

PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 12/13

FSMDA Instantiation to Support NCL 3.1 Applications in
Ginga Reference Implementation

Luiz Fernando Gomes Soares
Carlos Eduardo Coelho Freire Batista

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 12/13 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena December/2013

FSMDA Instantiation to Support NCL 3.1 Applications in Ginga

Reference Implementation

Luiz Fernando Gomes Soares

Carlos Eduardo Coelho Freire Batista

Laboratório TeleMídia DI – PUC-Rio

Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ - 22451-900.

lfgs@inf.puc-rio.br

bidu@telemidia.puc-rio.br

Abstract. Applications that are somehow related to the content presented on the

main screen have been introduced to collective spaces, such as rooms with Digital

TV, theaters with Digital Cinema, conferences with interactive presentations, etc.

In this technical report we introduce a framework to support the execution of

distributed multi-device applications aiming at these collective spaces. The main

contribution is an interoperable software platform that offers high-level

abstractions that hide or minimize the complexity of dealing with this distributed

and heterogeneous execution environment, unlike existing solutions that have

limited functionality or are constrained to device brands. The proposed

architecture is presented by means of its instantiation, part of middleware Ginga,

and the support offered by the NCL language. However, the framework is not

constrained to NCL and Ginga. The instantiated platform has been tested against

different scenarios, which are also presented.

Keywords: multi-device applications, companion screen, digital TV; public

display, digital cinema, middleware; declarative environment; NCL.

Resumo. Aplicações que estão de alguma forma relacionadas com o conteúdo

apresentado na tela principal têm despontado em espaços de exibição coletivos,

tais como salas com TV digital, cinema digital, conferências com apresentações

interativas etc. Neste relatório técnico, nós apresentados um “framework” para

suporte à execução de aplicações distribuídas em múltiplos dispositivos, tendo

como alvo esses espações coletivos. A contribuição principal é uma plataforma de

software interoperável que oferece abstrações de alto nível que escondem ou

minimiza a complexidade do tratamento deste ambiente de execução distribuído e

heterogêneo, ao contrário das soluções existentes que possuem uma

funcionalidade limitada ou estão restritas a produtos específicos. A arquitetura

proposta é descrita por meio de sua instanciação, parte do middleware Ginga e

do suporte oferecido pela linguagem NCL. No entanto, o “framework” não está

restrito ao Ginga e à NCL. A plataforma instanciada foi testada frente a

diferentes cenários, que também são apresentados.

Palavras chave. aplicações multi-dispositivos, tela companheira, TV digital,

cinema digital, middleware, ambiente declarativo NCL.

FSMDA Instantiation to Support NCL 3.1 Applications in

Ginga Reference Implementation

© Laboratório TeleMídia da PUC-Rio – Todos os direitos reservados

Impresso no Brasil

As informações contidas neste documento são de propriedade do Laboratório TeleMídia (PUC-
Rio), sendo proibida a sua divulgação, reprodução ou armazenamento em base de dados ou
sistema de recuperação sem permissão prévia e por escrito do Laboratório TeleMídia (PUC-Rio).
As informações estão sujeitas a alterações sem notificação prévia.

Os nomes de produtos, serviços ou tecnologias eventualmente mencionadas neste documento são
marcas registradas dos respectivos detentores.

Figuras apresentadas, quando obtidas de outros documentos, são sempre referenciadas e são de
propriedade dos respectivos autores ou editoras referenciados.

Fazer cópias de qualquer parte deste documento para qualquer finalidade, além do uso pessoal,
constitui violação das leis internacionais de direitos autorais.

Laboratório TeleMídia

Departamento de Informática

Pontifícia Universidade Católica do Rio de Janeiro

Rua Marquês de São Vicente, 225, Prédio ITS - Gávea

22451-900 – Rio de Janeiro – RJ – Brasil

http://www.telemidia.puc-rio.br/

Table of Contents

1. INTRODUCTION .. 5

2. BACKGROUND .. 7

3. REQUIREMENTS .. 17

4. RELATED WORK ... 18

5. NCL SUPPORT TO MULTI-DEVICE APPLICATIONS ... 22

6. GINGA SUPPORT TO MULTI-DEVICE PRESENTATIONS 27

6.1 FSMDA APIs ... 28

6.2 Input Device Control Model ... 31

6.3 Fault recovery mechanisms ... 31

7. SYSTEM TEST CASES ... 32

7.1 Digital TV Scenario .. 32

7.2 Digital Cinema Scenario ... 34

7.3 SlideShow Presentation Scenario .. 35

8. CONCLUSIONS .. 35

ACKNOWLEDGMENTS .. 37

REFERENCES ... 37

ANNEX I - Overview of NCL Elements ... 40

ANNEX II – Data types used in the Input ControlAPI .. 43

FSMDA Instantiation to Support NCL 3.1 Applications in

Ginga Reference Implementation

Luiz Fernando Gomes Soares

Carlos Eduardo Freire Batista

Laboratório TeleMídia DI – PUC-Rio

Rua Marquês de São Vicente, 225, Rio de Janeiro, RJ - 22451-900.

lfgs@inf.puc-rio.br

bidu@telemidia.puc-rio.br

Abstract. Applications that are somehow related to the content presented on the

main screen have been introduced to collective spaces, such as rooms with Digital

TV, theaters with Digital Cinema, conferences with interactive presentations, etc.

In this technical report we introduce a framework to support the execution of

distributed multi-device applications aiming at these collective spaces. The main

contribution is an interoperable software platform that offers high-level

abstractions that hide or minimize the complexity of dealing with this distributed

and heterogeneous execution environment, unlike existing solutions that have

limited functionality or are constrained to device brands. The proposed

architecture is presented by means of its instantiation, part of middleware Ginga,

and the support offered by the NCL language. However, the framework is not

constrained to NCL and Ginga. The instantiated platform has been tested against

different scenarios, which are also presented.

1. INTRODUCTION

More and more consumers are using another device connected to the internet to check

emails, texts, browse on the web, shop, relate on a social network, etc., while watching

television, slideshow presentations, etc. Digital multitasking while watching some video

content has clearly become common usage.

In particular, a fundamental transformation is taking place in the “lean back” home video

entertainment environment. The passive TV viewing experience is giving way to a far more

interactive one. This transformation has begun in the beginning of the last decade with the

deployment of interactive applications in terrestrial digital TV systems [1, 2, 12] and has

gained impulse in the last years both with the launching of television sets with integrated

Internet capabilities and the introduction of companion screen applications. Today, rather

than solely broadcast-based, the new TV model is increasingly a broadcast/Internet based

hybrid [13, 20, 21, 27], and, rather than passive, it is increasingly interactive.

Companion screen applications (also named second screen applications) refer to TV-related

applications specifically designed to be used while watching TV on the main screen.

Applications that are somehow related to the content presented on the main screen have

also been introduced to other collective spaces, such as theaters with Digital Cinema,

conferences with interactive presentations, rooms with public display, etc. In these

applications, secondary devices – such as smart phones, tablets, and laptops – are used to

search, interact and engage with a rich variety of applications, websites and communities

while watching the main screen. Even though some of these applications can be used on

their own, they are usually aware of the content displayed on the main screen (TV most of

the time).

Although the great majority of TV-related applications are screen based, in some of them

secondary devices are not limited to ones that allow for second visible apparatus. As an

example, the next section presents an interactive movie narrative whose content flow is

controlled by viewers, randomly chosen in the movie theater, by using a phone call, that is,

using an audio device. Moreover, applications can run with independent control on each

secondary device, but can also run under a single control logic distributed over secondary

devices and the device that provides the main screen. So, to be more general, we will call

these applications “multi-device applications”.

In this technical report we are not interested in multitasking in its broad sense, but only in

applications that are somehow related to the content presented on the main screen: a TV set,

a movie screen, etc. More precisely, we are interested in applications targeting multiple

devices, which are specifically designed to be used while watching on the main screen. We

are interested in offering a framework to support this kind of applications and its use in

Ginga reference implementation to support multi-device NCL applications.

Several proprietary solutions have been deployed to support multi-device applications, but

the real problem comes when these applications run on several heterogeneous devices that

must communicate with each other (including the device supporting the main screen) to

accomplish a distributed synchronous presentation, mainly under a single logic control, but

with commands coming from multiple viewers. In this case, interoperability is a very

important issue; reuse of software components among applications is crucial; fault-tolerant

procedures are required, and support to current and upcoming applications is very desirable

in this application field that has just taken the first steps.

This technical report presents a framework (FSMDA – Framework to Support Multi-Device

Applications) that can be customized to any middleware standard [1, 2, 12, 13, 21],

including a multi-standard customization, and presentation description language (NCL-Lua;

HTML-JavaScript, SVG, SMIL, etc.). FSMDA runs distributed hypermedia applications

integrating resources from heterogeneous interconnected devices, considering

interoperability and fault-tolerant requirements. Depending on the FSMDA instantiation, it

can support each individual set of multi-device applications already reported and

summarized in Section 2, or all of them, including those to each there is not yet a

recognized conceptual model behind. FSMDA is presented based on its instantiation

targeting support to NCL (Nested Context Language) applications, extending its

middleware called Ginga, ITU-T Recommendation for IPTV services [21] and terrestrial

digital TV [1]. The new version of NCL and Ginga have been recently submitted to ITU-T

to be incorporated in the next version of the H.761 Recommendation. In this technical

report we also discuss some system test case developed for three scenarios targeting the

three collective spaces aforementioned.

The technical report is organized as follow. Section 2 analyzes several multi-device

applications highlighting its characteristics and differences, trying to establish which

scenarios the FSMDA proposal should support. Based on Section 2, Section 3 defines some

non-functional requirements for FSMDA. Section 4 discusses current approaches with

similar intent, in order to highlight our contribution. Taking NCL as a use case, Section 5

presents the data structures introduced by FSMDA to support multi-device applications.

Section 6 details the proposed software architecture introducing its instantiation, adopted by

the Ginga middleware reference implementation. Conducted system test cases are presented

in Section 7. Finally, Section 8 presents some final considerations and summarizes some

future work.

2. BACKGROUND

First, let us define (and redefine) some terms used in our discussion:

• Main device: the device that runs the code (a module of the distributed multi-device

application or an independent application) that controls the presentation on the main

rendering apparatus (e.g., the main screen);

• Secondary device: any device used to run a code (a module of the distributed multi-

device application or an independent application) while the main device is controlling

the main presentation;

• Distributed multi-device application: an application with modules that run on the

secondary devices and on the main device, in which there are some sort of

communication between these modules to perform the distributed presentation;

• Main application: an independent application or a module of a distributed multi-device

application that controls the presentation on the main device;

• Main audiovisual content: content presented on the main device (usually a stream or a

slide show) that multi-device applications have as a target; the main audiovisual content

at least starts its presentation on the main device and can be either the single content in

presentation or be presented with other content on the main device, under control of the

main application;

• Companion application: an independent application or a module of a distributed multi-

device application that runs in parallel with the presentation on the main device;

• Companion screen application (or second screen application): a particular case of

companion application in which its running code render some content in the screen of its

secondary device;

• Independent application: the main application or a Companion application that does not

communicate with other devices.

We have analyzed more than a hundred commercial multi-device applications, including

companion screen applications discussed and presented in [29], [34], and those focusing on

social inclusion designed to be used by the Brazilian profile of the ISDB-T digital TV [1].

Most of applications target the digital television domain, but some of them also target

Digital Cinema and Slideshow presentations.

There are several taxonomies in the literature grouping multi-device applications with

regard to their purposes, to their functionalities. In this technical report we follow a non-

functional approach, classifying these applications according to:

• their control logic: distributed with single control logic, or distributed with multiple

control logic;

• the scope of the main application: if it controls the display just of the main audiovisual

content on the screen, or if it controls additional content presented on the main device;

• their presentation: on single or on multiple devices;

• the semantic relationship between the content presented on the main device with content

presented on secondary devices: related or not related to the content meaning presented

on the main device;

• the temporal and spatial synchronization relationship between the content presented on

the main device with content presented on secondary devices;

• the communication established between the main device and secondary devices, and

between secondary devices, in the case of distributed applications.

Independent main applications displayed on a single screen are usual in broadcasted DTV

applications. Some of them are semantically related with the main audiovisual content, and

some are not, but the majority does not have any temporal synchronization with the main

audiovisual content, except that they must start during the presentation of this content. As

examples, Figure 1 presents a health broadcasted DTV application with neither semantic

nor synchronization relationship with the main video stream; Figure 2 shows an advert

application synchronized with the main video: at the exact moment the building with

apartments to sell appears in the main video, the picture with the building localization is

presented.

Figure 1 - T-health application about dengue fever Figure 2 - TV advert application: apartment sale

Of course independent main applications displayed on a single screen are out of this

technical report concern. Some simple distributed multi-device applications only offer a

kind of a more sophisticated remote control. Companion devices are used only to send

commands to the main device, taking profit of its interaction advantages such as touch

screens, sensors and high capable graphics rendering. The companion device can be used to

launch, pause, play, hide, resize, fast forward or rewind the main audiovisual content. In

these distributed multi-device applications there is no communication between secondary

devices. The communication is only between the secondary devices and the main device; a

unidirectional communication only to send commands.

Figure 3 shows the AT&T remote control. Once the content has been selected and launched

on the main screen, the companion screen can still be used to pause, play, fast forward or

rewind the content. Another example is Chromecast (Figure 4) which allows for browsing

for what to watch, control playback, and adjust volume using a secondary device.

Figure 3 – Using AT&T remote control application Figure 4 – ChromeCast
 (figure took from [29]) (https://www.google.com.br/intl/en/chrome/devices/chromecast/)

TV discovery applications are, in general, examples of distributed multi-device applications

with very similar characteristics to the last previous group of applications. TV discovery

applications allow searching, selecting and launching the selected content from the

companion screen to the main screen. Figure 5 shows an example of this kind of

application.

Figure 5 - SkyPlus iPad application EPG with several categories to sort programs: Entertainment,

lifestyle, movies, favorites (figure took from [29])

Distributed multi-device applications without any communication among secondary

devices and in which secondary devices communicate with the main device only to send

commands are also out of this technical report concern.

Still very closed to the independent main applications, we have the distributed multi-device

applications with single control logic to present their content on multiples devices.

Secondary devices must register on the parent device running the application logic in order

to be able to present the content addressed to them. We say that they run in a passive class.

Figure 6 shows a tic-tac-toe game as an example. The application runs on the main screen

device during a Kids Show. The game is displayed both on the main and companion

screens. Although semantically related with the main screen’s content, there is no temporal

synchronization with this content, except that the application is enable only during the Kids

show. A bidirectional communication between the (parent) main device and the secondary

devices must be established. Secondary devices communicate with each other via the parent

device.

Figure 6 – Tic-tac-toe game running on the primary device (first screen) and displayed both on the

first and companion screens.

Social TV applications aim at creating an attractive social TV network, using TV content as

a driver to join the network. They are examples of distributed multi-device applications

with independent control in which communication between secondary devices is essential.

Social TV usually consists of conversations about TV shows, carried out on social

networks, to rate, recommend or discuss shows—during or after initial broadcasting. Social

TV is without doubt the most popular way to use the companion screen. Most of

commercial Social TV applications do not have any synchronization with the main screen

content. Communication with the main device is not usual, except to start an application by

using some ACR (Authomatic Content Recognition) technology [3, 10]. Figure 7 present an

example on commenting TV shows. SideCastr application allows for synchronizing the

main audiovisual stream on the main screen with the companion screen for some specific

TV shows that are listed in the application. Then the consumer can comment in some pre-

defined categories and see other people’s comments while the show is on. In the example,

SideCastr recognized automatically that the NBA final 2012 was playing. In [29] several

other Social TV application examples (ConnectTV, tvtag, IntoNow, WayIn, etc.) can be

found.

Figure 7 – SideCastr application: comments can be post in any pre-defined categories (figure took

from http://www.sidecastr.com/).

In Social TV applications, secondary devices communicate with each other via a social

networking service, usually a Web-based service. The communication between the main

device and secondary devices is unidirectional, when available, to allow for the main

application sending synchronization commands to companion screen applications. The

communication is performed by some broadcast protocol, or via some ACR technology,

using the main audio (watermarking and fingerprinting) or visual information placed on the

main screen (QR code, for example) for synchronization.

Enrichment applications aim at giving extra information or content about the main

audiovisual content, to allow interactivity and enhance customer experience, especially

while watching the main screen. The additional content can be available at different

moment of the timeline: content available all the time; specific content available only

before or after synchronized content; content synchronized with the main screen available

only during the show. The type of interaction — synchronized with the content on screen

(whether the content is a live broadcast or recorded and watched at a later time), or

complementary (independent of the broadcast, which can be used even without the main

screen) — will determine, the appropriate automatic content recognition (ACR) system or

communication protocol required. As an example of Enrichment applications with

independent control, IntoNow companion screen application recognizes automatically

which TV show/channel is played on the main screen and displays automatically related

information. In this example, ABC World News was live and the screenshot in Figure 8

shows informational content about the American election, allowing access to even further

information by tapping on “who will win” or the electoral scoreboard.

Figure 8 – Providing additional content automatically with IntoNow (figure took from [29])

IntoNow is an example of Enrichment application in which the communication between the

main device and secondary devices is unidirectional, to allow for the main application

sending synchronization commands to companion screen applications. The additional

information presented on secondary devices is provided by some Web service.

Enrichment applications are well known applications in terrestrial DTV systems. There are

a lot of independent main applications designed for these platforms. Figure 2 shows a TV

commercial example. A study led by Decipher for Red Bee Media has shown that more

people are waiting for companion screen applications for live events than for other content

[9]. As another example of Enrichment application with independent control, the

companion screen application in Figure 9 allows for buying tickets for the FIFA World Cup

2014 and is synchronized with the main screen soccer game using QR Code.

Figure 9 – QR code launching a companion screen application

In terrestrial DTV it is usual having the additional companion screen content received from

the main application. The main application is in charge of receiving both the content to be

presented on the main device as well content to be presented on secondary devices. ACR

technology is not used in this case. Instead a bidirectional communication channel is

established between the main device and the secondary devices, using some pre-defined

protocol. Secondary devices must pair to the main device to receive the content to be

presented and synchronization commands. Sometimes, even the companion application

logic control code is received from the main device. The communication channel is

bidirectional because it is usual having the companion application also sending

synchronization command to the main application. As an example, Figure 10 shows a

snapshot of a companion screen Enrichment application controlled by the Ginga

middleware [39], which is responsible for synchronizing the additional interactive

information with the content displayed on the main screen. The application is related to the

Band News live broadcast. The content shown on the companion screen was broadcasted,

received by the main device (a TV set with Ginga middleware) and sent to the companion

screen device via Wi-Fi or Bluetooth network.

Figure 10 – Companion screen of the Band News enrichment application

The Gamification concept has been adopted by some companion screen applications. It

consists in rewarding users when they perform some specific actions. Figure 11 shows a

distributed multi-device application under the control of the Ginga middleware [39], which

is responsible for synchronizing the puzzle game information with the monument displayed

on the main screen. For each monument there is a puzzle that gives points to viewers that

manage to complete it. The points can be then used to earn discounts in an online

bookstore. This application has exactly the same non-functional characteristics presented

for the application shown in Figure 10.

Figure 11 – Increasing engagement with gamification.

As a last example of Enrichment applications, Figure 12 shows a soccer match in which,

synchronized with moment that a penalty is signalized, a game is sent to the two first

devices paired to the main device (the “penalty shooter” is sent to the first device and the

“goalkeeper” to the second one). The received game prompts their viewers for choosing a

direction. Afterwards, an animation exhibits the result of the penalty shootout on the main

screen.

Figure 12 – Brazilian movie invitation to the 2014 FIFA World Cup

The non-functional requirements of this application are particularly interesting. First, we

must establish a bidirectional communication channel between the main device and the

secondary devices. Secondary devices must pair to the main device to establish the

connection. Only the first and second paired device will receive the game from the main

application. The game is adapted to the viewer role: shooter or goal keeper. The choices

made by the first two paired devices are sent back to the main application that will show the

game result on the main screen. We can see here the logic of the main application inducing

the logic of the companion screen application and vice versa, by exchanging command and

media content.

For over a decade, producers have been looking for the most effective ways to marry TV to

the Web. Some criticism argues that when bringing the Web’s content model to the TV we

are limiting the possibilities. Distributed multi-device applications, with a rich synchronize

communication between the multiple devices bring new content models, including

interactive narratives. Two examples are shown n in Figures 13 and 14. In the first, an

interactive zombie movie adventure makes the merchandize of Hell Pizza, a New Zealand-

based pizza chain. The movie originally produced for the main screen1 was modified to run

on companion screens. The interactive narrative computes the total of viewers’ choice and

change the narrative flow according to the majority of votes. Figure 13 shows a decision

point in which viewers must decide if the pizza delivery guy lets the man get in the car.

1
 https://www.youtube.com/watch?v=9p1yBlV7Ges

a) Main screen b) Companion screen

Figure 13 – Hell Pizza interactive narrative
2

In Figure 14 the secondary devices are mobile phones. Last Call3 is the first interactive

horror movie in the world where the audience is able to communicate with the protagonist.

A film is controlled by a member of the audience, thus blurring the boundaries between

game and film. Language recognition software transforms the participant's answers via

mobile phone into specific instructions that launches an appropriate follow-up scene. To

participate in the adventure, audience members submit their mobile phone numbers to a

speed dial code when they buy their ticket. The moment the female protagonist takes out

her phone to call someone who might be able to help her, the film's controlling software

contacts one of the submitted mobile phone numbers. Every single choice shapes her fate:

it's a matter of life and death.

a) Main screen (What should I do?) b) Companion device: mobile phone (Keep going!)

Figure 14 – Last Call interactive narrative

Table 1 summarizes the non-functional analyses of the sixteen applications analyzed in this

Section.

2
 A a LITTLESISTERFILMS production. Starring Dj Iwikau, Ben Edwards & Emily Trenberth Producer Katie O'Brien. Writer, Director

& Editor Logan McMillan.

3
 13th Street Last Call is made by Jung von Matt/Spree (Idea), Film Deluxe (Film), nhb (Sound), Telenet (IVR), AixVox and

Powerflasher (Software).

Table 1 – Non-functional aspects of the analyzed applications.

N
a
m

e

T
y
p

e
C

o
n

tr
o
l

lo
g
ic

C
o
m

m
u

n
ic

a
ti

o
n

b
e
tw

ee
n

se

co
n

d
a

ry

d
ev

ic
e
s

C
o
m

m
u

n
ic

a
ti

o
n

b
et

w
ee

n
 t

h
e

m
a
in

d

ev
ic

e
a

n
d

se

co
n

d
a
r
y
 d

ev
ic

es

D
a
ta

 s
en

t
fr

o
m

 t
h

e
m

a
in

a
p

p
.
to

 c
o
m

p
a
n

io
n

 a
p

p
s.

.

D
a
ta

 s
e
n

t
fr

o
m

c
o
m

p
a
n

io
n

a
p

p
s.

 t
o
 t

h
e

m
a

in
 a

p
p

.

P
a
ir

in
g

D
ev

ic
e

M
a
n

a
g
e
m

en
t

F
a
u

lt

h
a
n

d
li

n
g

m
ec

h
a
n

is
m

s

M
id

d
le

w
a
re

S

u
p

p
o
rt

K
id

s
S

h
o

w

G
a
m

e

S
in

g
le

V

ia
 m

ai
n
 a

p
p
.

P
ro

p
ri

et
a
ry

 p
ro

to
c
o
l

v
ia

 W
i-

F
i

o
r

B
lu

et
o

o
th

 n
e
tw

o
rk

A
ll

 c
o

m
p
a
n

io
n
 d

ev
ic

e’
s

m
ed

ia
 c

o
n
te

n
t

In
te

ra
c
ti

o
n

n
o

ti
fi

ca
ti

o
n

Y
e
s

W
it

h
o
u

t
an

y

v
er

if
ic

at
io

n

A
s

a
g
ro

u
p

N

o

S
ta

n
d
a
rd

 D
T

V

m
id

d
le

w
ar

e

ar
ch

it
ec

tu
re

w
it

h
 p

ro
p
ri

et
ar

y

so
lu

ti
o
n

s

S
id

eC
a

st
r

S
o

ci
al

 T
V

D

is
tr

ib
u

te
d

V

ia
 s

o
ci

a
l

n
e
tw

o
rk

in
g
 s

er
v

ic
e

P
ro

p
ri

et
a
ry

 a
u

d
io

fi
n

g
e
rp

ri
n

ti
n

g

S
y

n
ch

ro
n
iz

at
io

n
 i

n
fo

rm
a

ti
o

n

—

N
o

A

s
a

g
ro

u
p

—

O

n
ly

 f
o

r
A

C
R

In
to

N
o

w

E
n

ri
ch

m
en

t
D

is
tr

ib
u

te
d

V

ia
 s

o
ci

al

n
e
tw

o
rk

in
g

 s
er

v
ic

e

P
ro

p
ri

et
a
ry

 a
u

d
io

fi
n

g
e
rp

ri
n

ti
n

g

S
y

n
ch

ro
n
iz

at
io

n
 i

n
fo

rm
a

ti
o

n

—

N
o

A

s
a

g
ro

u
p

—

O

n
ly

 f
o

r
A

C
R

F
iF

A
 2

0
1

4

T
-C

o
m

m
er

ce

D
is

tr
ib

u
te

d

—

Q
R

 c
o

d
e

S
y

n
ch

ro
n
iz

at
io

n
 i

n
fo

rm
a

ti
o

n

—

N
o

A

s
a

g
ro

u
p

—

O

n
ly

 f
o

r
A

C
R

B
an

d
 N

ew
s

E
n

ri
ch

m
en

t
D

is
tr

ib
u

te
d

—

P
ro

p
ri

et
a
ry

 p
ro

to
c
o
l

v
ia

 W
i-

F
i

o
r

B
lu

et
o

o
th

 n
e
tw

o
rk

A
ll

 c
o

m
p
a
n

io
n
 d

ev
ic

e’
s

m
ed

ia
 c

o
n
te

n
t,

 a
p

p
li

ca
ti

o
n

co
d

e
a
n
d

 s
y

n
ch

ro
n
iz

at
io

n

in
fo

rm
at

io
n

—

Y
e
s

W
it

h
o
u

t
an

y

v
er

if
ic

at
io

n

A
s

a
g
ro

u
p

—

S
ta

n
d

ar
d

D

T
V

m
id

d
le

w
ar

e

a
rc

h
it

ec
tu

re

w
it

h
 p

ro
p
ri

et
ar

y

so
lu

ti
o
n

s

R
io

 M
o
n
u

m
en

ts

G
a
m

if
ic

at
io

n

D
is

tr
ib

u
te

d

—

P
ro

p
ri

et
a
ry

 p
ro

to
c
o
l

v
ia

 W
i-

F
i

o
r

B
lu

et
o

o
th

 n
e
tw

o
rk

A
ll

 c
o

m
p
a
n

io
n
 d

ev
ic

e’
s

m
ed

ia
 c

o
n
te

n
t,

 a
p

p
li

ca
ti

o
n

co
d

e
a
n
d

 s
y

n
ch

ro
n
iz

at
io

n

in
fo

rm
at

io
n

—

Y
e
s

W
it

h
o
u

t
an

y

v
er

if
ic

at
io

n

A
s

a
g
ro

u
p

—

S
ta

n
d

ar
d

D

T
V

m
id

d
le

w
ar

e

a
rc

h
it

ec
tu

re

w
it

h
 p

ro
p
ri

et
ar

y

so
lu

ti
o
n

s

S
o

cc
er

 M
a
tc

h

E
n

ri
ch

m
en

t
D

is
tr

ib
u

te
d

—

P
ro

p
ri

et
a
ry

 p
ro

to
c
o
l

v
ia

 W
i-

F
i

o
r

B
lu

et
o

o
th

 n
e
tw

o
rk

A
ll

 c
o

m
p
a
n

io
n
 d

ev
ic

e’
s

m
ed

ia
 c

o
n
te

n
t,

 a
p

p
li

ca
ti

o
n

co
d

e
a
n
d

 s
y

n
ch

ro
n
iz

at
io

n

in
fo

rm
at

io
n

In
te

ra
c
ti

o
n

n
o

ti
fi

ca
ti

o
n

Y
e
s

W
it

h
o
u

t
an

y

v
er

if
ic

at
io

n

A
s

a
g
ro

u
p

a
n
d

in
d

iv
id

u
a
ll

y

N
o

S
ta

n
d

ar
d

D

T
V

m
id

d
le

w
ar

e

a
rc

h
it

ec
tu

re

w
it

h
 p

ro
p
ri

et
ar

y

so
lu

ti
o
n

s

H
el

l
P

iz
za

In

te
ra

ct
iv

e

N
a
rr

a
ti

v
e

D
is

tr
ib

u
te

d

V
ia

 m
ai

n
 a

p
p
.

P
ro

p
ri

et
a
ry

 p
ro

to
c
o
l

v
ia

 W
i-

F
i

o
r

B
lu

et
o

o
th

 n
e
tw

o
rk

A
ll

 c
o

m
p
a
n

io
n
 d

ev
ic

e’
s

m
ed

ia
 c

o
n
te

n
t,

 a
p

p
li

ca
ti

o
n

co
d

e
a
n
d

 s
y

n
ch

ro
n
iz

at
io

n

in
fo

rm
at

io
n

In
te

ra
c
ti

o
n

n

o
ti

fi
ca

ti
o

n

Y
e
s

W
it

h
o
u

t
an

y

v
er

if
ic

at
io

n

A
s

a
g
ro

u
p

—

—

L
a
st

 C
a
ll

In

te
ra

ct
iv

e

N
a
rr

a
ti

v
e

D
is

tr
ib

u
te

d

V
ia

 m
ai

n
 a

p
p
.

P
h

o
n

e
ca

ll

A
u

d
io

 c
o

n
te

n
t

A
u

d
io

 c
o

n
te

n
t

Y
e
s

W
it

h
o
u

t
an

y

v
er

if
ic

at
io

n

A
s

a
g
ro

u
p

a
n
d

in

d
iv

id
u

a
ll

y

N
o

—

In Ginga reference implementation we are interested to give support to all kind of

distributed multi-device applications in which the main audiovisual content are at least

semantically related to information presented on secondary devices. Secondary devices

must be aware of the content that is displayed on the main device. Single-device

applications are out of discussion in this technical report, since they are already supported

by Ginga since its earliest version.

Although there are a number of applications trying to “communicate” with the main

application, most of them lack this functionality. The connected ones either have limited

functionality or support limited main device brands. Usually applications are non-generic in

each specific concept. In other words, used protocols (in terms of communicating with the

main device) are brand specific or used by limited solutions. The current discrepancies

between platforms and technologies used to produce, activate and optimize multi device

initiatives have prompted broadcasters such as the BBC to make an attempt at standardizing

companion screen solutions4. Interoperability is an important requirement in this technical

report proposal. FSMDA architecture tries to be generic enough to be adopted by different

standards, or even as a multi-standard solution.

3. REQUIREMENTS

FSMDA is particularly interested in spaces in which one device (the main device) is shared

by all users (e.g., a Digital TV receiver, a Cinema projector, a Slideshow projector, a Public

Display, etc.), and to which other (possibly heterogeneous) secondary devices can join to

support distributed presentations (consumed by a group of people). More precisely, the

Ginga instantiation is interested in collective spaces in which a hierarchical resource-

orchestration is present, always having the main device as the root of the hierarchical tree,

since the hierarchical model is common in several collective spaces.

In all examples discussed in Section 2 we can see only two hierarchical levels: the main

application level and the secondary device application level. However there are some cases

in which it is important to give support to a depth hierarchical tree. Take as an example

slideshow presentation, in which the main screen, connected to a computer (main device),

displays the multimedia main content. The main application can delegate control of the

presentation to a companion application (second hierarchical level) running on the

speaker’s secondary device (a tablet, for instance). The speaker may ask questions or send

additional content to each person whose mobile device (i.e., a third hierarchical level) is

paired with the speaker’s secondary device. Results from the interaction between the

speaker and the audience may be displayed on the main screen.

We have identified in most of distributed multi-device applications that secondary devices

usually act as a group, which we call “class”. Earlier [39] we have identified two types of

device classes whose functionalities are extended in this technical report. Moreover, two

more class types are added in the current proposal. A secondary device can be paired to

more than one class offered by a parent device. The four class types can be summarized as

follows:

• Passive – devices paired to a passive class must be able to present pre-rendered media

streams received from a parent device to which they are paired in the hierarchical

4
 http://tbivision.com/news/2013/03/bbc-calls-for-second-screen-standards/53282/

orchestration tree. They navigate in such content as a group; that is, any navigational

action reflects in all paired devices (individual navigation is not allowed).

• Active – devices paired to an active class must be able to decode, render/run and control

media content (part of the distributed multi-device application) by themselves, control

that has been delegated to them by the parent device to which they are paired.

Applications, and their content, delegated to devices in an active class can come from

the parent device or from any external mean. In active classes, individual (personalized)

navigation on media content is possible. The main device runs this class profile by

default and induces the hierarchical orchestration. Each device paired to an active class

can also be a parent device and define new classes, hierarchically.

• Media Capture – devices paired to this class can capture media content and send them to

the device it is paired to, according to the logic of the multi-device application.

• On Demand Media – devices paired to this class must support the UPnP AV

MediaServer ControlPoint service [22], which enables them to browse a video list and

request them on demand. The shared video list is controlled according to the logic of the

multi-device application.

It should be stressed here that pairing in the scope of class definition can be explicit, by

means of some protocol usage, or defined by default. For example, in application of Figure

8, all secondary devices can be considered to be paired by default; the companion screen

application was received by an external mean.

Besides the analyzed applications (some of them discussed in Section 2), we have exercised

different usage scenarios for four collective spaces (Digital TV, Public Display, Digital

Cinema and Interactive Slideshow), using different combinations of device classes. Such

scenarios were used to define system test cases presented in Section 7. From our analysis

and these scenarios, besides the support to the aforementioned orchestration model, the

following high-level requirements were established for FSMDA:

• Coarse (soft) temporal synchronization must be assured among media content being

rendered/executed on different devices (fine/hard temporal synchronization should be

pursued, but it is not addressed in this technical report);

• Paired devices in a same class may be treated (referred) as a group, or individually;

• Devices must be able to join and leave the application presentation dynamically;

• Communication among devices may use individual or group communication protocols,

allowing group and individual media content rendering;

• Heterogeneous information may be collected and sent from parent or child devices;

• Content associated to different device classes may be adapted according to the

characteristics of the devices, users, and user locations;

• Interoperability mechanisms must allow for the integration of devices based on different

hardware and software, and must support different network services and protocols;

• Automatic and semi-automatic fault handling procedures must be conducted on

situations in which components fail or act arbitrarily against the distributed application

logic.

4. RELATED WORK

Several empirical studies show a clear tendency of the user to use a second device while

watching television [16, 33]. Some other studies [4, 30] show some apparent new behaviors

on the part of users when consuming content via multiple devices.

What do people want while they watch TV? According to Miso [30], the more we ask

people about what they want, the more we realize that the answer is fundamentally

different. No one really has the answer yet. Maybe because not all possibilities have been

exposed to and experienced by users who remain trapped to web-based models. Many

questions regarding valuable and useful concepts in an interconnected multi-screen

environment stay unanswered. That is why it is so important to have a framework that can

be able to support upcoming applications and not only the current ones. Trying to

understand the current practice of multi-device usage within domestic contexts Huang et al.

[19] empirically explored the activity of chatting while watching TV; Geerts et al. [15]

report insights on how the program genre of a TV show has influence on the

communication behavior of the users; Hess et al. [18] look for user requirements and

preferences for an integrated social media system to be applied in future designs and

developments. On the other hand, MediaTVcom [29] analyses the segmentation of the

companion screen application market and describes the challenges to launch such

applications.

The great majority of companion screen applications [29, 34] are distributed client-server

applications with independent control running on each secondary device. Some of them,

like Discovery applications [29] do not have communication among client secondary

devices running the application. In some other, like Social TV applications [29], the client

side applications may communicate, but indirectly, via some Web service (the server side).

Looking at our class definition in Section 3, we can say that each independent client

application is in the same “active class”, defined implicitly. However, this is a class with

restrictions, in which no pairing is necessary, and thus, no verification to join the distributed

application is carried out. Moreover, when existing, the communication with the main

device is unidirectional, in order to establish some kind of synchronization with the main

audiovisual content. This communication usually uses proprietary protocols based on some

ACR (Automatic Content Recognition) control.

Generally, companion screen applications must be installed in all devices prior to

execution, making an obstacle to deployment. They are typically developed without any

middleware or framework support, except those for ACR control generally third party

proprietary solutions. The two main methods used are Audio Watermarking and Audio

Fingerprinting, and which is most suited depends on a couple of factors.

Audio watermarking consists in analyzing the audio track to reveal positions in the signal

where, considering the signal masking characteristics of the human audition, we can hide

some digital codes without affecting the sound quality of the original. The main advantage

of this technique is that, if you are a TV channel or a content owner, you can encrypt the

data you are injecting in the stream, thus making other actors unable to exploit your tags.

The data injection occurs on short intervals (like 2 seconds or less), so the technique

provides good time accuracy. Drawbacks are that the bandwidth available is not so big

(only several bytes in each audio segment) and that the technique is inhibited by long

periods of silence where we can’t hide anything. Usually there is enough space to hide a

programme identifier and time information, or a trigger code, without it being noticeable or

affecting the quality. As long as the application can pick up the watermark signal, it can tell

you what you’re watching and how far through it you are.

Audio fingerprinting consists first in taking an imprint (also referred as “signature”) of the

audio track of the video contents and store it into a database. The client (companion screen)

device takes the same type of audio imprint on short timescale (like 5 to 10 seconds) and

sends it to the server which then searches for it into the stored imprints collection and

returns the content ID when it’s found. This technique has a main advantage: you don’t

have to be the owner of the contents to analyze it, so this is a perfect way to build

synchronized services if you are not a TV channel or a cinema studio. But it has also many

drawbacks: you must run a huge server infrastructure to compare the signatures, the

signature doesn’t allow to identify the distribution source, multi-lingual contents require

several signatures, and finally you need to have access in advance to the fresh contents to

generate signatures before their air time- live fingerprinting being a kind of challenge at

high scale.

The great advantage of using ACR for synchronizing with the main audiovisual content is

that the communication between the main device and the secondary devices does not

depend on any protocol to be supported by the main device. In other words, the companion

screen client applications are totally independent from the implementation of the main

device, although can be dependent from the content owner, especially in the case of

watermarking.

Some platforms for connected TV support companion applications. Yahoo Connected TV

[11] includes a JavaScript API for integrating mobile devices. The platform uses the

mDNSResponder library (part of the Bonjour platform) for service discovery and supports

secure message exchange between the main device and the paired devices (individually, via

SSL). Google TV5 is a platform delivered by many connected TV manufacturers. The

Google TV API allows smart phones and tablets to be used as enhanced remote controllers

and also to display related content. The platform defines a pairing protocol (Google TV

Pairing) and a message exchange protocol (Anymote). However, both Google TV and

Yahoo TV platforms do not support transmission of media content between devices, do not

have any specific functionality for media synchronization, and have no fault tolerant

mechanisms associated to the distributed multimedia features.

Multi-device applications have recently received attention in terrestrial Digital TV systems.

However, although some platforms provide middleware support to distributed multi-device

applications, few applications are of this type. While based on open standards, the resulting

systems usually are not open to anyone at all: only broadcasters and CE manufacturers have

a say in what applications to run. With the advent of integrated broadcast/broadband

systems the situation is changing little by little.

Ginga [1, 21] supports multi-device presentations for applications developed using the NCL

language [36]. The middleware specification for ISDB-T DTV system delegates to

commercial implementations how devices are paired. The current reference implementation

of Ginga [38] uses a very simple service discovery process, and has support to only three

classes (one passive class and two active classes). Dynamic specification of device classes

is not supported. The implementation does not either offer mechanisms to identify devices

registered in a class. Child (secondary) devices can only send event notifications to the

parent device (e.g. main device) to maintain inter-media synchronization. Media content

can only be sent from the parent to child devices. It is not possible to have Ginga accessing

linked resources using technologies like UPnP (briefly explored in [8]).

ARIB STD-B23 Java-based middleware [2] defines an API to get resources from devices

connected to a DTV receiver, providing basic device communication functionalities,

5
 http://www. google.com/tv

mechanisms for querying device status, and procedures for device service discovery. The

platform offers limited support to UPnP, Bluetooth and USB device connections. The API

does not address functionalities for media synchronization.

There are several proposals for integrating DVB/MHP middleware with the OSGi

framework [25]. Their goal, to some extent, is to allow MHP Xlets to use resources

associated to registered OSGi services. However, the approaches do not focus on multi-

device presentations or on distributed media synchronization.

HbbTV middleware has already announced that a set of companion screen functionalities

will be present in its next specification [13]. Such specification, which has no commercial

or prototype implementation available to this date, aims at integrating interactivity into the

TV by use of web technology, allowing for the use of companion screens (like smart

phones and tablets) and more sophisticated synchronization scenarios.

In short, all main terrestrial DTV systems plan to offer better support for interoperable

distributed multi-device applications, but today only Ginga has a fair support, but still

needing improvements. Some research projects, however, address important issues on the

definition of a framework to support interoperable multi-device applications.

Ginga reference implementation has adopted the architecture introduced in [37, 39], which

has introduced the concept of class of devices and of hierarchical orchestration. Cesar et al.

[9] proposed an architecture in which users share a common control environment and view

the common content on the main screen. Secondary device discovery is done by an

exchange of invitations to join the network using Bluetooth, WiFi, or IP Multimedia

Subsystem (IMS). After devices have been discovered, they provide the descriptions of

their physical, rendering, and interactive capabilities. Applications are described as a

Software Oriented Architecture (SOA). Based on device and service descriptions, a

matching algorithm together with basic recommendation facilities are used to determine

where to render a media and how to provide user interaction in the most suitable way

depending on the context of use. Each matched secondary device receives an initial SMIL

3.0 document [7] in which users may perform individual edits concurrently (to enrich the

video watched on the main screen) and incrementally, creating a new SMIL document. The

resulting micro-personal recommendation is the sent based on the social network

information. All communication is done via SMIL documents. A Presentation module is

responsible for parsing and rendering these documents on secondary devices.

The neXtream system prototype [26] (using Apple TV and iOS devices) integrates mobile

applications, social networks, and video streaming using the Bonjour protocols for service

discovery and delivery over IP networks. OSC messages enable mobile devices to be used

as remote controllers in content navigation. MDCS (Multimedia Delivery and Control

System) [23] dynamically generates multimedia applications, focusing on content adaption

and on session mobility. The system generates SMIL code optimally configured to the

characteristics of the integrated devices. Neither neXtream nor MDCS support media

exchange between paired devices.

The proposal of an API aiming at providing multi-screen capabilities in traditional web

applications with minimal effort is also explored by [5]. The API introduces two event

types “DeviceConnected” and “DeviceDisconnected” which are triggered in case a

secondary device is connected or disconnected. The notification mechanism abstracts from

the mechanisms used to discover and pair the main device (TV) and secondary devices.

After a secondary device is connected, the main application can send a request to it in order

to launch a specific web application. In case the user of the secondary device accepts the

request, the companion web application will be launched and the success callback will be

triggered in the main application by passing a message port (part of the HTML5 Web

Messaging API) as input parameter. The main application can use the port.postMessage and

port.onmessage to exchange data with the companion application. Just references are sent

on the messages, no media objects nor streams. As proof of concept, the API was

implemented as part of a prototype called FAMIUM6.

Few efforts can be found outside the digital TV domain. Interactive Cinema has been

explored by different systems, offering different types of user interaction. Most approaches

are installations based on single-user or on very specific interaction mechanisms; only few

of them use devices adjoined by viewers. AVIE [28] and LiveCinema [24] offer

mechanisms (based on specific hardware and software) so that viewers may alter the pace

and the content being projected.

DiS [14] and Active Presentation [6] are proposals for interactive slideshow presentations

using multiple devices. DiS distributes the visualization of Microsoft Powerpoint

presentations using IP multicast. It supports dynamic device registration and device

hierarchical control. Active Presentation uses NCL to capture information comprising

slideshow presentations, offering limited reproduction of the distributed content. Although

these efforts provide a relevant set of functionalities, they only partially support some of the

requirements discussed in previous section.

Distributed multi-device applications require developers to think about non-functional

aspects not present when designing single-screen applications. This includes discovery,

pairing, bidirectional multi-device group and unicast communication and synchronization,

alignment of user preferences, etc. Looked at individually, none of these aspects are

unsolvable today. Each aspect has some solution, usually proprietary, targeting specific

device brands and specific domain of applications. However, there is no interoperable

common baseline, no language support or software platform that offers high-level

abstractions that hide or minimize the complexity of dealing with this distributed and

heterogeneous execution environment, in all mentioned non-functional aspects, to aid

developers that need to build multi-device applications. This is the main contribution of this

Technical Report.

5. NCL SUPPORT TO MULTI-DEVICE APPLICATIONS

NCL 3.1 supports the four previously mentioned device classes defined by FSMDA:

passive, active, media capture, and on demand media. In NCL, the <regionBase> element is

associated with a device class where the presentation will take place. In order to identify the

class (i) of devices, the device attribute of the element can receive the “class(i)” value.

The <regionBase> element also defines the capabilities a device aiming at registering to a

class must have. The device class description, an RDF specification, is the content of a

<metadata> element, child of the <regionBase> element that defines the class.

The device class description is based on CC/PP, using the UAProf framework [41]. The

description model introduces the RDF DeviceClass (as shown in Table 2). It is composed

by two simple attributes (maxDevices and minDevices) plus three instances of UAProf

classes (which are subclasses of the generic element defined by CC/PP): SoftwarePlatform,

6
 http://www.fokus.fraunhofer.de/go/famium

NetworkCharacteristics and HardwarePlatform. The first two are extended with new

attributes, as shown in Table 3 and explained ahead.

Table 2. DeviceClass definition.

DeviceClass

Attribute Type

fsmda:classType String

fsmda:maxDevices Number

fsmda:minDevices Number

fsmda:HardwareRequirements prf:HardwarePlatform

fsmda:SoftwareRequirements prf:SoftwarePlatform

fsmda:NetworkRequirements prf:NetworkCharacteristics

Table 3. Attributes incorporated to the UAProf classes.

SoftwarePlatform Class

Attribute Type Example

fsmda:softwareParams rdf:Bag “KEY=12345”

NetworkCharacteristics Class

Attribute Type Example

fsmda:pairingMethod Literal “UPnP”, “QRCode”, “none”

fsmda:supportedMessages rdf:Bag “HTTP”, “RTP”, “Watermark”
“Fingerprinting”; “OCR”

fsmda:networkParams rdf:Bag “IP_ADDR=10.0.1.1”

FSMDA, and thus NCL 3.1, allows for limiting the number of devices (maximum and

minimum) a class has. This mechanism comes together with a method to identify each

individual device in a class. Constraining the number of registered devices in a class is

important for applications that only make sense when used by a certain number of

secondary devices. Identifying a device within a class is important to allow content

personalization.

The SoftwarePlatform UAProf class has a new attribute, softwareParams, used to specify

arbitrary parameters that might be used with the secondary devices’ services (for instance, a

key to be used by an application).

The NetworkCharacteristics UAProf class has three new attributes: pairingMethod stores

the identification of the pairing mechanism that must be used by child devices (none by

default); supportedMessages specifies the protocols and communication technologies that

must be supported by child devices (for instance, HTTP messaging or audio watermarking

for synchronization); and networkParams defines parameters for network services of the

child devices (for instance, to restrict which address can be used by a secondary device).

The <regionBase> element can also define a set of regions on devices paired to its

associated class. Regions define where media objects’ content may be displayed, and are

defined using <region> elements children of the <regionBase> element.

A media object is represented in NCL by <media> elements. These elements can have

<property> child elements associating the display of the media object’s content to a device

class and to a display region on devices paired to the class. Alternatively, a <media>

element can refer (though its descriptor attribute) to a <descriptor> element that refers

(through its region attribute) to a <region> element defined as a child of a <regionBase>

element associated to some device class. Listing 1 illustrates both cases. In lines 26, 19, and

7, an image is defined to be displayed on region “left=25%, top=25%, width=100%,

height=100%” of all devices paired to class (5). In lines 27 to 34, another media content is

defined to be displayed in the same region of all devices paired to class (5). If both contents

are displayed simultaneously, the second one (line 27 to 34) superposes the first one

because its zIndex attribute has a higher value.

1. <ncl id=“example” xmlns=“http://www.ncl.org.br/NCL3.0/EDTVProfile”>

2. <head>
3. <regionBase >

4. <region id=“loc01” width=“100%” height=“100%” zIndex=“1”/>

5. </regionBase>

6. <regionBase device=“class(5)”>
7. <region id=“loc02” left=“25%” top=“25%” width=“50%” height=“50%” zIndex=“2”/>

8. <metadata>

9. RDF Tree
10. </metadata>

11. </regionBase>

12. <regionBase device=“class(7)”>
13. <metadata>

14. RDF Tree

15. </metadata>

16. </regionBase>
17. <descriptorBase>

18. <descriptor id=“desc01” region=“loc01”/>

19. <descriptor id=“desc02” region=“loc02”/>
20. </descriptorBase>

21. …

22. </head>

23. <body>

24. …

25. <media id=“example01” src=“../media/video.mp4” descriptor=“desc01”/>

26. <media id=“example02” src=“../media/image.png” descriptor=“desc02”/>

27. <media id=“example03” src=“child-device://class(7).device(1)/VideoCapture”>
28. <property name=“device” value=“class(5)”/>

29. <property name=“left” value=“25%”/>

30. <property name=“top” value=“25%”/>
31. <property name=“width” value=“50%”/>

32. <property name=“height” value=“50%”/>

33. <property name=“zIndex” value=“3”/>
34. </media>

35. <media id=“example04” src=“../app/advert.ncl” type=“ application/x-ncl-NCL”

 descriptor=“desc02”/>

36. ...

37. </body>

38. </ncl>

Listing 1. Examples of class definition and media objects association to classes.

In NCL, the location of a media object’s content is defined in the src attribute of the

corresponding <media> element. FSMDA has extended the previous version of NCL

adding a new URL schema (child-device), so that content captured by secondary devices

paired to a Media Capture Class could be referred. The complete URL is:

child-device://<class_id.device_id>/<resource_id>

in which, device_id is the device identifier and resource_id identifies the resource

associated to the media object. For example, the URL

child-device://class(3).device(1)/AudioCapture

is used to access an audio capture service (identified by the “AudioCapture” string) from a

child device with index ‘1’ (the first paired device) in a class with index ‘3’. In Listing 1,

lines 27 and 28 specify that the video coming from the first paired device to “class(7) is

displayed on all secondary devices paired to “class(5).

In NCL, a special <media> element of “application/x-ncl-settings” type keeps global

variables that can be manipulated by NCL applications. Some of these variables are

environment variables whose values are defined by the NCL Player. Some other variables

are defined by the application authors. Table 4 lists the new global variables added to the

NCL 3.1 specification whose values are attributed by the NCL Player. Some of them come

from the class descriptions and some from NCL-Player’s internal mechanisms (e.g.,

class(i).devNumber, which is updated every time a child device joins or leaves a class).

Table 4. FSMDA’s global variables.

class(i).type “passive” | “active” | “mediaCapture” | “ onDemandMedia”

class(i).screenSize Screen size dimension

class(i).graphicPlaneSize Resolution set for the screen graphics plane

class(i).audioType “ mono” | “ stereo” | “5.1”

class(i).devNumber Number of registered devices

class(i).maxDevices Maximum number of devices

class(i).minDevices Minimum number of devices

class(i).info List of media players that paired devices must support

class(i).softwareParams List of software parameters associated to that class

class(i).networkParams List of network parameters associated to that class

Other variables (states and arbitrary parameters) can also be dynamically associated to

classes. Secondary device registrations and deregistration on these classes can be

conditioned on these dynamic parameters and states. Application’s modules running on

(parent) devices are able to capture information from device classes they control (device

that are paired to them) using the following format:

• class(i).var, where i is the index associated to a device class, and var is the name of an
arbitrary variable;

• class(i).device(j).var, where i is the index associated to a device class, j is the index

associated to a paired device (following the order of pairing), and var is the name of an

arbitrary variable modifiable by the paired device (which means that some local variables

of paired devices can be accessed by the parent device).

Paired devices are able to read their indexes of registration on active classes through the

child namespace and its child.index variable (this can be used, for example, to personalize

the content being presented on each device).

Figure 15 illustrates an example of variable manipulation. In (1) two devices pair

themselves with a TV device. The TV acts as a parent device and associates indexes to its

paired (child) devices; indexes that they are able to read through the child.device variables.

In (2) a paired device modifies the value of a local variable (var). As a consequence, in (3)

the variable change is reflected on a variable accessible to the parent device.

Figure 15 – Variable manipulation

NCL applications can embed other NCL applications. In Listing 1, line 36, an advert

application is embedded and defined to run on devices paired to “class(5)”. If class (5) is an

active class, the application will be processed by secondary child devices paired to the

class. If in the advert application other classes are defined, the paired child secondary

device running the application becomes a parent device for these classes, to which other

secondary child devices can pair to, defining a hierarchical orchestration tree. The single

constraint imposed by NCL is that the orchestration process indeed induces a tree; it is not

allowed closed path in the defined graph, i.e., a device cannot be a descendant of itself.

NCL defines some default classes, for simplicity. The “class(1)” is a passive type class. The

“class (2)” and “class (3)” are classes of active type. Devices registered in “class (2)” must

be able to present any media object type specified by a specific NCL Player

implementation, including imperative NCLua, declarative NCL and HTML players.

Devices registered in “class (3)” must be able to present any media object type specified by

a specific HTML Player implementation, including declarative NCL (if it is supported) and

HTML players. Moreover, the main device is considered to be paired to a private active

class (in which no other device can pair to) that is declared by default. In Listing 1, lines 3

to 5 define the default class for the main device in which the whole screen (line 4) is

reserved for the main video display (line25).

6. GINGA SUPPORT TO MULTI-DEVICE PRESENTATIONS

FSMDA is divided in two subsystems: Parent Device and Child Device. The main device

always has the Parent Device subsystem. Secondary device always have the Child Device

subsystem, but can also have the Parent Device subsystem, if it is not a leaf in the

orchestration tree. The components of the subsystems establish their relationships and

dependencies through the definition of programming interfaces (API).

The Parent Device subsystem is responsible for orchestrating the necessary (local and

remote) resources, according to the logic of the distributed multi-device application in

execution. It must be in agreement with all requirements stated in previous section, and

must provide support to:

• define device classes;

• dynamic associate secondary devices to device classes it supports, using a generic

registration method (hot spot of the architecture) and only if these devices fulfill the pre-

requirements for association;

• use different network services and communication protocols (hot spots of the

architecture) for the registration and the orchestration of secondary devices.

The following components compound the Parent Device subsystem.

The “Parent Device Pairing Manager” component manages the pairing features associated

to all specified device classes. The component uses the host OS’s network modules to offer

pairing mechanisms to register secondary devices to each device class. This component

uses the API in Tables 5. 6 and 7.

The “Parent Device Communication Manager” component handles commands associated to

media content presentation (start, stop, pause, etc.), and to set values to properties of media

objects associated to some device class. Presentation commands are processed by the

component and delivered to associated secondary devices (running Child Device

subsystem). The Parent Device Integration Manager is also the liaison to receive content

and notification messages coming from secondary devices. To control which devices are

paired and to which devices orchestration commands and notifications are sent to and from

the component uses the services of the Parent Device Pairing Manager component. This

component uses the API in Table 8. There must be one Parent Device Pairing Manager

component for each media object to be presented on the secondary devices.

The Child Device subsystem is deliberately very simple. It aims at housing software

modules present on devices compatible with third-party platforms. The following

components compound the Child Device subsystem.

The Child Device Pairing Manager is responsible for controlling the pairing activities,

which involves communicating with the Parent Device Pairing Manager. The component

includes the pairing service subcomponents for each device class a Child Device subsystem

is able to register. All communication is done using components included in the secondary

device’s network service. This component uses the API in Table 5, and 6.

The Child Device Communication Manager receives commands from the parent device to

each device class the Child Device subsystem is able to pair. The component can also send

notification messages and content to the associated parent device. Its subcomponents

include those provided by the secondary device’s network service package to communicate

with the parent device. This component uses the API in Table 8. There must be one Child

Device Pairing Manager component for each media object to be presented on the paired

secondary device.

6.1 FSMDA APIs

Table 5 presents the API for class handling, as incorporated by the Ginga reference

implementation. This is the API between the NCL Player running on the parent device and

the Parent Device Pairing Manager component.

Table 5. API for class handling.

Implemented by: Operation (input parameters)

Parent Device Pairing Manager addDeviceClass (integer index)

Parent Device Pairing Manager removeDeviceClass (integer index)

Parent Device Pairing Manager addDeviceClassDescription (string classType, integer

maxDevices, integer minDevices, string HardwareReq,

string SoftwareReq, string NetworkReq)

The API for discovery and pairing mechanisms depends on the network platform used and

is presented in Table 6. This is the API between the Parent Device Pairing Manager and

each Child Device Pairing Manager. Note that the Child Device index of registration (an

integer value) is the output of the joinClass operation.

Table 6. API for service discovery and device pairing.

Implemented by: Operation (input parameters)

Parent Device Pairing Manager deviceDiscovery (integer classIndex)

Parent Device Pairing Manager addDeviceToClass (integer classIndex, string

deviceAddr, string deviceDesc, integer deviceIndex)

Child Device Pairing Manager joinClass (integer classIndex, string classDesc)

Since NCL Players maintain the global variables in their Settings node, an API must be

offered to the Parent Device Pairing Manager to set and get values of these variables. Table

7 shows this API between the Parent Device Pairing Manager and the NCL Player.

Table 7. API for handling classes’ variables.

Implemented by: Operation (input parameters)

NCL Player getDeviceClassVariableValue (string name, string value)

NCL Player setDeviceClassVariableValue (string name, string value)

NCL Player communicates with media players (local or remote) through a Media Player

API. A Parent Device Communication Manager component is the mediator of a remote

media player in the parent device. Indeed, the single mediator of all media players used by

a same device class. Similarly, a Child Device Communication Manager component is the

mediator of a remote NCL Player that controls a media object presentation on the child

device. Every message sent to a Parent Device Communication Manager from an NCL

Player is passed to all corresponding Child Device Communication Manager components,

using some (unicast or multicast) network protocol. Each Child Device Communication

Manager component then sends the message to the corresponding media player. Likewise,

every message sent to Child Device Communication Manager from a media player is

passed to the corresponding Parent Device Communication Manager component using

some network protocol (unicast communication), which then sends the message to the

corresponding NCL Player.

In order to put a media object in execution in any child device, the NCL Player in the parent

device must firstly instantiate the appropriate Parent Device Communication Manager (one

for each media object to play), which will be in charge of instantiate the corresponding

Child Device Communication Managers in every paired child device (one for each media

object in each paired device), which will be in charge of instantiate the appropriate media

player (one for each media object in each paired device) in the child secondary that will

present the media object’s content. Note thus that each Parent Device Communication

Manager can be bound to several Child Device Communication Managers. More precisely,

to a number of Child Device Communication Managers equal to the number of paired

devices to a class to which the media object will be delivered for presentation. Messages

coming from Parent Device Communication Manager to Child Device Communication

Managers can use unicast or multicast communication. The same message received by the

Parent Device Communication Manager from the NCL Player is sent to all paired devices.

Messages coming from Child Device Communication Managers to the Parent Device

Communication Manager always use unicast communication. Parent Device

Communication Manager notifies the NCL Player in the parent device of each notification

received from each corresponding Child Device Communication Manager. The NCL Player

is not able to know from which paired secondary device the notification comes; the NCL

Player only communicates to a class of devices.

Between each pair of entities A/B (NCL-Player/Parent-Device-Communication-Manager;

Parent-Device-Communication-Manager/Chid-Device-Communication-Manager; and

Child-Device-Communication-Manager/media-player) there is a similar API, illustrated in

Table 8.

Table 8. Media Player API.

Implemented by: Operation (input parameters)

B prepare (mediaType media)

B addEvent (eventType event)

B postAction (string actionType, ID eventId)

A notifyEventTransition (ID eventId, transitionType transition)

B requestPropertyValue(string name)

A notifyPropertyValue (string name, string value)

B setPropertyValue(string name, string value, string duration, string by)

A notifyError(string message)

Entity A knows the corresponding entity B instance from the moment it is created and from

then on it begins to communicate directly with this instance. Similarly, entity B knows the

corresponding entity A, for example through a registration process executed soon after the

entity B instantiation.

The prepare operation, issued by the NCL Player, shall inform the following parameters to

the secondary device’s media players: the properties associated with the media object to

which the media player has been created, the list of events (presentation, selection,

attribution, etc.) that need to be monitored by the media players, and the location of the

media content to be executed/presented.

Events that need to be monitored are identified by the eventId parameter. The events

derived from the whole content anchor and main content anchor shall also be identified.

If the content cannot be located, or if the media player does not know how to handle the

content type, the media player shall finish the prepare operation without performing any

action and report an error message.

Events can be added or removed from the list of events using the addEvent and

removeEvent operations, respectively.

The setPropertyValue interface allows the NCL Player to set values to properties of the

media object in execution controlled by the secondary device’s media player. For example,

using the setPropertyValue the host language player can pass an input parameter used by

the media players in running the presentation. When setting a new value to a property the

change is instantaneous by default (parameter duration=“0”), but the change may also be

carried out during an explicitly declared duration, specified by the duration parameter. In

this last case, the change from the old value to the new one may be linear by default

(parameter by=“indefinite”), or carried out step by step, with the pace specified by the by

parameter.

The requestPropertyValue interface allows the NCL Player to get property values of the

media-object in execution controlled by the media players. The value is returned when the

media player notifies the NCL Player by means of the notifyPropertyValue interface.

NCL Player starts, stops, pauses, resumes, aborts, etc. media player presentations via

postAction interface, specifying the desired action (start, stop, pause, resume, abort, etc) to

be executed on the event state machines.

Media players must notify the host language player of changes in the event state machines

it controls. Event state changes are notified via notifyEventTransition interface.

Since a parent device can retrieve media content from child devices paired to Media

Capture class it defines, the API presented in Table 9 is established between each pair of

entities A/B (NCL-Player/Parent-Device-Communication-Manager; Parent-Device-

Communication-Manager/Chid-Device-Communication-Manager; and Child-Device-

Communication-Manager/media-player) to accomplish this task.

Table 9. Media Player API.

Implemented by: Operation (input parameters)

B requestContent (integer deviceIndex)

A sendContent (char* content)

Besides the modules that comprise FSMDA, child secondary devices must have modules to

execute their main tasks in processing distributed multi-device applications. For example,

components do display content receive by a device paired to a passive class, media players

to process media objects received by a device paired to an active class, components to

capture content to be sent from devices paired to a media capture class, etc.

6.2 Input Device Control Model

In the beginning of an NCL document presentation, all input units associated with devices

of a multi-device application are under control of the main device.

In NCL, some media players may gain control of the input devices that previously were

controlled by the NCL Player. For example, when a <media> element displayed on a

secondary device paired to an active class is in focus and the ENTER key is pressed, the

secondary device in charge of the presentation gains control of all its input units and all

input units of devices that are in classes that will be its descendants (classes for which it

will be the parent device). The media player can then follow its own navigational rules.

When the “BACK” key is pressed, the control of all previously mentioned input units is

returned to the parent device. As usual in NCL, the focus will go to the element identified

by the service.currentFocus attribute of the Settings node (<media type=“application/x-ncl-

settings).

The control passing is notified to the media player via the notifyInputControl interface, as

shown in Table 10.

Table 10. Input Control API7.

Implemented by: Operation (input parameters)

Media player notifyInputControl ()

Input controller requestInputControl (deviceType device, keyListType keyList)

Media player notifyInput (deviceType device, sensorType sensor)

NCL Player nestInput (unsignedInteger nestingLevel)

Upon receiving the notification, the media player must register which device types it wants

to control (by default all keyboards, motion sensors, and remote controls) and which

particular list of keys (in the case of keyboards and remote controls). This is done via the

requestInputControl interface. From then on, each registered input is passed to the media

player via the notifyInput interface: a key identification or the sensor position.

As the input control model is recurrent, a media player can also pass the control acquired to

an internal entity, and so on. However, each time a descendant entity gains control, the

media player shall notify the host language system via the nestInput interface. When a

BACK key is pressed, control must be passed back to the parent entity, until reach the root

language player that can now pass control to another media player.

It should be noted that the hierarchical input control may refer to any input device spread in

a distributed environment (in a multiple device execution).

6.3 Fault recovery mechanisms

Platforms for distributed hypermedia applications are potentially prone to faults, but some

of them can be handled and recovered. In FSMDA, it is important that the Parent Device

7
 The used data types are defined in Annex II

Communication Manager component is equipped with mechanisms for fault recovering,

since it centralizes all application data and execution status shared with child Device

subsystems.

If the Parent Device Communication Manager detects that any device class is empty, or if

an active class has fewer devices than its minimum limit, it issues a notification, to warn the

NCL Player that relationships involving media objects associated to that class should be

longer considered during the presentation. Ongoing presentations of media objects

associated to the class should be aborted.

To avoid synchronization mismatches during the application presentation, it is important to

periodically verify the execution progress of media objects handled by devices registered in

active classes. Upon detecting an invalid state (e.g., when a secondary device pairs for a

second time, after temporarily losing connectivity), the Parent Device Communication

Manager component issues a notification to the NCL Player allowing that the faulty

secondary device presentation is resumed at a valid point in time.

7. SYSTEM TEST CASES

An NCL Digital TV application, with a 12 minute video piece about the FIFA World Cup

2014, was developed aiming at testing all requirements related to the orchestration of active

and UPnP classes, as well as the fault tolerant mechanisms. Another NCL Digital Cinema

application tested the requirements related to the orchestration of active, passive and media

capture classes. Still another NCL Slideshow presentation was developed to test the

requirements related to the orchestration of active and passive classes, and the hierarchical

orchestration model.

In the new Ginga reference implementation, Parent Device subsystem has been developed

in C++. The implementation supports different media backend (such as DFB, SDL, etc.)

and was ported for Linux and Windows. The extended Ginga reference implementation

allows for orchestrating active, passive, media capture and UPnP classes. The previous

Ginga reference implementation already offered fault detection and recovery mechanisms,

making the middleware resilient to several kinds of faults [32]. The current implementation

has been extended with the features introduced in Section 6.2. In case of faults or invalid

states, the Parent Device Communication Manager notifies the Recovery module of Ginga,

which then notifies the Presentation System module, in order to guarantee a consistent

presentation.

Child Device subsystems have been developed in C++ for Linux and Windows platforms,

supporting services for active and passive classes. In these implementations, active classes

can be defined for any combination of media players present in the Ginga specification for

ISDB-T (including monomedia players, Lua engine, HTML players and NCL players) [1].

Other Child Device subsystems were developed for the Android platform to include

services for active, passive and media capture classes.

7.1 Digital TV Scenario

In the main device a broadcasting channel is tuned to receive the application (its

specification and content – the main video about the most beautiful goals of all World Cups

and other additional media objects).

When the main application starts, secondary devices can pair to active class services and

UPnP class services. At a certain moment, viewers are able to navigate as a group on a

menu of World Champions’ country flags presented in the TV screen. If a flag is selected

by a viewer, the scores of the final matches when the country was champion are displayed

in the TV screen. At the same time, paired devices, registered in the active class, start

presenting an invitation (companion application) to move all media objects being presented

on the TV set, except the main video, to the secondary devices’ screens. If the invitation is

accepted, individual navigation on the menu of champions, in each secondary device, is

then possible. Figure 16 presents two snapshots illustrating the situation: the first one shows

the main screen while presenting the World Champions information; the second one shows

the result of moving the World Champions information to the secondary devices, with

appropriate adaptations.

Figure 16 – Moving information from the main screen to secondary devices

If a device registers itself in the active class after all media objects are brought to other

secondary devices, and if no fault handling mechanisms was present, the late device would

not present any interactive feature. Using Ginga, however, the main application is able to

detect the inconsistent state and to trigger the recovery mechanism to present the menu of

champions on the late device’s screen. If during the presentation of additional information

on the secondary devices, these devices were turned off, the main application can detect

that the active class has become empty and trigger the display of the additional information

back to the TV screen.

The multi-device application can also display videos about the best moments of the 2002

World Cup final match. The videos may be retrieved and started by the main application.

When a video starts, it becomes visible to all registered UPnP compatible secondary

devices registered to the UPnP class. When the main application ends or it stops the video

object associated to the UPnP class, the video is removed from the shared list and ends its

presentation on the UPnP secondary devices. Figure 17 shows a snapshot of this moment.

Figure 18 – Best moments of the 2002 World Cup final match

The application continues until the point an advert about the 2014 World Cup is sent to

secondary devices paired to the active class, inviting their viewers to buy tickets for the

games of the 2014 World Cup. Each viewer can navigate on the received content

independently, to buy the tickets, as shown in Figure 18.

Figure 18 – Buying tickets for FIFA 2014 World Cup

Near to the end of the main video presentation, the main application starts a game, which is

sent to the two first registered devices of the active class (the “penalty shooter” companion

application to the first device and the “goalkeeper” companion application to the second

one). The companion applications prompt their viewers for choosing a direction.

Afterwards, an animation displays the result of the penalty shootout on the TV screen: if

both, goalkeeper and shooter, choose the same side, the result is a save; if the opposite

happens, the shooter scores a goal. Figure 19 illustrates this last game.

Figure 19 – Gaming between secondary devices

We have also injected a fault during the penalty shootout game. If after starting the game,

all devices in the active class were turned off but one (the first to join), the fault is detected

and the viewer is notified that the game was not executed due to lack of opponents.

7.2 Digital Cinema Scenario

In this test case, the main application runs on a computer plugged to a projector playing an

interactive story in which viewers are asked about decisions the protagonist must take.

The main application starts offering pairing to the active, passive and media-capture

classes. At a decision moment, viewers registered to the active class receive an object with

a voting demand. The votes are computed by the main application. After the decision

period, the voting demand presented on the companion devices stops and the main video

resumes according to the choices made by the majority. Devices paired to the passive class

are then able to view, in a low quality video stream, excerpts from the scenes of the options

which were not chosen.

The media-capture class is explored at the end of the movie presentation, when an

advertisement is presented. The main application synchronizes the content being exhibited

on the movie projector with an audio being captured by the first device paired to the media-

capture device class. When in the advertisement a character makes a phone call, a

companion application emulates a phone call, simultaneously. The application asks the

viewer whether s/he wants to answer the call saying aloud where s/he is seated, in order to

win a prize. If the viewer chooses to “answers” the call, the application starts capturing the

audio coming from the secondary device and sends it to the main application that

reproduces it to the whole audience.

7.3 SlideShow Presentation Scenario

In this test case, the main application runs a slideshow presentation, and offers pairing to a

single device in an active class. The presentation speaker pairs its device (a tablet) with this

class. It then receives a companion (NCL) application that allows for controlling which

slide will be displayed. The application running on the speaker’s tablet in its turn offers

pairing to a passive class, and associates media objects to this class. Attendees with devices

paired to this passive class receive a pre-rendered stream from the tablet, synchronized with

each slide presentation.

Figure 20 – Talk about multi-device applications

8. CONCLUSIONS

The specification of the software architecture to support distributed multi-device

applications based on a hierarchical orchestration model is the main contribution of this

work. Instantiated as part of the new version of Ginga, this architecture is operational today,

and is under evaluation to integrate the ITU-T H.761 Recommendation. Indeed, the changes

proposed to the NCL language have already been approved and added to the ITU-T NCL

3.1 version.

Some issues concerning the architecture still deserve research attention and are in our future

work plans. Inter-media synchronization is one of them, in all its extents. To be more

specific, inter-media synchronization refers to the preservation of the temporal dependences

between different media objects, with the same or different content (e.g., lip-sync). A

particular sub-type of inter-media synchronization is referred to as multi-source (or inter-

sender) synchronization, which aims to synchronize the playout of several media content

originated from different senders (or sources). As an example, assume different content

about a life event being transmitted by many users of secondary devices paired to a Media

Capture class. Another sub-type of inter-media synchronization is referred to as inter-

device synchronization, in which different media contents can be played out in separate

devices synchronously. This is exemplified by almost all applications mentioned in this

paper, in which content presented by the main application is synchronized with content

presented on secondary devices. Finally, we are also interested in the simultaneous

synchronization of the playout of a specific media stream in various devices. This is usually

known as inter-destination media synchronization [30]. As example, assume a content

broadcasted from the main application to secondary devices paired to the passive class. In

all these inter-media synchronization cases, the devices can either be physically close-by or

far apart. In the current version of FSMDA we only have coarse synchronization: they may

have a “slight” synchronization mismatch; and this “slight” can be unbearable when

devices are far apart.

Still regarding the architecture, we must evaluate if the hierarchical model used can be

relaxed to allow secondary devices paired to a same class to communicate without the

mediation of the parent device. This can be very interesting since media capture by some

secondary devices can address other secondary device to present the content. A direct

communication can save network bandwidth. Listing 1 presents an example, in which the

video coming from the first paired device to “class(7) is displayed on all secondary devices

paired to “class(5) (lines 27 and 28). Moreover, since usually secondary devices paired to

some active class are in the same network, when the parent device command them to play a

media object passing the URL location of its content, maybe it is better that just one child

device retrieves the content and then distributes it to all other child devices, if the content

server is in another different network; again saving bandwidth. In addition, how devices

communicate is another important issue. Identification of more complex network

architectures, in which devices can be connected through P2P/mesh networks is in our

future work plan.

Our future work list still includes:

• Design of better declarative abstractions to support the functionalities provided by the

proposed architecture (in this direction, NCL 4.0 is already under discussion in ITU-T

H.761 Working Group). Just as an example, if an NCL application gets a property value

from a media object addressed to an active device class, it can receive different values

from the paired devices. What is the value to be used?

• Revision of the considered ontology and metadata used to describe the device’s services.

• Revision of the Input Control API to allow multi-touch technology, which can reflect in

the NCL support to multiple focus point.

• A secure communication support, as well as a better authentication and content

certification mechanisms, necessary for protected media and other applications with

relevant security requirements.

• Instantiation of FSMDA using similar platforms other than UPnP (e.g. OSGi) to verify

the completeness of the offered APIs.

• A conformance test suite to be applied to devices, as part of the pairing procedure, before

allowing them to join the platform.

• Design of system test cases exploring groundbreaking multi-device applications different

from those following web-based model, in order to raise possible new requirements for

the architecture.

• Search for other collective space domains in which FSMDA can be applied, as for

example health applications.

ACKNOWLEDGMENTS

The authors would like to thank TeleMidia Lab’s researchers who provided a thoughtful

discussion of this work. As well authors gratefully acknowledge the grant from CNPq,

CAPES and MCT.

REFERENCES

1. ABNT. Ginga-NCL for Fixed and Mobile Receivers—XML Application Language for

Application Coding. ABNT NBR 15606-2, 2nd ed., Brazilian Nat’l Standards

Organization, 2011.

2. ARIB – Association of Radio Industries and Businesses. Application Execution Engine

Platform for Digital Broadcasting. ARIB STD-B23 Version 1.2, 2004.

3. Audible Magic Corporation. Digital Fingerprinting & Video Content Recognition

Enabling New Forms of Interactive Advertising. White Paper. June 7, 2011.

http://audiblemagic.com/white-

papers/Digital_Fingerprinting_Enables_New_Forms_of_Interactive_Advertising.pdf

4. Barkhuus, L., Brown, B. Unpacking the television: User practices around a changing

technology. ACM Transactions on Computer-Human Interaction (TOCHI) 16, 3 (2009).

5. Bassbouss, L., Tritschler, M., Steglich, S., Tanaka, K., Miyazaki, Y. Towards a multi-

screen application model for the web. In Proc. of IEEE 37th annual computer software

and applications conference workshops, COMPSACW 2013, July 2013.

6. Brandão, R., França, P., Medeiros, A., Portella, F., Cerqueira, R. The CAS Project: A

general infrastructure for pervasive Capture and Access systems. In Proc. of the 28th

Annual ACM Symposium on Applied Computing. (2013), 975-980.

7. Bulterman, D. C.A., Rutledge, L. W. SMIL 3.0 - Flexible Multimedia for Web, Mobile

Devices and Daisy. Talking Books. 2nd ed. Springer, 2009. ISBN: 978-3-540-78546-0.

8. Cattelan, R. G. et al. Watch-and-Comment as a Paradigm toward Ubiquitous Interactive

Video Editing. ACM Transactions on Multimedia Computing, Communications and

Applications, v. 4 (4), No. 28, 2008.

9. Cesar, P., Bulterman, D., Jansen, A., Geerts, D., Knoche, H., Seager, W. Fragment, Tag,

Enrich, and Send: Enhancing Social Sharing of Video. ACM Transactions on

Multimedia Computing, Communications and Applications. Vol 5. No. 3. August 2009.

http://doi.acm.org/10.1145/1556134.1556136

10. Civolution. Automated Content Recognition: creating content aware ecosystems. White

Paper. CSI Magazine. September 2012.

http://www.csimagazine.com/csi/whitepapers/ACR%20Creating%20%20content-

aware%20ecosystems%20-Civolution%20White%20Paper%20-%20Sept%202012.pdf

11. Cortez, J., Shamma, D. A., Cai, L. Device Communication: A Multi-Modal

Communication Platform for Internet Connected Televisions. In Proc. of the 10th

European conference on Interactive TV and video, ACM Press (2012), 19-26.

12. ETSI. Digital Video Broadcasting (DVB). Multimedia Home Platform (MHP)

Specification 1.1.1, ETSI TS 102 812, ETSI Standard, 2003.

13. ETSI. Hybrid Broadcast Broadband TV. ETSI TS 102 796 V1.2.1 (November, 2012)

http://www.etsi.org/deliver/etsi_ts/102700_102799/102796/01.02.01_60/ts_102796v01

0201p.pdf

14. Gaspar, B. et al. A New Approach for Slideshow Presentation at Working Meetings. In

Proc. of ConfTele 2007, Peniche, Portugal, 2007.

15. Geerts, D., Cesar, P., and Bulterman, D. The implications of program genres for the

design of social television systems. In Proc.of the 1st international conference on

Designing interactive user experiences for TV and video, (2008), 71-80.

16. GfK MRI. The GfK MRI iPanek Reporter. Tablets and Multi-Tasking. Fall 2012.

17. Google.The New Multiscreen World - Understanding Cross-platform Consumer

Behavior. August 2012. http://www.slideshare.net/smobile/the-new-multiscreen-world-

by-google-14128722

18. Hess, J., Ley, B., Ogonowski C., Wan, L. and Wulf, V. Jumping between Devices and

Services: Towards an Integrated Concept for Social TV. University of Siegen, Siegen,

Germany. July, 2011.

19. Huang, E. M., Harboe, G., Tullio, J., Novak, A., Massey, N., Metcalf, C. J., Romano, G.

Of social television comes home: a field study of communication choices and practices

in tv-based text and voice chat. In Proc. of the 27th international conference on Human

factors in computing systems, (2009), 585-594.

20. ITU-R. Integrated broadcast-broadband systems. . Report ITU-R BT.2267. BT Series.

Broadcasting service. May, 2013.

21. ITU-T. Nested Context Language (NCL) and Ginga-NCL for IPTV Services. ITU-T

Recommendation H.761, 2009. Geneve, Switzerland. June, 2011.

22. Kang, D. O., Kang, K., Choi, S., Lee, J. UPnP AV architectural multimedia system with

a home gateway powered by the OSGi platform. IEEE Transactions on Consumer

Electronics, 51(1), 87-93. 2005.

23. Kernchen, R. et al. Intelligent multimedia presentation in ubiquitous multidevice

scenarios. IEEE Multimedia, 17(2), 52-63. 2010.

24. Lew, M. Live cinema: an instrument for cinema editing as a live performance. In Proc.

of ACM SIGGRAPH (2004).

25. Lin, C. L. et al. Classification and Evaluation of Middleware Collaboration

Architectures for Converging MHP and OSGi in a Smart Home. Journal on Information

Science and Engineering, 25(1): 1337–1356, 2009.

26. Martin, R.et al. neXtream: A Multi-Device, Social Approach to Video Content

Consumption. In Proc. of the IEEE Consumer Communications and Networking

Conference (CCNC’10) (2010).

27. Matsumura, K., Kanatsugu, Y. HybridCast System and Technology Overview.

Broadcast Technology No.43, Winter 2011.

28. Mcginity, M., et al. AVIE: a versatile multi-user stereo 360 interactive VR theatre. In

Proc. of workshop on Emerging displays technologies: images and beyond: the future of

displays and interaction. ACM (2007).

29. MEDIATVCOM. Decrypting the Second Screen Market. November, 2012.

http://blog.mediatvcom.com/wp-content/uploads/2012/12/White-Paper-Second-Screen-

mediatvcom.pdf

30. Miso. The Miso Sync Experiment: Delivering real-time, relevant information on the

second screen. May, 2011. http://miso.io/mU0zJL

31. Montagud, M., Boronat, F., Stokking, H., van Brandenburg, R. Inter-destination

multimedia synchronization: schemes, use cases and standardization. Multimedia

Systems Journal, 18(6), 459-482, November 2012.

32. Moreno, M.F. et al. Resilient Hypermedia Presentations. In Proc. of XXI IEEE

International Symposium on Software Reability Engineering (Workshop W2, Software

Aging and Rejuvenation). San Jose, USA. (2010).

33. Nielsen. Double Vision – Global Trends in Tablet and Smartphone Use While

Wartching TV. May 2012.

http://www.nielsen.com/us/en/newswire/2012/double-vision-global-trends-in-tablet-

and-smartphone-use-while-watching-tv.html

34. Roy, C.S., Galarneau, B. The Second Screen and Television. Evolumedia White Paper

Series: Overview and growth perspectives (available at http://www.cmf-

fmc.ca/documents/files/about/publications/Report-1-Second-Screen.pdf, October,

2012); Benefits & Impacts (available at http://www.cmf-

fmc.ca/documents/files/about/publications/Second-Screen-and-TV-Report2.pdf, March,

2013); Production and Deployment (available at http://www.cmf-

fmc.ca/uploads/reports/29-second-screen-and-tv-report3.pdf, August, 2013).

35. Soares L.F.G., Rodrigues R.F. Nested Context Model 3.0 Part 1 – NCM Core. MCC 18/05
Technical Report. Informatics Department of PUC-Rio. Rio de Janeiro. 2005. ISSN 0103-9741.

Available at: http://www.telemidia.puc-rio.br/sites/telemidia.puc-rio.br/files/Part1 NCM

3.0.pdf.

36. Soares L.F.G., Rodrigues R.F. Nested Context Language 3.0 Part 8 – NCL Digital TV Profiles.

MCC 35/06 Technical Report. Informatics Department of PUC-Rio. Rio de Janeiro. October,
2006. ISSN 0103-9741. Available at: http://www.ncl.org.br/documentos/NCL3.0-DTV.pdf.

37. Soares L.F.G. Nested Context Language 3.0 Part 12 – Support to Multiple Exhibition Devices.
MCC 03/09 Technical Report. Informatics Department of PUC-Rio. Rio de Janeiro. January,

2009. ISSN 0103-9741 Available at: http://www.telemidia.puc-rio.br/sites/telemidia.puc-

rio.br/files/Part 12 - NCL3.0-MD.pdf.

38. Soares, L.F.G. et al. Ginga-NCL: Declarative Middleware for Multimedia IPTV

Services. IEEE Communication. Magazine, vol. 48, no. 6 (2010),74–81.

39. Soares, L. F. G. et al. Multiple exhibition devices in DTV systems. In Proc. of the 17th

ACM international conference on Multimedia, ACM Press (2009), 281–290.

40. WAP Forum. WAG UAProf. Technical Report WAP-248-UAPROF-20011020-a. 2001.

41. W3C. Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model

and Syntax Specification. W3C Recommendation, 22 February 1999.

Available at http://www.w3.org/TR/REC-rdf-syntax/

ANNEX I - Overview of NCL Elements

NCL is an XML application that follows the modularization approach. The modularization

approach has been used in several W3C language recommendations. A module is a

collection of semantically-related XML elements, attributes, and attribute’s values that

represents a unit of functionality. Modules are defined in coherent sets. A language profile

is a combination of modules. Several NCL profiles have been defined. Of special interest

are the profiles defined for Digital TV, the EDTVProfile (Enhanced Digital TV Profile) and

the BDTVProfile (Basic Digital TV Profile). This section briefly describes the elements that

compose these profiles. The complete definition of the NCL 3.0 modules for these profiles,

using XML Schemas, is presented in [36]. Any ambiguity found in this text can be clarified

by consulting the XML Schemas.

The basic NCL structure module defines the root element, called <ncl>, and its children

elements, the <head> element and the <body> element, following the terminology adopted

by other W3C standards.

The <head> element may have <importedDocumentBase>, <ruleBase>, <transitionBase>

<regionBase>, <descriptorBase>, <connectorBase>, <meta>, and <metadata> elements as

its children.

The <body> element may have <port>, <property>, <media>, <context>, <switch>, and

<link> elements as its children. The <body> element is treated as an NCM context node. In

NCM [35], the conceptual data model of NCL, a node may be a context, a switch or a

media object. Context nodes may contain other NCM nodes and links. Switch nodes

contain other NCM nodes. NCM nodes are represented by corresponding NCL elements.

The <media> element defines a media object specifying its type and its content location.

NCL only defines how media objects are structured and related, in time and space. As a

glue language, it does not restrict or prescribe the media-object content types. However,

some types are defined by the language. For example: the “application/x-ncl-settings” type,

specifying an object whose properties are global variables either defined by the document

author or pre-defined environment variables; the “application/x-ncl-NCL” type, whose

content is an embeddable NCL application; the “application/x-ncl-NCLua” type, whose

content is an embeddable NCLua script; and the “application/x-ncl-time” type, specifying a

special <media> element whose content is the Universal Time Coordinated (UTC).

The <context> element is responsible for the definition of context nodes. An NCM context

node is a particular type of NCM composite node and is defined as containing a set of

nodes and a set of links [35]. Like the <body> element, a <context> element may have

<port>, <property>, <media>, <context>, <switch>, and <link> elements as its children.

The <switch> element allows for the definition of alternative document nodes (represented

by <media>, <context>, and <switch> elements) to be chosen during presentation time.

Test rules used in choosing the switch component to be presented are defined by <rule> or

<compositeRule> elements that are grouped by the <ruleBase> element, defined as a child

element of the <head> element.

The NCL Interfaces functionality allows for the definition of node interfaces that are used

in relationships with other node interfaces. The <area> element allows for the definition of

content anchors representing spatial portions, temporal portions, or temporal and spatial

portions of a media object (<media> element) content. The <port> element specifies a

composite node (<context>, <body> or <switch> element) port with its respective mapping

to an interface of one of its child components. The <property> element is used for defining

a node property or a group of node properties as one of the node’s interfaces. The

<switchPort> element allows for the creation of <switch> element interfaces that are

mapped to a set of alternative interfaces of the switch’s internal nodes.

The <descriptor> element specifies temporal and spatial information needed to present each

document component. The element may refer a <region> element to define the initial

position of the <media> element (that is associated with the <descriptor> element)

presentation in some output device. The definition of <descriptor> elements shall be

included in the document head, inside the <descriptorBase> element, which specifies the

set of descriptors of a document. Also inside the document <head> element, the

<regionBase> element defines a set of <region> elements in a class of exhibition devices,

each of which may contain another set of nested <region> elements, and so on, recursively;

regions define device areas (e.g. screen windows) and are referred by <descriptor>

elements, as previously mentioned.

A <causalConnector> element represents a relation that may be used for creating <link>

elements in documents. In a causal relation, a condition shall be satisfied in order to trigger

an action. A <link> element binds (through its <bind> elements) a node interface with

connector roles, defining a spatio-temporal relationship among objects (represented by

<media>, <context>, <body> or <switch> elements).

The <descriptorSwitch> element contains a set of alternative descriptors to be associated

with an object. Analogous to the <switch> element, the <descriptorSwitch> choice is done

during the document presentation, using test rules defined by <rule> or <compositeRule>

elements.

In order to allow an entity base to incorporate another already-defined base, the

<importBase> element may be used. Additionally, an NCL document may be imported

through the <importNCL> element. The <importedDocumentBase> element specifies a set

of imported NCL documents, and shall also be defined as a child element of the <head>

element.

Some important NCL element’s attributes are defined in other NCL modules. The

EntityReuse module allows an NCL element to be reused. This module defines the refer

attribute, which refers to an element URI that will be reused. Only <media>, <context>,

<body> and <switch> may be reused. The KeyNavigation module provides the extensions

necessary to describe focus movement operations using a control device like a remote

control. Basically, the module defines attributes that may be incorporated by <descriptor>

elements. The Animation module provides the extensions necessary to describe what

happens when a property value is changed. The change may be instantaneous, but it may

also be carried out during an explicitly declared duration, either linearly or step by step.

Basically, the Animation module defines attributes that may be incorporated by actions,

defined as child elements of <causalConnector> elements.

Some SMIL functionalities are also incorporated by NCL. The <transition> element and

some transition attributes have the same semantics of homonym element and attributes

defined in the SMIL BasicTransitions module and the SMIL TransitionModifiers module.

The NCL <transitionBase> element specifies a set of transition effects, defined by

<transition> elements, and shall be defined as a child element of the <head> element.

Finally, the MetaInformation module contains two elements that allow for describing NCL

documents. The <meta> element specifies a single property/value pair. The <metadata>

element contains information that is also related to meta-information of the document. It

acts as the root element of an RDF tree: RDF element and its sub-elements. (for more

details, refer to W3C metadata recommendations [41]). . Meta-information does not contain

content information that is used or display during a presentation. Instead, it contains

information about content that is used or displayed.

ANNEX II – Data types used in the Input ControlAPI

<!--

XML Schema for the Input Control API data types

This is NCL

Copyright: 005 PUC-RIO/LABORATORIO TELEMIDIA, All Rights Reserved.

See http://www.telemidia.puc-rio.br

Public URI: http://www.ncl.org.br/NCL3.1/ancillary/inputControlAPI.xsd

Author: TeleMidia Laboratory

Revision: 30/06/2013

Schema for the NCL media API data types.

-->

<schema xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:inputControlAPI="http://www.ncl.org.br/NCL3.1/InputControlAPI"

 targetNamespace="http://www.ncl.org.br/NCL3.1/InputControlAPI"

 elementFormDefault="qualified" attributeFormDefault="unqualified" >

 <!-- define the values for deviceTye-->

 <simpleType name="someDevicePrototype">

 <restriction base="string">

 <enumeration value="remoteControl" />

 <enumeration value="keyboard" />

 <enumeration value="motionSensor" />

 <enumeration value="positionSensor" />

 </restriction>

 </simpleType>

 <simpleType name="deviceType">

 <union memberTypes="string inputControlAPI:someDevicePrototype"/>

 </simpleType>

 <!-- declare global elements in this module -->

 <element name="device" type="inputControlAPI:deviceType"/>

 <!-- define the value for the set of keys-->

 <simpleType name="keyListType">

 <list itemType="string"/>

 </simpleType>

 <!-- declare global elements in this module -->

 <element name="keyList" type="inputControlAPI:keyListType"/>

 <complexType name="sensorType">

 <attribute name="coords" type="string" use="optional"/>

 <attribute name="key" type="string" use="optional" />

 </complexType>

 <!-- declare global elements in this module -->

 <element name="sensor" type="inputControlAPI:sensorType"/>

</schema>

