gives priority to the the ra score; the pa score, normalized by the
total number of datasets to be ranked (|D |), will play a role when there is a tie or when
the ra value is zero. Section 3.3 comments on the adequacy of defining a combined score
function.

2.3 Example of rank score computations

We illustrate how to compute rank score functions, using both approaches, with the help
of a schematic example.

We selected a subset of the datasets indexed by the DataHub3, using the Learning

Analytics and Knowledge

4 dataset [7], referred to as lak in what follows, as the target of
the recommendation.

As features of lak, we used three classes, swc:ConferenceEvent, swrc:Proceedings and
swrc:InProceedings, obtained from the LinkedUp project Web site5.

As the candidates to be ranked, we selected the datasets webscience, webconf, wordnet,
dblp and courseware. They were chosen because we considered all datasets that share at
least one feature with lak (webscience and webconf ) and all datasets linked from them
(wordnet and dblp). In addition, to better illustrate the computation of the rank scores,
we also considered courseware, one of the datasets linked to wordnet.

The similarity set of lak then consists of the datasets webscience and webconf, since
they share at least one feature with lak. The datasets webscience and webconf shares
respectively the swc:ConferenceEvent class and the swc:ConferenceEvent, swrc:Proceedings
and swrc:InProceedings classes with lak.

3
http://datahub.io/

4
http://lak.linkededucation.org

5
http://linkedup-project.eu/
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Table 1: The dataset acronym and the corresponding URI.
Dataset URI

lak http://lak.linkededucation.org

webscience http://webscience.rkbexplorer.com

webconf http://webconf.rkbexplorer.com

dblp http://knoesis.wright.edu/library/ontologies/swetodblp/

wordnet http://www.w3.org/TR/wordnet-rdf

courseware http://courseware.rkbexplorer.com

Table 2: The class feature acronym and the corresponding URI.
Class URI

swc:ConferenceEvent http://data.semanticweb.org/ns/swc/ontology\#ConferenceEvent

swrc:Proceedings http://swrc.ontoware.org/ontology\#Proceedings

swrc:InProceedings http://swrc.ontoware.org/ontology\#InProceedings

Table 1 and Table 2 respectively list the URIs of all such datasets and classes. Figure
1 depicts these objects, where the directed thin arrows represent the existing links among
the datasets, the thick arrows denote links from lak to datasets in its similarity set (used
only by Social Network-based approach) and the dashed lines indicate which datasets have
what features. The dashed cylinders refer to groups of datasets (the number of datasets
grouped is indicated inside the cylinder).

The rank score functions have to rank the datasets webscience, webconf, wordnet, dblp
and courseware according to the chances of defining links from resources in lak to resources
in each of these datasets. The datasets in the similarity set of lak (webscience and webconf )
are included in the list of candidates to be ranked because they are not yet linked from
lak.

The Social Network-based rank score function (shown in Equation 15) ranks wordnet
in the first position (the largest score value), dblp in the second position, courseware in
the third position and webscience and webconf (with tied scores) in the last two positions.
Recall that the Social Network-based score function is the sum of two terms, ra and pa.
The first two best ranked datasets have scores determined by ra greater than zero because
they are linked from webconf, which is in the similarity set of lak. The remaining datasets
are ranked only by the pa term, including webconf and webscience, because they are in
the similarity set of lak.

Using the Bayesian approach, the rank score function ranks dblp in the first position,
wordnet in the second position, courseware in the third position and webscience and
webconf (with tied scores) in the last two positions. It is not possible to adequately
estimate probability values for webscience and webconf because they are both not linked
from any other dataset. Thus, in this example, their score values will be the minimum,
determined in this case by c⇤4 = �60 (omitted from the table in Figure 1 for convenience).
Intuitively, the top ranking positions assigned to wordnet and dblp are justified because
both datasets are linked from datasets that share some feature with lak and the popularity
of both can be estimated.

A manual inspection performed in the two best ranked datasets by both approaches
indicated that the recommendation of dblp is justified because the DBLP digital library6

6
http://www.informatik.uni-trier.de/

~

ley/db/
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webconf 

swc:ConferenceEvent 

swrc:Proceedings 

wordnet 

webscience 

dblp 

lak 

Social Network-based 

score lak, 𝑤𝑒𝑏𝑠𝑐𝑖𝑒𝑛𝑐𝑒         = 0 +
1

295
= 0.0034 

score lak, 𝑤𝑒𝑏𝑐𝑜𝑛𝑓                   = 0 +
1

295
= 0.0034 

score lak, 𝑤𝑜𝑟𝑑𝑛𝑒𝑡                   =
1
1
+

3
295

= 1.0102 

score lak, 𝑑𝑏𝑙𝑝                                   =
1
1
+

1
295

= 1.0034 

score lak, 𝑐𝑜𝑢𝑟𝑠𝑒𝑤𝑎𝑟𝑒     = 0 +
13
295

= 0.0441 

courseware 

swrc:InProceedings 

1  
dataset 

... 

15 
datasets 

13 
datasets 

... 

Partial Result d1 d2 d3

count(f1,di) 1 1 0
count(f2,di) 1 1 0
count(f3,di) 1 1 0

j=1,..,ncount(fj,di) 3 3 0
count(di) 3 1 13
P(F2|Di) 0.33 0.33 -
P(F2|Di) 0.33 0.33 -
P(F3|Di) 0.33 0.33 -

P(Di) 0.004 0.001 0.019
|Ni| 0 0 3

log2(P(F1|Di)) -2 -2 -
log2(P(F2|Di)) -2 -2 -
log2(P(F3|Di)) -2 -2 -

log2(P(Di)) -7.86 -9.45 -5.74
score(di,t) -12.61 -14.20 -50.74

d1=wordnet, d2=dblp, d3=courseware

Bayesian Scores (using c=-15)

sum(count(di))=697

f3=swrc:InProceedings
f1=swc:ConferenceEvent, f2=swrc:Proceedings, 

Figure 1: Example including the datasets links, associated features and the score compu-
tation.

indexes the papers published in the LAK and EDM conferences, as does the lak dataset.
Then, resources of lak can be linked to resources in dblp (e.g., using owl:sameAs property).
The recommendation of wordnet is also justified because resources of lak can be linked to
the corresponding concepts defined in wordnet.

3 Experiments

3.1 Notation and performance measures

To motivate how we define the performance measure, recall that the goal of the rank
score functions is to reduce the e↵ort required to discover new links from a dataset t.
With the appropriate ranking, datasets more likely to contain links from t will be better
positioned in the ranking so that the search may be concentrated on the datasets at the
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top of the ranking. Thus, in the experiments, we evaluated the rank score functions
using the Mean Average Precision, which is a traditional Information Retrieval measure
[8, 9]. Furthermore, we remark that, since the rank score functions induce a ranking of all
datasets, the recall is always 100% and is, therefore, not used as a performance measure.

To define the Mean Average Precision (MAP), we adopt the following notation (recall
that a dataset u is relevant for a dataset t i↵ there is at least one resource defined in u

that can be linked from a resource defined in t):

• D is a set of datasets

• T is a set of datasets, disjoint from D, one wishes to link to datasets in D

• t 2 T

• Gt is the set of datasets in D with known links from t (the gold standard for t)

• Prec@kt is the number of relevant datasets obtained until position k in a ranking
for t, divided by k (the precision at position k of a ranking for t)

• AvePt = (
P

k Prec@kt)/ |Gt|, for each position k in a ranking for t in which a
relevant dataset occurs (the average precision at position k of a ranking for t)

The Mean Average Precision (MAP) of a rank score function over the datasets in T
is then defined as follows:

MAP = average{AvePtj / tj 2 T ^
��
Gtj

��
> 0} (16)

Moreover, in order to evaluate whether the improvements are statistically significant, a
paired statistical Student’s T-test [8, 9] was performed. According to Hull [10], the T-test
performs well even for distributions which are not perfectly normal. We adopted the usual
threshold of ↵ = 0.05 for statistical significance. When a paired T-test obtained a p-value
less than ↵, there is a significant di↵erence between the compared approaches.

3.2 Testing Data

We tested the rank score functions with metadata extracted from the DataHub cat-
alog, a repository of metadata about datasets, in the style of Wikipedia. DataHub
is openly editable and can be accessed through an API provided by the data cat-
aloguing software CKAN7. The set of data used in our experiments is available at
http://www.inf.puc-rio.br/

~

casanova.
We adopted as features the properties, classes and vocabularies used in the datasets,

in di↵erent combinations. From the DataHub catalog, we managed to obtain 295 datasets
with at least one feature and 697 links between these datasets. The number of distinct
features was 12,102, where 10,303 were references to properties, 6,447 references to classes
and 645 references to vocabularies; the number of relations between datasets and features
was 17,395.

We conclude with brief comments on how we extracted metadata from the DataHub
catalog.

7
http://ckan.org
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Table 3: Overall Mean Average Precision.

Approach

Feature set

properties classes vocabularies all

SN-based 48.46% 57.18% 48.27% 51.57%
Bayesian 59.18% 55.31% 51.20% 60.29%

Let t be a dataset and V be a set of VoID descriptions [11] for t, available through the
catalog. We extracted classes and properties used in t from dataset partitions defined in
V , using the void:class and the void:property properties. We obtained vocabularies used
in t from the void:vocabulary property. We uncovered links of t from Linkset descriptions
associated with t that occur in V . A void:Linkset describes a set of triples (s, p, o) that
link resources from two datasets through a property p. The void:subjectsTarget property
designates the dataset of the subject s and the void:objectsTarget property indicates the
dataset of the object o.

We also extracted links by calling the catalog API, which exposes a multivalued prop-
erty, relationships, whose domain and range is the complete set of catalogued datasets.
In this case, assertions of the form “t[relationships] = node” and “ node[object] = u”
indicate that t is linked to a dataset u.

3.3 Testing strategy

To evaluate the performance of the rank score functions, we adopted the traditional 10-fold
cross validation approach, where a testing set is randomly partitioned into 10 equally-sized
subsets and the testing process is repeated ten times, each time using a di↵erent subset
as a testing partition and the rest of the objects in the testing set as a training partition.

In our experiments, the 295 datasets obtained from the DataHub catalog played the
role of the testing set. The 10-fold cross validation then generated 10 di↵erent pairs
(Ti,Di), for i = 1, ..., 10, of testing and training partitions. The known links between
datasets in Di were preserved, those between datasets in Ti were ignored, and those from
datasets in Ti to Di were used as the gold standard for the datasets in Ti. Each test
consisted of computing the MAP for the pair (Ti,Di). Then, we computed the overall
average of the MAPs for the 10 tests, referred to as the overall MAP in Section 3.4.

We used the training partition to estimate probabilities, using Equations 10 and 11,
when testing the Bayesian approach, and to construct the Linked Data network, when
testing the Social Network-based approach.

3.4 Results

This section describes the experiments we conducted to evaluate the rank score functions
generated by the two approaches presented in Section 2, referred to as the Bayesian ap-
proach and the Social Network-based (SN-based) approach (using the rank score function
defined in Equation 15). We combined each of the approaches with the following feature
sets: (i) only properties; (ii) only classes; (iii) only vocabularies; and (iv) all these three
features.

Table 3 depicts the overall MAP results obtained by each combination of approach and
feature set. The Bayesian approach using all three features achieved the best performance;

9



the Bayesian approach using properties obtained the second best result; and the SN-
based approach using classes was the third best result. In fact, the Bayesian approach
obtained better results than the SN-based approach using properties or vocabularies as
single features. The worst results obtained by both approaches used vocabularies as a
single feature. This probably happened because, in our experiments, we have a restrict
number of references to vocabularies in the datasets.

We also calculated the overall MAP of the rank score functions based only on prefer-
ential attachment (pa) and resource allocation (ra), using classes as single features. We
respectively obtained 43.64% and 44.75%, which are lower than the overall MAP for the
rank score function defined in Equation 15.

We conducted additional experiments [12], using supervised machine learning meth-
ods (SVM, multilayer perceptron and decision tree), to create rank score models based
on di↵erent link prediction measures (including preferential attachment and resource al-
location) and using classes, properties and vocabularies as features. The results indicate
that the best model also achieved a lower overall MAP value (around 40%) than the func-
tion defined in Equation 15, which further corroborates the adequacy of this rank score
function.

Finally, we applied a paired T-test to investigate whether there are statistically signif-
icant di↵erences between the overall MAP results of the di↵erent approaches and selected
feature sets. Table 4 shows the p-values obtained by all T-tests performed, where the
results is boldface represent di↵erences which are not statistically significant.

The T-test of the SN-based approaches indicate that the SN-based approach using
the rank score function defined in Equation 15 and classes outperforms the SN-based
approaches using preferential attachment (pa) or resource allocation (ra) and classes.

A T-test was also performed for overall MAP results of the SN-based approaches
using classes and using the other feature selections. The T-tests indicate that the SN-
based approach using the rank score function defined in Equation 15 and classes achieved
a statistically significant improvement when compared to all others (using properties,
vocabularies and all features). Thus, there are evidences that classes are the best feature
selection to be used with the SN-based approach.

For the Bayesian approach, we compared the results obtained by using all features (the
configuration with the best overall MAP) with the results obtained using all other feature
selections. The T-tests indicate that the overall MAP results of the Bayesian approach
using all features and using only properties do not present a statistically significant di↵er-
ence. This suggests that using only properties is an adequate strategy to be adopted with
the Bayesian approach.

We also used a paired T-test to investigate whether there is a statistically significant
di↵erence between the overall MAP values obtained by the best configuration for the
SN-based approach (using classes) and the best configuration for the Bayesian approach
(using all features). The T-tests indicate that there is no statistical di↵erence between the
overall MAP results of both approaches.

In conclusion, these observations indicate that the SN-based approach using classes or
the Bayesian approach using properties induce the best rank score functions, since they
achieve the best results and are simple to compute. This is the main result of the paper.
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Table 4: The p values applying T-test.

SN-based with classes

SN-based with
pa ra

properties vocabularies all features
5.26E-05 0.00195 0.03683 5.46E-08 1.35E-05

Bayesian with all features
Bayesian with

SN-based with classes

properties classes vocabularies

0.10641 0.00408 0.00022 0.07275

4 Related Work

In this paper, we extended previous work [13, 14] that introduced preliminary versions
of the rank score functions respectively based on the Bayesian and the Social Network
approaches. We explored di↵erent sets of features - properties, classes and vocabularies - to
compute the rank score functions. In addition, we modified the rank score functions based
on the Social Network approach so that they can be used to rank datasets to interlink with
a new dataset t, even when there are no known links from t. Furthermore, we thoroughly
compared the performance of the improved approaches using di↵erent feature sets.

Nikolov et al. [15, 16] propose an approach to identify relevant datasets for interlinking,
with two main steps: (i) searching for potentially relevant entities in other datasets using
as keywords a subset of labels in the new published dataset; and (ii) filtering out irrele-
vant datasets by measuring concept similarities obtained by applying ontology matching
techniques.

Kuznetsov [17] describe a linking system, which is responsible for discovering rele-
vant datasets for a given dataset and creating instance level linkage. Relevant datasets
are discovered by using the referer attribute available in the HTTP message header, as
described in [18], and ontology matching techniques are used to reduce the number of
pairwise comparisons for instance matching. However, this work does not present any
practical experiments to test the techniques.

When compared with these approaches, the rank score functions proposed in this paper
use only metadata and are, therefore, much simpler to compute and yet achieve a good
performance.

Lóscio et al. [19] address the recommendation of datasets that contribute to answering
queries posed to an application. Their recommendation function estimates a degree of
relevance of a given dataset based on an information quality criteria of correctness, schema
completeness and data completeness. Wagner et al. [20] also propose a technique to
find relevant datasets for user queries. The technique is based on a contextualization
score between datasets, which is in turn based on the overlapping of sets of instances of
datasets. It uses just the relationships between entities and disregards the schemas of the
datasets. Oliveira et al. [21] use application queries and user feedback to discover relevant
datasets. Application queries help filter datasets that are potentially strong candidates to
be relevant and user feedback helps analyze the relevance of such candidates.

These papers aim at recommending datasets with respect to user queries, which is a
problem close, but not identical to the problem discussed in this paper.

Toupikov et al. [22] adapt the original PageRank algorithm to rank existing datasets
with respect to a given dataset. The technique uses the Linksets descriptions available
in VoID files as the representation of relationships between datasets and the number of
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triples in each Linkset as the weight of the relationships. Results show that the proposed
technique performs better than traditional ranking algorithms, such as PageRank, HITS
and DRank.

As the rank score functions defined in this paper, the version of the PageRank algorithm
the authors propose depends on harvesting VoID files.

5 Conclusions

This paper compared two approaches respectively based on Bayesian classifiers and on
Social Network Analysis techniques to address the dataset interlinking recommendation
problem. Both approaches define rank score functions that explore only metadata features
- vocabularies, classes and properties - and the known dataset links. The results show that
the rank score functions achieve a mean average precision of around 60%. This means that
a dataset interlinking tool might use the rank score functions to limit the search for links
from a dataset t to just the top ranked datasets with respect to t and yet find most of the
links from t. Thus, the rank score functions are potentially useful to reduce the cost of
dataset interlinking.

The computation of the rank score functions depends on harvesting metadata from
Linked Data catalogs and from the datasets themselves, a problem shared by other Linked
Data techniques. This limitation in fact calls attention to the importance of harvesting
metadata, a problem we address elsewhere [23], to fulfill the Linked Data promises.

Finally, we plan to further improve the definition of the rank score functions. One
generic strategy is to improve the network analysis-based score by considering the fre-
quency of the schema elements. Often two datasets share similar classes and properties,
but they strongly di↵er on the number of instances. Another aspect to explore would be
feature similarity (e.g., string similarity between two features), rather than just considering
the intersection of the feature sets.
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