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Abstract.  Column generation is present in the current most efficient approaches to
routing problems. Set partitioning formulations model routing problems by considering
all possible routes and selecting a subset of them that visits all customers. These formula-
tions often produce tight linear relaxation lower bounds and require column generation
for their pricing step. The lower bounds in the resulting branch-and-price algorithm
are tighter when only elementary routes are considered, but this leads to a harder pric-
ing problem. Balancing the pricing problem with route relaxations has become crucial
for the efficiency of the branch-and-price approach for routing problems. Recently, Bal-
dacci, Mingozzi and Roberti proposed the ng-routes as a compromise between elemen-
tary and non-elementary routes, known as g-routes. The ng-routes are non-elementary
routes with the restriction that following a customer it is not allowed to visit another
customer that was visited before only if it belongs to a dynamically computed set. This
dynamic set is obtained from ng-sets of given size, associated to each customer, which
is usually composed by the closest ones. The larger the size of the ng-sets, the closer the
ng-route is to an elementary route. This work presents an efficient pricing algorithm for
ng-routes and extends this algorithm to pricing elementary routes. Therefore we address
the SPPRC and the ESPPRC problems. The proposed algorithm combines Decremental
State-Space Relaxation (DSSR) technique with completion bounds. This allows strength-
ening the domination rule, drastically reducing the total number of labels. We apply
this algorithm for the Generalized Vehicle Routing Problem (GVRP). Experimental re-
sults are also presented for the Capacitated Vehicle Routing Problem (CVRP). We report
for the first time experiments with ng-set sizes up to sixty-four, obtaining several new
best lower bounds for the GVRD, specially for large instances. The proposed algorithm is
capable to price elementary routes even for CVRP instances with 200 customers, a result
which doubles the size of the ESPPRC instances solved so far.

Keywords: Vehicle Routing, Column Generation, Non-Elementary Routes, Elementary
Routes.

Resumo. Geracdo de colunas estd atualmente presente nas abordagens mais eficientes
para os problemas de roteamento. Formulagdes de particionamento de conjuntos mode-
lam problemas de roteamento considerando todas as rotas possiveis e selecionando um
subconjunto delas que visita todos os clientes. A relaxagdo linear destas formulagdes
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frequentemente produzem bons limites inferiores, especialmente quando apenas rotas
elementares sdo consideradas nos modelos, mas neste caso o subproblema de geragao de
colunas é de resolugdo dificil. Assim, balancear a dificuldade do subproblema de geracao
de colunas com a relaxagdo das rotas é fundamental para a eficiéncia dos algortimos de
branch-and-price para problemas de roteamento. Recentemente, Baldacci, Mingozzi and
Roberti propuseram as ng-rotas como um compromisso entre rotas elementares e rotas
nao-elementares, conhecidas como g-rotas. As ng-rotas sdo rotas ndo-elementares na qual
um cliente ndo pode ser revisitado (formando um ciclo) se este cliente pertencer a um con-
junto calculado dinamicamente. Este conjunto dinamico é obtido a partir de ng-conjuntos
de determinado tamanho, associados a cada cliente, e sdo geralmente compostos pelos
clientes mais préximos. Quanto maior for o tamanho dos ng-conjuntos, mais préximo a
ng-rota é de uma rota elementar. Este trabalho apresenta um algoritmo de pricing efi-
ciente para ng-rotas e estende este algoritmo para pricing de rotas elementares. Portanto,
aborda-se os problemas SPPRC e ESPPRC. O algoritmo proposto combina a técnica de
relaxagdo decrescente do espaco de estados (Decremental State-Space Relaxation — DSSR)
com limites de complemento. Isto permite reforcar a regra de domindncia, reduzindo
drasticamente o ndmero total de rétulos na programacdo dindmica. O algoritmo final é
aplicado ao Problema de Roteamento de Veiculos Generalizado (Generalized Vehicle Rout-
ing Problem — GVRP). Resultados computacionais sdo também apresentados para o Prob-
lema de Roteamento de Veiculos com Restricao de Capacidade. Reporta-se pela primeira
vez na literatura experimentos com ng-conjuntos de tamanho até sessenta e quatro, o que
permite obter varios novos limites inferiores para o GVRP, especialmente para instancias
grandes. O algoritmo proposto é capaz de obter rotas elementares para instancias do
CVRP com 200 clientes, um resultado que dobra o tamanho das instdncias do ESPPRC
resolvidas atomento.

Palavras-chave: Roteamento de Veiculos, Geragdo de Colunas, Rotas Nao-Elementares,
Rotas Elementares.
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1 Introduction

Since the work of Christofides et al. [1] on the Capacitated Vehicle Routing Problem
(CVRP), column generation has become a technique widely applied for solving differ-
ent routing problems exactly. Nowadays it is present in almost all of the current most
efficient approaches to routing problems. These approaches use integer and mixed inte-
ger programming formulations with variables associated to the set of all possible routes.
These formulations are set partitioning based for these constraints impose the selection
of the route to serve each customer. We refer to it as SPP formulation. The resolution of
its linear relaxation requires the use of column generation techniques. The pricing sub-
problem to be solved is the Elementary Shortest Path Problem with Resource Constraints
(ESPPRC).

The ESPPRC is a shortest path problem on a graph where the customers have amount
of resources which are consumed during its visit. The resource constraints require that
the total of resources consumed by any feasible solution does not exceed the existing
limits. There may be edges with negative cost and these edges may generate negative
cycles, but since a feasible solution must be an elementary path, revisiting a customer is
strictly forbidden.

The ESPPRC is a hard to solve N'P-Hard problem [2]. In general, the current best
performing algorithms have acceptable processing times when the optimal solution is a
path with at most fourteen customers. We refer to Pugliese and Guerriero [3] for a review
of the approaches proposed along the last three decades. Most of the main ideas in its

resolution can be found in their work and in Feillet et al. [4], Chabrier [5], Righini and
Salani [6,7] and Boland et al. [8].

Instead of solving the ESPPRC, the original work of Christofides et al. [1] solves its
relaxation, the Shortest Path Problem with Resource Constraints (SPPRC). This relaxation
does allow revisiting a same customer in a route. The resulting non-elementary routes
are often called g-routes. However, the resource constraints are the same as the ESPPRC
and therefore, every time a customer is visited, its resources consumption are accounted
and the total consumption must still respect the existing limits.

This relaxation has some interesting properties. First, differently from the original
problem, this one can be solved in pseudo-polynomial time using a dynamic program-
ming algorithm. Besides, even relaxing the elementarity constraint, the SPP bounds
found by its linear relaxation are usually strong, especially when there are few cus-
tomers per route. Furthermore, in order to strengthen the bounds of the linear relaxation,
Christofides et al. [1] also showed that cycles of size two can be forbidden almost with no
extra effort.

However, even with the 2-cycle elimination restriction, the linear relaxation is still
weak, a behavior which motivated researchers to look for better cycle elimination devices
to turn the non-elementary routes closer to elementary routes, without dealing with the
whole complexity of the ESPPRC. The work of Irnich and Villeneuve [9] devised an al-
gorithm which solves the SPPRC forbidding cycles of an arbitrary size. This algorithm
is significantly more complicated, resulting in a complexity which grows factorially with
the size of the cycles being forbidden. On account of this, their method quickly becomes
impractical. Eliminating cycles of size four or more is already too time consuming com-
pared to the bound improvement obtained. Such behavior was verified in practice by
Fukasawa et al. [10] for the CVRP.

Recently Baldacci et al. [11] proposed a compromise between routes and g-routes: the



ng-routes. The ng-routes are restricted non-elementary routes built accordingly to cus-
tomer sets, the ng-sets, which are associated to each customer and act like their “mem-
ory”. Therefore, when a path reaches a given customer, it “forgets” if another customer
was visited if it does not belong to the ng-set of the current customer. Moreover, the fur-
ther extension is only allowed to customers which are not “remembered”. The ng-sets are
usually composed by the closest customers and clearly the larger the size of these sets,
the harder is to solve the problem. This is due to the fact that the ng-routes generated are
going to be increasingly closer to elementary routes.

Although the SPPRC with ng-routes can be solved in pseudo-polynomial time for a
fixed ng-set size, as far as we know, there is no work which solves this problem for ng-
sets larger than 20. This is due to the exponential-sized data structure used by Baldacci
et al. [11] in order to speed up the algorithm.

1.1 Contributions of this Paper

This work aims at efficiently solving the SPPRC with restricted non-elementary routes
and the ESPPRC. The first improvement is obtained by adapting Righini and Salani’s
[7] Decremental State-Space Relaxation (DSSR) technique to the SPPRC with ng-routes.
This technique was firstly proposed for the ESPPRC, where the elementarity restriction is
relaxed and the problem is then solved iteratively, rebuilding the restrictions as needed,
until the optimal solution is found. The main difference of our algorithm is instead of
relaxing the elementarity of the routes, we relax the restriction imposed by the ng-sets.

Next, we accelerate this approach using completion bounds. Since an iteration of the
DSSR is a relaxation for its next iteration, the completion bounds estimate lower bounds
for completing the paths being built on a given iteration and, given an upper bound for
the optimal solution (which is usually equal to zero for pricing algorithms), it avoids the
extension of paths which may exceed the known upper bound on the next DSSR iteration.

These two techniques were already used together in the work of Pecin [12]. In this
work, a column generation procedure which uses the ESPPRC as the pricing subproblem
was proposed for the CVRP. Using the algorithm of Fukasawa et al. [10], instances with
up to 100 customers could be solved to optimality pricing only elementary routes.

Finally, we show how our algorithm for the SPPRC with restricted non-elementary
routes can be easily extended to generate only elementary routes. We also highlight the
two new elements existing in our approach that allows us to double the size of the ESP-
PRC instances solved so far.

The proposed algorithms are then applied to the Generalized Vehicle Routing Prob-
lem (GVRP), where customers to be visited are clusters of vertices. Each cluster has an
associated demand and can contain one or more vertices. The demand of each cluster
must be fully collected in exactly one vertex of the cluster. This problem is a generaliza-
tion of the CVRP and the Traveling Salesman Problem (TSP) and, as in the classical CVRP,
identical vehicles are given, routes must start and end at the depot and the capacity of the
vehicle must not be exceeded. We report experiments showing that our algorithms are
able to solve the SPPRC with ng-set sizes up to 64 and the ESPPRC for hard instances of
both GVRP and CVRP. The CVRP instances are solved through reducing them to GVRP
instances. The results of the column generation algorithm also give a clear idea of the
gains in lower bounds comparing the SPPRC with different ng-set sizes and also with the
ESPPRC, as well as the time required for computing them. In addition, several new best
lower bounds are found for the GVRD, especially for large instances.



This paper is organized as follows. Next Section presents the ESPPRC and explains
the required mathematical notation. The ng-route relaxation is described in Section 3. In
Section 4, we explain the techniques used to solve the ng-route relaxation. In section 5,
we show how our algorithm can be used to obtain only elementary routes and we high-
light the main elements that allowed us to build a very efficient method for solving the
ESPPRC. Section 6 presents the Generalized Vehicle Routing Problem formally. Section 7
reports computational results for both GVRP and CVRP. Finally, Section 8 presents some
conclusions.

2 Elementary Shortest Path Problem with Resource Constraints

Let G = (V, A) be a graph with arc set A and vertex set V, which is composed by the
set of customers C plus a source vertex s and a destination vertex ¢, and let R be a set of
resources. For each arc (i, ) € A, let ¢;j be the cost of the arc and w}; be the consumption
of the edge, for each r € R. For each pairi € C and r € R let a} and b} be two non-
negative values, such that the total resource consumption along a path from s to i must
belong to the interval [a], b}]. The ESPPRC aims to find a minimum cost elementary path
from s to t which satisfies all resource constraints.

The resources constraints can model different types of restrictions. For instance, most
of vehicle routing problems considers that the vehicles have a known capacity and it
cannot be exceeded in a single route. Other problems have time windows, which requires
the route to visit a customer in a given interval of time. Moreover, one can also view the
elementarity constraint as resource constraints, where each customer defines a binary
resource and when a route visits a customer, it consumes all of the associated resource.

In this work, we deal only with the capacity constraint, besides the obvious elemen-
tarity constraint. Thus, the customer set has an associated demand functiond : C — Z
and there is a global capacity limit Q, which no feasible solution may exceed. Since we
apply our algorithm for routing problems, we can consider the source and the destina-
tion vertices as a single vertex called the depot and labeled 0. Therefore, the solution of
the problem is a route instead of a path. This is straightforward because most of the ap-
plications for the ESPPRC is a pricing routine embedded in a column generation scheme
which solves some kind of vehicle routing problem.

3 The ng-Route Relaxation

Recently, the ng-route relaxation was introduced in the work of Baldacci et al. [11] for the
CVRP and the CVRP with Time Windows (CVRPTW), and it was later extended to the
GVRP by Bartolini et al. [13], where it was used to solve transformed CARP instances.
This new relaxation aims at having a better compromise between efficiently price non-
elementary routes and obtaining good lower bounds.

For each customer i € C, let N; C C be a subset of customers which have a relationship
with i. A possible representation for this relationship can be a neighborhood relationship,
i.e., N; contains the nearest customers of 7, including i. These sets are called ng-sets and
they contain the customers which customer i is able to “remember”. For instance, when a
path P is being built, by the time it arrives at customer 7, it has a set I1(P) which represents
its “memory” so far. If customer i belongs to set I'l(P), the extension is forbidden. On the
other hand, if i does not belong to set I'I(P), the extension is allowed and the set I1(P) is
updated to “forget” the customers which customer i is not able to “rememeber”, i.e., the



customers which does not belong to N;. It is clear that if a customer is “forgotten”, it can
be used to form a cycle in future extensions of path P. At this point, we can conclude that
the size of the ng-sets is an important factor on the quality of solutions, because the larger
the ng-sets are, the greater will be the smallest cycles which can appear in a path. The size
of each ng-set N; is limited by A(Nj), which is a parameter defined a priori. Obviously,
this size also changes the pricing complexity.

Let P = (0,iy,..., ip-1, ip) be a path starting at the depot, visiting a sequence of cus-
tomers and ending at customer i,, and C(P) be the set of customers visited by path P.
The function I1(P) of prohibited extensions (the “memory”) of path P can be defined as
follows.

14
I1(P) = {ik e C(P)\{ip}:ixe () Nis} U{ip}. (1)

s=k+1

Given d(P) = Yicc(p) di as the total demand serviced by path P and c(P) as the total
cost of path P, let L(P) = (i,,d(P),I1(P),c(P)) be a label associated with a path P, which
ends at customer i,. We say that a label £(P) can be extended to a customer i, if
ip1 ¢ TI(P) and d(P) +d;,, < Q. After the extension, the customer i1 becomes the
last customer of a new path P’ = (0,...,i,,i,;1) and a new label £(P’) can be obtained
from the label £(P) by the following operations:

L(P") = (ips1,d(P) + di, , TI(P)NN;,,, U {ipy1},c(P) + Ciiy1)- ()

These labels are computed using a forward dynamic programming algorithm and,
in contrast to the g-route relaxation, it does not result in a pseudo-polynomial complex-
ity. This algorithm is exponential on the size of A(N;), remaining pseudo-polynomial
for fixed A(N;). Its efficiency depends on the use of some techniques to speed up its
execution.

In order to reduce the number of possible paths, a dominance rule is incorporated into
the algorithm. Given the labels of two paths £(P;) and L(P,), path P; dominates path P,
if and only if every possible extension from P, can be done from P; with a lower or equal
total cost. For this to be true, the following three conditions must hold:

(i) d(P) < d(Py),
(ii) c(P;) < ¢(P,) and
(iii) TI(Py) C II(Py).

In addition, Baldacci et al. [11] described another way to improve this dominance
rule. When paths with a given capacity d are being computed, the best costs for every
d' < d are stored in a dominance list, which is faster to check than to iterate through the
dynamic programming matrix for each d’ < d. We do not use this technique because it

is not scalable, since the size of this dominance list is exponential in the value of A(N;),
reaching its size limit when A(N;) ~ 13.

4 An Efficient ng-Route Relaxation

As discussed earlier, a basic ng-route relaxation implementation does not allow the use
of large ng-sets, which weaken the quality of the lower bounds found. To address this

4



issue, we provide an efficient implementation, adapting the Decremental State Space Re-
laxation (DSSR) for the ng-route relaxation. This technique was introduced by Righini
and Salani [7] to solve the ESPPRC. The original version of the algorithm helps reducing
the number of labels to be managed during the dynamic programming algorithm which
builds elementary paths. Firstly, it relaxes the elementarity of the paths and, at each it-
eration, identifies which customers are being repeated on the best path found and then
prohibits the repetition of these customers in subsequent iterations.

The main difference of our algorithm is that instead of relaxing the elementarity of
the paths, the new algorithm relaxes the ng-set of each customer, therefore relaxing the
ng-route restrictions.

4.1 Basic Exact Dynamic Programming Algorithm

We start by creating a (Q + 1) x |C| dynamic programming matrix M, where each entry
M(d, i) is a bucket containing labels representing paths which start at the depot and end
at customer i with total demand exactly d. At first, we set M (d;, i) with a single label
L; = (i,d;, {i}, coi), Vi € C, and all other entries with no label. Next, a forward dynamic
programming is used to fill the matrix M, running fromd = lup tod = Q.

Algorithm 1 presents the pseudocode of our basic dynamic programming procedure.
When processing the bucket M (d, i), the algorithm iterates through all labels L£(P;) be-
longing to M (d — d;, j), for all customers j € C, such thatd —d; > 0. As the basic ng-route
relaxation algorithm, the extension from L(P;) to i can only be done if i ¢ TI(P;). If this
condition holds, a new label, say £(P;), is then created and it must be stored in the bucket
M(d,i). Therefore, this is the right time to check for the dominance rule, which can be
verified for all the labels in M(d’,i),Vd’" < d. This is the place where the dominance
list mentioned earlier is used in the work of Baldacci et al. [11]. Surprisingly, we have
found that the algorithm runs faster if the dominance rule is tested only for labels of the
same bucket, i.e., for the labels from inside M(d,i). This comes from the fact that la-
bels associated to paths using less capacity are unlikely to dominate others using higher
capacity.

Algorithm 1 also presupposes the existence of procedure buildRoutes, which take ma-
trix M as parameter and extracts the best routes from: it.

4.2 Improved Exact Dynamic Programming Algorithm
4.2.1 Decremental State-Space Relaxation

The adapted DSSR is an iterative algorithm and it works by relaxing the state space of
the original ng-sets N;. At each iteration k, the algorithm uses the subsets I C Nj as a
replacement for N;. These subsets I'¥ take the role of N; in the definition of the function
I, described in (1), and in the creation of new labels, as shown in (2). Initially, the al-
gorithm sets I’?, Vi € C, as an empty set, and executes the basic dynamic programming,
Algorithm 1. As the best routes found by this dynamic programming are not necessar-
ily ng-routes w.r.t. the original ng-sets N;, they cannot be considered as the result of the
pricing without verifying their feasibility. This test is performed and the I'* subsets are
updated if necessary, as described hereafter. If at the end of iteration k some subset I'¥ is
updated, the dynamic programming algorithm is executed again with new subsets 1"1‘“.

Let a cycle of customers be defined as a sub-path H = (j,...,j), where i = j, and let



Algorithm 1 Basic Dynamic Programming ng-Route Algorithm

1: procedure DYNAMICPROGRAMMING(M, N)
2: input: matrix M and ng-sets N; C C, Vi € C.
output: the best ng-routes with respect to ng-sets Nj.

W

4 M(d, i)+~ o,¥ieC,de{0,...,Q}

5: M(di, l) — {(i,di, {i},COi)},Vi eC

6: ford:=1,...,Qdo

7: foralli € C do

8 ifd —d; > 0 then

9: forallj € C do

10: forall L(P;) € M(d —d,,j) do

11: ifi ¢ I1(P;) then

12: E(Pi) — (i,d,H(P]‘) N N; U {i},C(Pj) + Cji)
13: insertLabel <+ true

14: forall L(P!) € M(d,i) do

15: if £(P;) dominates £(P/) then

16: delete L(P!)

17: else if £L(P/) dominates £(P;) then
18: insertLabel < false

19: break

20: if insertLabel then

21: M(d,i) <~ M(d,i) U L(P;)

22: return buildRoutes(M)

€ (P) be the set of all cycles of customers in the path P. In order to evaluate if the best
route R} found in the end of iteration k is an ng-route, the algorithm must check if there
is no cycle H € s (R}) which would not be allowed to be created if the original ng-sets
N; were being used. This happens only when the customer i (which is repeated in cycle
H)isin all N;, VI € C(H), i.e., customer i is not “forgotten” by any other customer of
the cycle. If any such cycle H is found, we add customer i to subsets 1";‘“, vVl € C(H).
This prohibits cycle H from appearing in any path obtained in the next iteration. On the
other hand, if no such cycle is found at the end of iteration k, then the best route R} is an
ng-route and the algorithm stops.

Algorithm 2 reports DSSR procedure. The input parameter of the algorithm is the
original ng-sets N;, Vi € C. The procedures with self-explanatory names selectBestRoute,
isNGRoute and updateNGSets are responsible, respectively, to extract the best route of a
set of routes, to determine if a given route is a valid ng-route with respect to ng-sets N;
and to update the subsets I'¥ to the next iteration.

Algorithm 2 also uses the procedure dynamicProgramming, which is presented in Al-
gorithm 1, in order to obtain ng-routes with respect to subsets I'* passed as input param-
eters.

It is noteworthy to mention that if the best route found is indeed an ng-route, the al-
gorithm can stop and return only this route. However, if the objective is to find a set of
feasible solutions, the algorithm can also return this route together with any other route
certified to be an ng-route. Furthermore, if the best route is not an ng-route and one needs
to find any feasible solution, any route which is indeed an ng-route can be returned, even
if the best one is not feasible. In this case, we consider it as being a heuristic run of the
algorithm, not an exact one. This method is useful to quickly price routes on interme-
diate iterations of column generation algorithms, where there is no need to generate the
optimal solution.



Algorithm 2 Pure DSSR ng-Route Algorithm

1: procedure DSSR(M, N)
: input: matrix M and ng-sets N; C C, Vi € C.
3: output: the best ng-routes with respect to ng-sets Nj.

4 I < ©,Vie C,ng « false, k < 0
5: while not ng do
6: R <+ dynamicProgramming(M, I
7: R} <+ selectBestRoute(R)
8: if isNGRoute(R}) then
9: ng < true
10: else
11: updateNGSets(N, R;)
12: k< k+1

13: return R

14: procedure ISNGROUTE(R)
15:  forall H = (v,...,v) € #(R) do

16: forbiddenCycle + true

17: foralll € C(H) do

18: if v ¢ N; then

19: forbiddenCycle <— false
20: break

21: if forbiddenCycle then

22: return false

23: return true

24: procedure UPDATENGSETS(N, R)
25:  forall H= (v,...,v) € #(R) do

26: forbiddenCycle < true

27 foralll € C(H) do

28: if v ¢ N then

29: forbiddenCycle < false

30: break

31: if forbiddenCycle then

32: foralll € C(H)doT; + I';U{v}




4.2.2 Completion Bounds

In order to further speed up the algorithm, we calculate completion bounds during the
DSSR in a similar manner as done by Pecin [12] for the elementary route. At the end
of iteration k, the completion bounds are calculated for each customer i € C with ev-
ery capacity d € {0,...,Q}, and then used at iteration k + 1. As mentioned before, the
completion bounds are used to estimate a lower bound on the value of a route during
its creation, thus discarding any route which would not lead to a negative reduced cost.
Given Tj (d, i), the value of the best path which starts at customer i and ends at the depot
with total capacity exactly d, the completion bounds Ty (d, i) are calculated as shown in
(3) and represent the value of the best path which starts at customer i and ends at the
depot with total capacity less than or equal 4.

Ti(d, i) = min {T; (d',1)} . (3)
a'<d

It is important to observe that if the corresponding problem is represented by means
of an undirected graph, T} (d, ) can be obtained directly from the dynamic programming
matrix. This is true because the value of the best path which starts at the depot and ends
at customer i with total capacity exactly d has the same value as T} (d,i), as shown by
Baldacci et al. [11]. The reason for this is that if the best forward path contains a cycle,
then the best backward path may also contain this cycle and vice versa, because at least
one costumer belonging to this cycle must “forget” the customer that repeats. On the
other hand, if the problem is represented using a directed graph, in order to obtain these
values, the direction of the edges has to be reversed, as also shown by [11]. In this case,
the last iteration of the DSSR algorithm has to be executed again before the calculation.
This occurs because when a route is traversed in the opposite direction on an asymmetric

graph, it does not generate the same cost.

After calculating the completion bounds at the end of iteration k, they can be used at
iteration k + 1 to avoid the extension of a given label £L(P) = (j,d(P),II(P),c(P)) to a
customer i if the following conditions hold:

c(P) + cij+ Te(Q —d(P),i) > 0. (4)

This equation calculates a lower bound on the value of the reduced cost of any route
the label £(P) can generate, because Ty(Q — d(P), i) is a lower bound on the value of the
best path which would close path P after it be extended to customer i. Obviously, if the
value of equation (4) is greater or equal than zero, the label £(P) cannot generate any
route with a negative reduced cost, therefore it can be discarded.

It is interesting to highlight that the completion bounds becomes stronger along the
iterations of the DSSR, since iteration k is a relaxation of iteration k + 1, i.e., since Tf-‘ -
1";‘*1, Vi € C. These bounds can be used for other important parts of a branch and cut and
price algorithm, such as route enumeration and variable fixing.

Algorithm 3 reports the pseudocode for pricing ng-routes with state space relaxation
and completions bounds. Procedures selectBestRoute, isNGRoute and updateNGSets have
the same meaning as before and generateCompletionBounds is a new one that calculates the
bounds as shown in (3). Procedure BoundedDynamicProgramming is a slight modification
of procedure dynamicProgramming of Algorithm 1, targeting only include the completion
bounds calculated as shown in (4).



Algorithm 3 DSSR with Completion Bounds ng-Route Algorithm

1: procedure DSSRWITHBOUNDS(M, N)
2: input: matrix M and ng-sets N; C C, Vi € C.
3: output: the best ng-routes with respect to ng-sets N;.

4 I+ @,VieC, ng <+ false, k <+ 0

5 T(di) < —oo,VieC,dec{0,...,Q}

6: while not ng do

7 R + BoundedDynamicProgramming(M, T, T)
8: R} < selectBestRoute(R)

9: if isNGRoute(Ry) then

10: ng < true

11: else

12: updateNGSets(N, R})

13: generateCompletionBounds(M, T)
14: k< k+1

15: return R

16: procedure GENERATECOMPLETIONBOUNDS(M, T)
17. T(d,i) « oo,Vie C,d € {0,...,Q}

18 T(0,0) <0

19: fori € Cdo

20: ford:=1,...,Qdo

21: T(d,i) + min(M(d,i))

22: if T(d—1,i) < T(d,i) then
23; T(d,i) « T(d —1,i)

24: procedure BOUNDEDDYNAMICPROGRAMMING(M, T, T)
25 M(d,i)«—Q,Viel,de{0,...,Q}

26:  M(d;, i) « {(i,d;, {i}, coi) },VieC

27: ford:=1,...,Qdo

28: foralli € C do

29: ifd —d; > 0 then

30: forallj € C do

31 forall L(P;) € M(d —d,,j) do

32: ifi ¢ H(P]) then

33: if checkCompletionBound(T, L(P;), i) then
34: L(P;) - (i,d,T1(P;) N N; U {i},¢(P;) + ¢ji)
35: insertLabel + true

36: forall L(P}) € M(d,i) do

37: if £L(P;) dominates L(P/) then

38: delete L(P!)

39: else if £L(P/) dominates £(P;) then
40: insertLabel + false

41: break

42: if insertLabel then

43: M(d, i) « M(d,i)UL(P)

44: return buildRoutes(M)




4.3 Heuristic Pricing

Even with the improvements described in Section 4.2, the exact ng-route pricing still
takes a long time to be executed. In the view of this, a simple but effective heuristic is
developed in order to quickly price a large initial set of routes with negative reduced
cost. It was based on the heuristic pricing done for the elementary route pricing by Pecin
[12]. The purpose of this heuristic is to reduce the number of calls to the exact ng-route
pricing. Therefore, the heuristic ng-route pricing is used as a hot-start for the exact ng-
route pricing.

The heuristic closely resembles the g-route pricing without eliminating any cycle. The
main difference between the pricing algorithms is that when extending one path, the
heuristic ng-route pricing respects the ng-sets N;. Its data structure isalsoan (Q+1) x |C|
matrix and each entry consists of just one label. For each customer and each capacity, this
label is chosen as the best one with respect to the reduced costs. Also, as the ng-sets N;
must be respected, each label of the dynamic programming matrix must contain the I1
sets for each customer and capacity.

Furthermore, since the algorithm described in Section 5 aims to find only elementary
routes, we implemented a heuristic pricing exactly like the one described in Pecin [12].

Notice that unlike the exact algorithms, the heuristic algorithms use neither the dom-
inance rules nor the speed up techniques (DSSR and completion bounds) described in
Section 4. Nevertheless, they are responsible to obtain about 90% of the routes during the
column generation. Moreover, it is straightforward to verify that the resulting complexity
of the algorithms is O (n?Q).

5 Achieving Elementarity

In order to achieve elementarity we just set the ng-sets Nj to include all customers of the
instance, for all customer i € C. Then we apply the same algorithm described in Section
4. This way, the optimal route found in the last iteration of the DSSR algorithm will not
contain cycles, and therefore will be an optimal elementary route.

There is a great difference how we increase the state space along the DSSR itera-
tions and the manner done by Righini and Salani [7]. Our algorithm starts with empties
I'%,Vi € C. At the end of each iteration £, it identifies all cycles on the best solution and
the repeated customer of each cycle H € 7 (R;) is inserted on subsets I, VI € C(H).
Thus, if cycle H = (v,...,v) is identified at the end of iteration k (that is, if cycle H
belongs to /7 (Rf)), the next DSSR iterations will not generate any path with a cycle
H = (v,...,v) in which C(H') C C(H). But note that it is still possible to obtain a path
that visits customer v more than once at iteration k + 1, since this customer is not present
in all subsets Ff“. On the other hand, the DSSR of Righini and Salani [7] is performed
prohibiting the customers that repeat on the best route R} from repeating again in sub-
sequent iterations, until an elementary route be found. This is equivalent to insert each
repeated customer of each cycle H € #(R}) in all subsets I‘f“, rather than just consider
this inclusion on subsets I'' !, VI € C(H).

We noted on computational experiments that this more aggressive manner of increase
the state space is quite dangerous because the whole algorithm fails if the number of
labels to be treated in the dynamic programming becomes critical. In contrast, the size
of the largest subset Ff.‘ hardly exceed 20 in our algorithm, even for instances with 200
customers.
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Another important difference from our approach and the one of Righini and Salani [7]
is the way we use the DSSR to calculate completion bounds at each iteration in order
to accelerate the subsequent DSSR iterations. Computational results show that the use
of completion bounds allow us to solve the column generation for CVRP instances that
would not be solved in an acceptable time if they were not used.

6 Application to the Generalized Vehicle Routing Problem

The Generalized Vehicle Routing Problem (GVRP) can be defined as follows. Let G =
(V,E) be a graph with vertex set V and edge set E. There is a special vertex 0 called the
depot. The vertices are partitioned into disjoint sets, called clusters, C = {Co,Cq,...,Ct},
where Cy = {0} contains only the depot. Given the cluster index set M = {0,1,...,¢t},
let u(i) € M be defined, for each vertex i € V, as the index of the cluster which contains
i. There exists a demand function d : M — Z* associated with all clusters, in which
the depot has demand dy = 0. These demands are to be serviced by a set K of identical
vehicles with capacity Q, located at the depot. The edge set E = {{i,j}|i,j € V,u(i) #
#(j) } contains the edges between all pairs of vertices from different clusters. Associated
with these edges, there exists a traversal cost function ¢ : E — Z. Let Z be the set of
all possible closed routes starting and ending at the depot. The objective of the GVRP is
to select a subset of k routes from % which: (i) minimizes the total traversal cost; (ii) the
demand from every cluster is serviced by a single vehicle on a single vertex from each
cluster; (iii) the total demand serviced by each route does not exceed the vehicle capacity

Q.

The GVRP is a generalization of the Capacitated Vehicle Routing Problem (CVRP) and
the Generalized Traveling Salesman Problem (GTSP). When all the clusters contain only
one vertex, it is simply the CVRP. Similarly, when there is only one vehicle, it is simply the
GTSP. 1t is clear that, when both conditions are true, it is simply the Traveling Salesman
Problem (TSP). In the view of this, it is easy to see that any solution given to the GVRP
can be directly used to solve these problems. In the sections that follow, any algorithm
designed for the GVRP will also be applied to the CVRP in this way.

This problem is strongly N/P-hard and has gained attention in the literature in recent
years. As far as we know, the first published work to deal with this problem is Ghi-
ani and Improta [14], where a transformation to the Capacitated Arc Routing Problem
(CARP) is presented in order to use the existing algorithms for the CARP. One instance
was proposed and solved using this approach.

Since then, few works have been published on the GVRP. Recently, the work of Bektas
et al. [15] has proposed four formulations for the GVRP. After extensive experiments
with these formulations, a branch-and-cut algorithm was devised using one of them,
an undirected formulation with an exponential number of constraints. The reader may
consult this paper for further details on these formulations.

7 Experimental Results

For the computational experiments, all algorithms were implemented in C++ using Mi-
crosoft Visual C++ 2010 Express and IBM ILOG CPLEX Optimizer 12.5 for solving the
formulations. The experiments were conducted on an Intel Core i7-3960X 3.30GHz with
64GB RAM running Linux Ubuntu Server 12.04 LTS and are divided into two parts. First,
we compare the three exact pricing algorithms described in this paper, that is, the ba-
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sic dynamic programming, the pure DSSR and DSSR with completion bounds. This is
enough to conclude that the latter is the best one, and this evaluation is done by running
each algorithm inside a column generation schema for some classical CVRP instances.
All three algorithms were tested using different values of A(N;), allowing us to analyse
the scalability of each one when the state space relaxation is increased. Second, using
our best algorithm we price elementary and restricted non-elementary routes for both
GVRP and CVRP instances. In order to improve the lower bounds and also show that
our algorithm still works well when robust cuts (see terminology in [16]) are added in
the SPP formulation, we included capacity inequalities and strengthened comb, both de-
scribed in detail in [17]. We separated and added these cuts in a similar manner as done
by Fukasawa et al. [10] for the CVRP.

For all tests, the column generation starts by calling the heuristic pricing at each iter-
ation. The heuristic pricing returns the best 20 routes with negative reduced costs. If the
heuristic is no longer capable of finding routes with negative reduced cost, the column
generation algorithm calls the exact pricing. If the later succeeds in obtaining at least one
route with negative reduced cost, the column generation procedure restarts by calling
the heuristic pricing. Otherwise, the column generation stops and the current value is
returned as a lower bound. This procedure is stopped prematurely if the time limit of
two hours is exceeded.

7.1 Problem Instances

For the GVRP, we applied our algorithms to the instance datasets recently generated by
Bektas et al. [15]. These instance datasets are derived from the CVRP instance datasets
A, B, P and M. The transformation is performed using a method similar to that of Fischetti
et al. [18], which transforms TSP instances into GTSP instances. The number of clusters
is t = [n/0], where 6 is a parameter defined a priori. For each original CVRP instance
dataset, two new instance datasets were created, using 6 = 2 and 6 = 3, resulting in 158
GVRP instances. All lower and upper bounds shown in the tables were taken from the
work of Bektas et al. [15].

The name of the GVRP instances follows the general convention of the CVRP instance,
although slightly modified in order to include additional parameters used. The general
format is X-nY-kZ-CQ)-V®, where X corresponds to the type of the instance, Y refers to
the number of vertices, Z corresponds to the number of vehicles in the original CVRP
instance, () is the number of clusters, and ® is the number of vehicles in the GVRP in-
stance. For all problem instances, we calculate the cost matrix using Euclidean distance
rounded to the nearest integer value.

For the CVRP, we used just a representative set extracted from the classical instance
datasets A, B, E, P and M, available at www.branchandcut.org [19]. All optimal values
shown in the tables was extracted from [10], except the optimal value for instance M-
n151-k12, which was first proved by Contardo [20] and the optimal values for instances
M-n200-k17 and M-n200-k16, which were first proved by the recent (not yet published)
algorithm proposed by Uchoa et al. [21].

7.2 Performance evaluation
This section evaluates the performance of our three ng-route pricing algorithms: the sim-

ple dynamic programming, the pure state space relaxation and finally the one that com-
bines the techniques of state space relaxation with completion bounds. These algorithms
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were tested inside a column generation procedure on CVRP instances. The results are
shown in Table 1. Columns Ins and OPT show the name and the optimum value of each
instance. Following these columns, the results for different values of A(N;) are shown.
For each X, where A(N;) = X, NG=X consists of four columns, LB, T1, T2 and T3, which
show the lower bound and the total time required to compute it for, respectively, Algo-
rithm 1, Algorithm 2 and Algorithm 3.

The results from Table 1 show that for small ng-set sizes (NG=8) the best approach
comes from the simple Algorithm 1. This is not a surprise because the maximum num-
ber of non-dominated labels per bucket is limited to 2%, and therefore the total number
of labels handled by the algorithm does not explode. In this case, a unique running of
the dynamic programming considering the entire state space is in general best than run-
ning it in the relaxed state space several times. For an average ng-set size (NG=16), the
pure DSSR still does not improve the times of Algorithm 1, but the combination of DSSR
and completions bounds gives a great improvement, allowing to run all instances in a
very reasonable time (except for instances M-n135-k7 and M-n121-k7). For large ng-set
sizes (NG>32), the pure DSSR significantly outperforms the basic dynamic programming
algorithm, but is still a poor algorithm for most instances. However, the DSSR with com-
pletions bound drastically improves the times.

We can also note that the bounds for NG=32 is almost as good as the elementary for
most instances. This is an evidence that the routes found by the pricing with large ng-
sets are almost elementary when the average size of the routes is up to 12 or 13 costumers,
in a time tipically less than the time required if the elementary constraint is imposed to
the routes. But this is not necessarily a rule. It is noteworthy to mention that the greater
is the ng-set size used, the better is the completion bounds obtained. In some cases, the
improved completion bounds resulting from the use of a large ng-set may compensate
the additional complexity imposed. This is evidenced in the time for running the instance
M-n121-k7, that is significatively greater for NG=32 than NG=64.

On the other hand, our algorithms spend a lot of time trying to solve the column
generation for instances M-n135-k7 and M-n121-k7, especially for large ng-set sizes. This
is mainly due to the average size of the routes that are part of an optimum solution for
these instances, which is greater than 17, causing the number of labels to be treated by the
dynamic programming algorithm prohibitive. In particular, instance M-n135-k7 has a car
capacity of 2210, a value at least 10 times greater than the capacity of any other instance
considered in the tests.

7.3 Other results

Now we show other results obtained with our best pricing algorithm, Algorithm 3. Table
2 presents the results of the column generation for the CVRP considering the separation
of capacity and strengthened comb cuts. As done previously, the results are shown for
different values of A(N;). Table 3 shows the results for the elementary routes for the
CVRP. The column named Elem shows the bounds and times of the column generation
without cuts and colunm Elem+Cuts presents the results with cuts. Finally, Table 4 shows
a summary of the results for the GVRP instances, all with separation of capacity and
strengthened comb cuts. Columns Set, Num and 6 show the name of the sets, the number
of instances in each set and the 6 used in the transformation, respectively. Columns NG=X
show the average gap and average time of the sets for the column generation with the ng-
route pricing for A(N;) = X (similarly, the results for the elementary routes are presented
for each set). These gaps are obtained comparing our values with the upper bounds
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available in the work of Bektas et al. [15]. We select some instances where our algorithms
performed better than those described by Bektas et al. [15]. The results for these instances
are shown in Table 5. The column Ins shows the name of each instance, columns LB and
UB shows the results from [15]. Values in bold are those in which we found the optimal
solution with our column generation algorithm.

8 Conclusions

The strength of the ng-route pricing is the ability of adjusting the size of the ng-sets in or-
der to calculate a lower bound, in a reasonable time, which is close as much as possible to
the elementary route bound, and this justifies an efficient implementation of the method.
In this paper we have presented an efficient ng-route pricing algorithm for ng-set sizes
up to sixty-four, a number at least three times greater than we know so far. Furthermore,
we showed how our restricted non-elementary route pricing algorithm can be easily ex-
tended in order to price only elementary routes. We highlighted the two elements that
allowed us to price elementary routes even for CVRP instances with 200 customers, a
result which doubled the size of the ESPPRC instances solved so far. The first element
is the way we adapt the Decremental State Space Relaxation (DSSR) technique of Righ-
ini and Salani [7] for the ng-routes context, thus improving their way of increasing the
state space along the DSSR iterations. The second is the combination of the DSSR tech-
nique with completion bounds, which are calculated in each iteration of the DSSR for the
purpose of accelerating the next iteration.

The final algorithm was tested for pricing elementary and restricted non-elementary
routes to a set partitioning formulation for both GVRP and CVRP. For the first one, we
could improve the lower bounds for up to 13 instances, since we also separated and
added capacity and strengthened comb cuts.
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Table 3: Results for selected CVRP instances

Elem Elem+Cuts

Ins OPT LB Time LB Time
A-n62-k8 1288 1254.83 1.48 1282.09 2.92
A-n63-k10 1314 1286.83 0.88 1303.87 1.33
A-n64-k9 1401 13769 1.34 1390.12 1.85
A-n69-k9 1159 1131.34 1.65 1145.24 1.85
A-n80-k10 1763 1731.58 3.34 1756.8 5.06
B-n50-k8 1312 1266.64 0.54 1303.74 0.74
B-n68-k9 1275 1204 1.56 1263.93 3.47
B-n78-k10 1221 1167.52 2.27 1217.25 4.97
E-n51-k5 521 517.14 0.71 51948 1.28
E-n76-k7 682 665.58 4.68 67194 5.92
E-n76-k8 735 718.77 2.44 72719 4.29
E-n76-k10 830 812.47 1.26 818.01 2.08
E-n76-k14 1021 1002.77 0.62 1007.5 0.80
E-n101-k8 815 79098 11.01 805.11 22.79
E-n101-k14 1067 1050.42 3.67 1055.01 4.25
F-n135-k7 1162 — — — —
M-n121-k7 1034 1029.79 1301.8 1033.23 7225.7
M-n151-k12 1015 997.43 52.04 1002.58 57.52
M-n200-k16 1274 1252.05 140.92 1254.16 149.73
M-n200-k17 1275 1254.01 140.89 125594 147.55
P-n50-k8 631 615.54 0.23 618.04 0.34
P-n70-k10 827 810.94 0.84 81529 1.24

Table 4: Summary of results for GVRP instances

NG=8 NG=16 NG=32 NG=64 Elem
Set Num # Gap Time Gap Time Gap Time Gap Time Gap Time
A 27 2 048% 0.29 040% 0.29 0.40% 0.26 0.40% 0.26 0.40% 0.22
B 23 2 0.15% 034 0.13% 034 0.12% 0.31 0.13% 0.32 0.13% 0.28
M 4 2 1.16% 18.11 1.12% 21.09 1.09% 27.18 1.08% 34.38 1.09% 24.40
P 24 2 043% 235 0.38% 348 0.38% 492 0.38% 92.79 0.38% 4.54
A 27 3 037% 019 0.25% 0.18 0.24% 0.15 0.24% 0.16 0.24% 0.13
B 23 3 023% 021 0.22% 0.18 0.22% 0.18 0.22% 0.20 0.22% 0.16
M 4 3 0.65% 10.39 0.53% 14.76 0.50% 23.42 0.50% 18.00 0.50% 15.31
P 24 3 044% 121 040% 3.14 0.40% 395 0.40% 12.11 0.40% 4.64
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