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Abstract: Many failures in distributed systems are hard to diagnose due to the difficul-
ty to collect, organize and relate information about their overall state and behavior. 
When a failure is detected while testing or using such a system, it is often quite difficult 
to infer the system’s state and the performed operations that have some connection 
with the cause of the problem. Traditional debugging techniques usually do not apply, 
and when they do, they are often not effective. The problem is aggravated when fail-
ures are detected at run-time, since it is usually impossible to replicate the sequence of 
execution that caused the failure. This work presents a diagnosing mechanism based 
on logs of events annotated with contextual information, allowing a specialized visual-
ization tool to filter them according to the maintainer’s needs. We have successfully 
applied this mechanism to a deployed system composed of mobile applications, web 
servers and cloud services. The effort to instrument was low, approximately 14% of the 
development effort. We also conducted a proof of concept with users, which showed 
that the cost to diagnose the cause of the failures can be dramatically reduced using 
this approach.  

Keywords: Software quality, Failure detection, Failure diagnosis, Software engineer-
ing, Log technique, System monitoring. 

Resumo: Sistemas distribuídos são difíceis de depurar devido à dificuldade de coletar, 
organizar e relacionar informações sobre a sua execução. Quando uma falha é desco-
berta, inferir o estado do sistema e as operações que tenham alguma relação com ela 
costuma ser uma tarefa difícil, em que técnicas tradicionais de depuração costumam 
não ser aplicáveis, e quando são, tendem a ser pouco eficazes. Este trabalho apresenta 
um mecanismo baseado em logs de eventos anotados com informações de contexto, 
que permitem uma ferramenta de visualização exibir somente os eventos que forem do 
contexto de interesse do operador que estiver depurando o sistema. Aplicamos este 
mecanismo em um sistema real composto por aplicações móveis e serviços em nuvem. 
O esforço de instrumentação foi de aproximadamente 14% do esforço de desenvolvi-
mento. Também foi realizada uma prova de conceito com usuários, em que cada um 
foi submetido à tarefa de diagnose de três falhas conhecidas, cujo resultado mostrou 
que o custo para diagnosticar a causa das falhas pode ser drasticamente reduzido com 
a abordagem proposta. 

Palavras-chave: Qualidade de software, Detecção de falha, Diagnóstico de falha, Enge-
nharia de software, Logging, Monitoramento de sistemas. 
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1  Introduction 

Even software systems developed following strict quality control rules may expect 
failures during their lifetime due to specification errors, incorrect or missing configura-
tion, incorrect third party software, wrong implementation and incorrect usage [1] [2] 
[3]. At run-time failures must be handled by a maintenance team, which should be able 
to assess the criticality of the failure, diagnose its cause, and if possible quickly recover 
correcting the system’s state. Afterwards they must either correct the software, or noti-
fy developers to do so.  

Maintenance cost is usually high, representing about 70% of the total lifecycle cost 
of a software system, of which about 17% [4] is due to fault identification and removal. 
About 40% of the maintenance cost is due to understanding the software [5][6]. Unfor-
tunately, especially when considering distributed systems, developers cannot predict 
all configurations and environment settings that may lead a system to a faulty state [7]. 
Furthermore, proper correction may be difficult or even impossible to achieve since the 
organization often does not own all the source code. Hence, often faults cannot be 
completely eliminated from deployed applications [8], even after several maintenance 
patches. Finally, small businesses and startups usually cannot handle full-fledged qual-
ity assurance costs, thus effective low cost methods and tools are needed to aid such 
businesses to reduce the cost of system maintenance.  

We will adopt following terminology (adapted from [9]): fault is an incorrect code 
fragment or configuration in the software 1, which, when executed or accessed, may 
cause the system to perform in an unintended or unanticipated manner. Faults may be 
due to incorrect implementation and also due to incorrect maintenance, incorrect speci-
fications, and incorrect third party software and platform failures. Executing a fault 
may generate an error, which is a discrepancy between the instantaneous computed 
state and what is expected it to be. Faults may correspond to vulnerabilities that may 
lead users to accidentally or willfully provoke an error. The sequence of instantaneous, 
possibly parallel, states establishes the behavior of the system. Observing that an error 
occurred corresponds to detecting a failure. A failure is thus the observed inability of a 
system to perform its required functions within expected performance requirements. 
This means that a failure corresponds to an error that has been observed. The failure 
report may contain context information that should help determining its cause. There 
is latency between the moment the error is generated and the moment it is detected and 
reported as a failure. Unfortunately, it might happen that an error is never detected, or 
is detected only a long time after having been generated. The longer the latency the 
harder it is to diagnose the failure in order to precisely determine the corresponding 
fault. A diagnostic should describe the exact root cause, i.e. the very fault that lead to the 
failure. The diagnosis process investigates the system's behavior looking backward for a 
failure footprint. It starts at the state were the failure was detected and ends at the state 
that exercised the fault. The footprint should convey the necessary information to cre-
ate the diagnostic. As mentioned before, the root cause may be other than just a faulty 
code. To eliminate the fault, code fragments must be removed, added, replaced or encapsu-
lated in a control wrapper; or configurations must be corrected. The encapsulation solu-
tion is often required when using third party code. Debugging corresponds to perform-

                                                      
1  In this paper we are considering only failures that are due to software faults. 
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ing the three operations: detecting that an error occurred; diagnosing it to find the root 
cause, and correctly and completely removing the causing fault. 

To aid maintainers and administrators in the process of error detection and diagno-
sis, adequate information about the past execution is needed. Traditional techniques 
use logs containing messages that describe the system state [10] [11], such as the value 
of some context variables and if possible run-time stack content at the moment when 
the error is detected. Although this technique may produce some result, the effort in-
volved is usually huge [12]. Often distributed system failures are hard or even impos-
sible to replicate, hence the data available at the moment of failure detection should 
ideally support diagnosis and removal without the need for a replication of the error 
[13]. Furthermore, in distributed or multi-programmed systems an incorrect state may 
itself be distributed, that is, it may involve states of several processes. Hence, the data 
available at the point of detection (i.e. within a specific process) is not necessarily suffi-
cient to provide all the data needed for a proper diagnostic. 

A common approach to address the issues related to the fault diagnosis in distribut-
ed systems relies on system and application logs. However, several authors have iden-
tified limitations of this approach: 

• In a deployed system 2 the log set is often very extensive and presents infor-
mation from different contexts mixed in the same dimension [14], reducing the 
visibility of information that is needed to detect and diagnose the failure. 

• The log files are usually distributed over various machines [11], imposing an 
additional effort to access and organize them in an adequate time order needed 
for determining inter-state faults. 

• The available information is very often insufficient whenever the application 
context is not represented in the events [15]. 

Considering all the different contexts, it is hard to correlate the events creating logical 
links that could explain the undesired behavior. While diagnosing, searching for the 
keyword “error” in logs may find evidence that a failure has been detected, but is usu-
ally insufficient to determine the failure footprint and, hence, to create a precise diag-
nostic [15], as we need much more information about the system’s behavior to under-
stand the scenario that led to the failure. The most challenging failures are not the ones 
that will crash the system immediately, but the ones that corrupt some data and drive 
the system to unexpected behavior after long runs [11]. To diagnose these failures we 
need to study execution histories and must have access to properties that could explain 
the unexpected behavior. 

In a previous work [16] we outlined some solutions to the problems described 
above. In this work we address the problems outlined above and present and assess a 
solution that reduces the effort of diagnosing failures. The solution is based on an in-
strumentation technique, a diagnosis process and an inspection tool for supporting this 
process. The instrumentation is inserted while developing or maintaining. The instru-
mentation enriches the log events with meta-information about the current routine 
context, helping the maintainer to filter events that are relevant with regard to the fail-
ure under analysis, using the information in the failure detection report as seeds to dis-
cover the cause of the failure. The set of recordable context properties is not limited 
and is defined by the software engineer of the project. The set of properties is identified 

                                                      
2  We use the term “deployed system” to mention systems that are in productive use, in opposition to 

toy systems that are developed for the purpose of some studies.  
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based on the software’s architecture and its concerns, and can be refined during the 
software’s lifetime, as the knowledge about the system’s behavior and its weak points 
are learned. 

The proposed approach and its assessment were performed within an upstart soft-
ware development company. In order to evaluate the proposed approach we have 
conducted a proof of concept using a deployed system composed of mobile applica-
tions, web servers and cloud services. This system is suitable to evaluate the proposed 
mechanism due to the effort spent by its maintenance team to assure backwards com-
patibility, which sometimes encounters hard-to-diagnose faults involving interactions 
originating from different versions of client applications. We evaluated the proposed 
mechanism:  

• Measuring the effort to instrument the software and  

• Conducting a quasi-experiment 3 with maintainers using the inspection tool to di-
agnose failures due to faults that had been discovered at usage time before the 
proposed mechanism was available.  

We expected that the instrumentation effort would be low, even though it was added 
after development was finished; and that maintainers could diagnose these faults in 
less time than when they were first discovered using a traditional approach. Both of 
the expectations were met and the proposed mechanism showed to be a powerful tool 
for diagnosing failures. A more comprehensive assessment is still required with a 
broader set of use cases. 

Contributions.  

• A new logging technique, which helps to record context information without loss 
of modularity;  

• A diagnostic process that analyzes event logs filtering entries that meet a per-
spective of interest;  and  

• An inspection tool that enables the operator to define the perspective of interest.  

Non-Goals. We did not seek to detect failures automatically in real time with the pro-
posed mechanism. Self-checking mechanisms using our event model will be addressed 
in future research, although part of the instrumentation resides in code that control as-
sertions at run-time. Furthermore, we do not seek to provide automatic recovery and a 
self-healing capacity. Recovery oriented distributed systems and self-healing software 
are also themes for future research. 

The document is organized as follows: In section 2 we discuss the related work; in 
section 3 we describe our approach; in section 4 we explain the diagnosis process using 
the solution; in section 5 we present the proof of concept conducted using a system of 
digital wine menus, and, finally, in section 6 we conclude the work. 

2  Related work 

The traditional logging approach is based on text messages written by developers in a 
human-readable format [17], sometimes exhibiting values of local variables that de-
scribe the state of the execution [11]. Libraries such Unix syslog [18], log4J [10] and Mi-

                                                      
3  A quasi-experiment is an empirical study used to estimate the causal impact of an intervention on 

its target population. 
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crosoft Event Logging [19] support this approach. When an event is generated these 
libraries also append the current local timestamp to enable temporal analysis, before 
storing the event in a local file or in a remote database.  

A common mechanism used to selectively store events considers the verbosity level 
[20], which avoids the overgrowth of the log database. Although this approach enables 
maintainers to control the granularity of the logs, it does not solve the problem of se-
lecting the relevant events needed to diagnose the failure, mainly because such events 
can be spread along different log levels. We believe it is necessary to gather as much 
information as possible and economically justifiable about the system’s execution, and 
apply later a filtering mechanism to distinguish which events are relevant for a given 
diagnosing session. This would be especially the case when trying to detect and diag-
nose errors without having to replicate the conditions that lead to the error [13]. 

There are many studies that discuss the problem of diagnosing based on logs, most-
ly focused on automatic failure detection [21] [22] [23] [24] [25] [26] [14] [27] [28] [29] 
[30]. Few focus on automatic [31] [32] and manual [33] [34] [35] diagnosis. In both cases 
the log content is usually very superficial, being captured in generic log files [21] [30], 
read from the system as a black box [25] [26] or is automatically generated [22] [33] 
[32]. In general, these approaches do not produce sufficient information to conduct an 
in depth analysis or to select events according to the perspective of interest. Some stud-
ies based on data mining and data clustering attempt to solve this problem by detect-
ing patterns, extracting properties of the messages and classifying them [36] [37] [27] 
[38] [39] [40]. Arguably this technique provides some result, however the efficacy relies 
on the log homogeneity: developers must follow the same log pattern, using the same 
name for the properties exposed, otherwise the algorithm will duplicate entries for the 
same logical property. An advantage of this technique is that it can be applied over raw 
log messages, produced by a log library that generates text output. However it does 
not provide sufficient information to help maintainers to precisely diagnose the cause 
of the failure, mainly because the instrumentation was not designed in a way that its 
results could be filtered according to the maintainer’s perspective of interest. 

There are several works that present or refine algorithms to extract the system’s 
state-machine from log events [41] [42] [43] [44], providing a state-machine model to 
aid the manual inspection or even detecting suspicious paths that could represent fail-
ures [45] [14] [35] [28] [46] [47] [48]. Also, there are tools that provide a replay capabil-
ity [34] [11] [35] that allow reviewing unexpected behavior scenarios. Both state-
machine extraction technique and capture & replay tools are complementary to our 
approach and could be applied in future work. 

There are some works describing automatic diagnosis [31] [33] [34] that aim at dis-
missing human intervention of failure handling, however, we believe that human 
knowledge is still a fundamental part of the diagnosing process, and even if manual 
work could be partially automated, it cannot be ignored. It is worth mentioning that 
others, as for instance [26] and [27], follow the same assumption. 

There is also a choice between automatic and manual instrumentation [22] [33] [32]. 
Automatic instrumentation induces a very small extra development cost, but generates 
a larger volume of logs, many times containing information of little use. Manual in-
strumentation is inserted by the developer and presents an observable effort to imple-
ment and a risk of inadequacy too, but it usually produces precise information that the 
developer effectively needs during a diagnosis session. We seek to reduce instrumenta-
tion effort without losing human expertise; hence our solution requires the developer 
to insert instrumentation in a manual way selecting the local data to be logged. The 
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logged event is automatically complemented with data contained in an environment 
stack as will be explained in the next section. 

We found few studies [49] [24] [26] [42] that invest in visualization tools to assist 
manual inspection. These studies are aimed at solving the visual pollution problem of 
long log files condensing the events and generating statistical graphs. This solution 
gives good results when detecting and diagnosing network and security faults, howev-
er it tends to be inadequate for diagnosing the application’s logic, which requires de-
tailed information about the state of execution. Our approach follows the opposite di-
rection, seeking mechanisms to increase the log details rather than simplifying it. We 
solved the visual pollution problem using filters that follow the maintainer’s perspec-
tive of interest showing only events related to the target failure. 

3  A log with meta-information 

Our research targets systems that present distributed behavior, like modern web-
mobile-cloud systems possibly composed with third-party services. For the purpose of 
assessing the approach we have focused on software in use, developed by startups us-
ing low cost methods and tools. We aim at having a minimal impact on the way devel-
opers write their code, discarding solutions and tools that restrict the way developers 
work, for example, language extensions and experimental integrated development en-
vironments (IDEs). Our approach addresses heterogeneous distributed systems, i.e. 
those composed of several different types of components, not only those built to pro-
cess data in parallel, like map-reduce based systems. Furthermore, the objective is not 
to diagnose local or remote concurrency faults, but to help maintainers to understand 
the system at a higher level, enabling them to diagnose failures. The targeted failure 
types are: 

• Wrong environment configuration. 

• Unhandled exceptions. 

• Design and implementation errors that can lead the system to an inconsistent 
state. 

• Transient problems that may lead to unavailability for short periods. 

We believe that maintainers with adequate tools are often more efficient when diagnos-
ing than fully automated techniques, mainly because humans (should) have the neces-
sary detailed knowledge about the system and its history of errors. With this 
knowledge they can elaborate more effective hypotheses that lead to determine the 
root cause of the failure. Our solution provides means to analyze these hypotheses by 
selecting only events that are directly related to the failure under analysis, which is 
usually formed by a small set of events compared to the full log. This filtering process 
is made possible by the enrichment of the events with meta-information about the con-
text of the execution. Furthermore, our solution presents a tool for selecting the main-
tainer’s perspective of interest based on the failure under analysis, and a diagnosis pro-
cess to guide the maintainer during a diagnosis session. 

3.1  Overview of the approach 

Collecting, storing and selecting events to display are the main issues of our solution. 
Each logged event records a set of properties, represented as tags. The set of all possible 
tags is the property set. A tag is a key-value pair where the value is optional. Every 
event must contain a basic set of tags which are: a timestamp, used to sort all events into 
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a single timeline; a message, which is a human-readable description of the event (the 
traditional log); a request id to associate events between processes; an action, describing 
the goal of the current procedure; the device, where the event originated; the module, 
that triggered the notification; and the line of code where the notification command 
was inserted. 

The diagnosis process works as follows: maintainers searching for a problem selec-
tively query events based on a perspective of interest. This perspective is defined se-
lecting restrictions based on system properties that may occur as event tags. The main-
tainer starts this perspective selecting properties identified in the failure report. For ex-
ample, the starting point could be the device that reported the failure or the user who 
reported it. The query engine looks up the log and selects the events expressing prop-
erties that match the perspective of interest. The result is displayed in a single timeline, 
with events exposing all their properties. The maintainer may now refine this perspec-
tive of interest editing the restriction set. This refining process is repeated until the 
maintainer is able to identify the cause of the failure and has the necessary information 
to correctly diagnose the problem.  

The data to be included in each event recorded in the log is generated by instru-
ments inserted in the code. The developer uses a library designed to simplify the work 
of inserting them. The set of properties that may be expressed in events must be de-
fined for each project according to its architecture and concerns. However, there is no 
need for an a priori definition of this set.  

The best person to start the definition of the property set is the designer of the sys-
tem. He or she may improve the set aided by developers and maintainers based on de-
sign evolution and experience acquired during diagnosis sessions. Finally, each com-
ponent of a system may define its specific property set since each component usually 
implements specific concerns. Once all components have been assembled, maintainers 
just need to know what properties can be accessed. This information can easily be 
saved in a HTML document. 

As a simple example, consider a system composed of mobile devices communi-
cating with a server in a cloud. Each event notified by these components has a property 
name, which represents the originating device, and a property action, which represents 
the operation the device was performing at the moment the event was logged. Suppose 
that, among other operations, each mobile device triggers a data sync action on the serv-
er. When a failure occurs, we know the server failed to process the request, however, 
we do not know which device was involved. When working in the traditional way, i.e. 
collecting the logs manually from each device, we would spend a considerable effort to 
correlate them in a single timeline and then filter this timeline leaving only those 
events that are related to the current failure perspective. Using our query interface 
maintainers need only to define their perspective of interest, informing the restrictions 
[action:sync][error], and after finding the event that represents the failure, use the name 
of the source device (found in this event) to refine the search, i.e. a new query using the 
restrictions [action:sync][name:device_X], for example. Working this way, maintainers 
will eventually get a clean view of the system’s behavior containing only those events 
that are relevant to diagnose the failure. Observe that this scenario is only possible 
when the request contains the device’s name, allowing the server to register it in its tag 
stack, explained in the next section. 
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3.2  The solution architecture 

Figure 1 displays the structure of our solution. It is based on a publish-subscribe archi-
tecture, where each monitored device uses an instrumentation library to notify events 
raised while executing. These events are sent to a central server, which is responsible 
for handling and storing the events in a NoSQL database [50]. The database stores each 
entry in a tuple format, similar to our event representation, and uses search algorithms 
optimized for this type of structure. Using this storage format, most tags are replicated 
many times in the database, even those from the same scope in the same execution, 
however this format enables the query engine to search in a multi-dimensional space, 
independently of the tag hierarchy, i.e., the tag insertion order in the events. In a future 
work we will investigate the possibility of storing events using the tag hierarchy, even-
tually reducing the database size, without impacting the query engine’s performance. 
At this moment we have not chosen a hierarchical log organization since we suspect 
that many failure footprints will embrace several structures, increasing the effort of de-
termining the footprint when using a breadth search. 

 
Figure 1 – Solution architecture 

NoSQL databases can be distributed, and, considering the amount of events to be 
handled, this feature combined with cloud computing strategies can lower the query 
response time using a simple and low cost approach. The central server provides an 
API to answer requests made by the inspection interface.  

Our approach requires inserting data about the software’s state when recording an 
event. However, when developers try to insert all relevant properties in the event rec-
ord, they will encounter two problems: (1) a necessary break of encapsulation, because 
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they would need to access variables defined in other scopes, often in other modules 
and possibly even in other devices or threads; and (2) annoyance, because they will 
need to write every tag of the context in every event notification as well as the specific 
tags relevant at the point of logging. To solve these problems we created an environ-
ment stack where the developer places and removes tags along the execution. Every 
time an event is notified, the instrumentation mechanism automatically inserts all tags 
contained in the stack into the event’s log. Hence, the developer needs to include in the 
event notification command only those tags that are specific at the point of notification.  

When an event is notified, its record is converted to a serialized form and is eventu-
ally sent to the central server repository. However, considering that target systems are 
distributed and are assembled using a variety of devices and components, the sending 
process becomes vulnerable to several problems, as for example: message loss, network 
availability and bandwidth priority. The sending device must guarantee that the event 
was sent and stored before deleting it. This process must not compete with other re-
quests made from that device, hence avoiding noticeable losses of quality due to inter-
fering in the system’s normal behavior. Furthermore, low quality networks may re-
quire multiple retransmissions of the same event until it has been correctly received. 
Furthermore, mobile applications do not have constant network availability and tend 
to be more susceptible to power failures, since many of their devices may pass through 
regions without network signal and usually rely on battery power. These difficulties 
impose the need of keeping unsent events in local persistent memory until eventual 
successful transmission.  

To solve these problems our library transmits small packages containing several 
events. Packages are sent to the central server using a producer-consumer design pat-
tern. Package files are kept in a queue until being successfully transmitted. When noti-
fying an event it is immediately appended to the current file, i.e. the last file in the 
queue. When this file reaches a given size limit, it is closed, tagged for shipment and a 
new file is created and appended to the file queue. In case of restarting after a crash, for 
example a power failure or loss of connection, the application continues to write new 
events into the last file and attempts to transmit all already closed files that are still in 
the queue. In case of a disaster, for example when attempting to access invalid 
memory, this approach assures that the centralized log set will contain information 
near the point where the failure occurred, helping to locate the faulty code. 

Considering that each device has its own clock, which may differ from the central 
server clock, it is necessary to normalize the timestamps of all events received by the 
central server so that all are congruent with the server’s clock. Therefore, when starting 
to transmit a package the device’s current timestamp is appended to this package. Us-
ing this time stamp the server calculates the temporal delta between its own current 
clock value and the package’s timestamp. The computed difference is applied to all 
timestamps contained in the events of the received package, normalizing them to the 
server clock. This approach does not consider the transmission delay, which might 
produce little inconsistencies. The approach is also vulnerable to clock updates occur-
ring after recording events and before transmitting the corresponding package. At this 
moment we consider these risks to be very small since events occur in response to 
some human action, hence the time delay between small bursts of events is much larg-
er than the delay due transmission. How to assess and possibly reduce these risks will 
be handled in future steps of this research. 

The adopted database structure enables the development of a query engine to select 
events based on a set of restrictions, defined by the maintainer during a diagnosis ses-
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sion. There are three types of restrictions: temporal limits, interesting tags and undesir-
able tags. The temporal limits are expressed by means of a start and end date/time 
pair, and, the interesting and undesirable tags are expressed as lists of tags. When a 
perspective of interest is evaluated, the search algorithm selects all the events between 
the start and end date/time, that contain interesting tags, and that do not contain un-
desired tags. In case of a double match, the event is considered to be interesting. 

This approach allows the instrumentation and the event storage to be designed 
without needing a fixed set of maintainer profiles. Furthermore, it is not necessary to 
specify the set of all possible proprieties at development onset; new tags may be de-
fined whenever needed. However, as already mentioned a document must be available 
allowing maintainers to know all available tags considering a specific system. Profiles 
can be defined at runtime according to the needs of each diagnosis session. To reduce 
setup effort it may be useful to have a mechanism to save and select common profiles. 
This latter feature has not yet been implemented.  

3.3  The instrumentation library  

As mentioned earlier we expect programmers to insert logging instrumentation instead 
of relying on an automatic logging mechanism. When designing a system, it should be 
decomposed into a set of features [51]. Each feature can be described by a procedure, 
i.e. a sequence of steps. Hence, the start and end of a procedure as well as entering and 
exiting a procedure steps are good candidates of events to be logged. Since developers 
must obviously define the steps of each procedure, they become the key persons to in-
strument the code. 

To reduce programming effort, an instrumentation library has been designed. The 
library encapsulates all operations that deal with recording event packages, sending 
them to the central database, among others. The only operations that are visible on the 
interface that the programmer will use are related to logging events. For each pro-
gramming platform that might be used a specific library must be implemented. The 
library must provide the following interface (written in IDL [52]): 
 

Tag { 

    attribute string key; 

    attribute string value; 

} 

 

typedef sequence<Tag> TagList; 

TagDictionary { 

    attribute TagList tags; 

} 

 

module EventMonitor { 

        void notifyEvent(in string message); 

        void notifyEvent(in string message,  in TagDictionary dict); 

        void pushTag(in string name); 

        void pushTag(in string name, in string value); 

        void popTag(); 

} 

Using this instrumentation does not differ much from traditional logging. For example, 
in a Python implementation a notification could be written: 
 

logger.notify(’Invalid client settings’, { 

    ’platform’: ’web server’, 

    ’request_id’: ’1234’, 

    ’step’: ’verifying client settings’ 

}) 
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This example shows that several tags would have to be written over and over again. In 
addition to be annoying, this approach is also very error prone. For example, the tag 
platform should be included in every event, and the tag request_id will possibly be in-
cluded in several events of a feature that handles requests. To simplify this, the library 
provides the functions pushTag and popTag, which insert and remove tags contained in 
the environment stack of the current thread. Refactoring, the code looks like this: 
 

# In the 'main function' 

logger.push_tag(’platform’: ’web server’)  

... 

 

# In the request handler function 

logger.push_tag(’request_id’: request.id) 

... 

 

# At the notification raising point 

logger.notify(’Invalid client settings’, { 

    ’step’: ’verifying client settings’ 

}) 

In addition to eliminating the need of rewriting tags, this approach also eliminates 
problems due to violating encapsulation. The tag platform should be present in all 
events and its value is constant, so it is pushed directly by the main function of the ap-
plication. The tag request_id is also present in all events that handle a specific request, 
however its value changes as requests are made, therefore, it must be pushed in the 
scope where the value is defined.  

The called functions push_tag and pop_tag must form a pair; hence each call to 
push_tag must be associated with exactly one call to pop_tag limiting the scope of the 
tag. Continuing our example, the pop_tag calls would be inserted as follows: 
 

# At the end of the request handler function 

logger.pop_tag() 

... 

 

# At the end of the 'main' application 

logger.pop_tag() 

Obviously this approach is risky since the developer may forget to pop some tags, 
making the stack inconsistent until the end of the execution. To overcome this problem 
we suggest adapting the instrumentation library according to the implementation lan-
guage. The main idea is to consider the tag as a resource and ensure that the allocator 
entity, i.e. method, is also responsible for its deallocation. For example, in C/C++ we 
could use scoped tags similar to: 
 

Response authenticateUser(Resquest req) { 

    ScopedTag request('request_id', req.id); 

    ScopedTag user('user_id', req.user.id); 

    ScopedTag action('action', 'authentication'); 

    ... 

 

    if (is_superuser) { 

        ScopedTag user_type('user_type', 'superuser'); 

        ... 

 

        if (user_does_not_exist) { 

            logger.notify('Invalid user ID', 'error'); 

        } 

    } 

 

    ... 

} 
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The scoped tag is implemented as a class that allocates a variable on the stack whose 
constructor pushes the tag and the destructor automatically pops it at the end of the 
current scope. In both normal and exception paths the variable will be deallocated. A 
simplified example of this class is presented below: 
 

class ScopedTag { 

 ScopedTag(string name, string value) { 

  TagStack::push_tag(name, value) 

 } 

  

 ~Scopedtag() { 

  TagStack::pop_tag() 

 } 

}; 

3.4  The inspection tool 

The inspection tool is based on user defined restrictions that define the perspective of 
interest; they tell how to select the events to be displayed. Each change in these re-
strictions updates the event list based on the new perspective of interest. The main idea 
is to learn from previous queries and lookup for tags that could guide the inspection by 
restricting the perspective of interest, until the tool shows the set of events that de-
scribe the failed execution.  

This tool also generates log events, which by default are hidden from maintainers. 
The objective is to store information about tool usage, enabling tool designers to evalu-
ate common strategies during a diagnose session. For example, identifying tags that are 
commonly used together or common patterns used to incrementally build the perspec-
tive of interest. The evaluation will lead to new mechanisms to guide maintainers or to 
ways of automating some steps of the diagnosing process. Although this is a topic for 
future research, the data needed to support it is being recorded since the present work. 

An example of the inspection tool interface is presented in figure 2, which shows 
fields that define the perspective of interest and the extracted event list corresponding 
to this perspective (Figure 2a). These input fields are: (1) fields for temporal limits: start 
and end dates (Figure 2b); and (2) restrictions based on the tags of each event (Figure 
2c). The maintainer can represent restrictions using two lists of tags: the first contains 
tags that must be present, and the second contains tags that must not be present in the 
selected event. Restrictions can be specified using only the tag name, or using a regular 
expression. 

To reduce visual pollution when displaying an event, it is possible to select the 
fields that should be shown. Consider the following example, which shows an event 
interesting both to evaluate the application performance (tags cpu and memory) and to 
inspect screen flow: 
 

[environment:mobile] [application:hello world] [cpu:80] [memory:2524] 

[version:3] [flow:main] [message:Main screen loaded] 

A meaningful event must contain all tags however only a few should be displayed con-
sidering a given perspective of interest. To solve this problem our tool implements a 
feature that allows selecting only those tags that should be shown (Figure 2d). Finally, 
the tool can be used in real-time mode (Figure 3e), which turns on an auto update fea-
ture, allowing maintainers to monitor the working system behavior based on the con-
figured restrictions. 
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Figure 2 – Inspection tool interface 



 

13 

 

3.5  The data volume problem 

A weakness of our solution is the data volume problem. As we are logging many 
events that contain a fair amount of contextual information, the database may grow 
quite fast. This presents three problems: the first one is the space required to store all 
this data; the second is the growing of the search algorithm response time as the vol-
ume grows; and the third is the needed network bandwidth. 

The space problem was solved creating an event discard policy to limit the database 
volume. Events are discarded if the database reaches a predefined volume. The dis-
carding policy defines whether an event could be removed without impacting diagno-
sis. This policy is based on a suggested time to live (in days) stored in each event. 
When an event is inserted into the database it receives a suggested life span defined by 
the developer. However, these suggestions may be changed by means of rules that 
raise or lower the event’s life span. Hence, the event database stores as much infor-
mation as it can, and when necessary it discards events considered to be not anymore 
necessary. For example, in our proof of concept we adopted a time to live of 30 days, a 
20GB limit for the database volume and three rules:  

• When an Error or Warning tag is found, all events with the same RequestID tag 
have its time to live redefined to 365. 

• When an Error or Warning tag is found, all events with the same Action tag have 
its time to live raised by 60. 

• When an Error or Warning tag is found, all events with the same DeviceID tag 
have its time to live raised by 30. 

We observed that the response time problem was indeed attenuated using this discard 
policy, since the database did not grow in an uncontrolled way and the search-space 
was stabilized to a limited amount of data. Controlling bandwidth is the goal of future 
research, based on measurements of the needed bandwidth. Also, an analysis involv-
ing the computed lifespan and the module and action tags can be used to determine 
modules, components or even services that present higher risk, aiding developers to 
determine code revision priority. 

4  Proof of concept: a digital wine menu 

To provide a first assessment of our proposal in a deployed system, we applied it to a 
digital wine menu, which was implemented in an upstart software house. The system 
is a distributed system, consisting of sets of tablets that are used by sommeliers, wait-
ers, sales people and possibly even restaurant guests. Each set of tablets interacts over a 
wireless network with a computer of the client enterprise (restaurants and wine stores). 
In turn these client computers interact with a central server in a cloud. The assessment 
aimed at measuring the additional effort required to implement the mechanism pre-
sented in this paper, verify if it is effective as a means to diagnose the cause of failures, 
and if it does reduce the effort spent performing this diagnosis.  

Client administrators manage the content to be delivered to the tablets using the 
web application. A business may have more than one administrator, like a chef that de-
fines the dishes for each day of the week, a sommelier that updates the wine list every 
day and sets the food and wine pairings; a manager that defines the price for each item 
in the menu and its availability in stock; and a marketing analyst that manages the ad-
vertisement content. The synchronization service provided by the central server com-
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piles the information for the business and publishes it in each tablet. Finally, tablet us-
ers may display the offered items and select the desired ones. 

The application that runs on the tablet is a simple Software Product Line [53] with 
two layers: (1) a core asset providing hot spots that allows to change the appearance 
and usability of a view, and (2) a group of features bound to these hot spots. The ap-
pearance and usability are sensitive to the choice of assets and the settings defined in 
configuration files. The web application content management allows the product man-
ager to create, edit and remove different types of features, and also provides a mecha-
nism to configure the mobile application behavior. Finally, the synchronization service 
is responsible for the incremental update of the content and settings of the tablets. 

This system is interesting as a proof of concept due to the difficulties inherent to its 
usage environment, which relies on concurrent work of different kinds of actors in the 
same business account. These actors are: a system administrator configuring the prod-
uct line for each business according to his/her needs; a cataloging team entering the 
product’s data sheet (e.g. wines, dishes) required by the business administrator; a de-
signer team producing the layout according to the specifications of each business 
brand; and the business administrators as listed above. These actors interact not only at 
system implementation, but also throughout its use. In other words, the system admits 
an unusual number of super users who sometimes work concurrently within a same 
account, frequently without being aware of it. Lack of communication between the in-
volved actors, lack of attention and human fallibility may lead to inconsistent envi-
ronment configurations. As an example, an administrator changed the settings in assets 
A and B, and inserted the asset C. Afterwards this administrator asked the designer to 
adapt the layout to the changes forgetting to mention the inclusion of asset C. Further-
more, each part of the software is versioned independently and the mobile application 
must maintain backward compatibility. Hence, whenever evolving the web application 
the server should provide content compatible with all versions currently in use. This 
system presents another difficulty for diagnosing failures since end users have no in-
terest, nor the necessary knowledge, to report failures. 

The application that runs on each tablet was developed in Objective-C using the iOS 
platform [54], while the web application and the synchronization service run in a cloud 
and were implemented using Python using the Django library [55]. The instrumenta-
tion effort was estimated based on the percentage of instrumentation lines of code. To 
assess effectiveness and diagnosis effort we performed a quasi-experiment involving 
users in a controlled environment. They were asked to diagnose a set of faults purpose-
ly injected into the system. We chose failures that had previously occurred at usage 
time and whose time to diagnose had been measured and, thus, allowed comparing 
with the time measured in this experiment. 

4.1  Effort to instrument 

We instrumented the applications that run in the tablets and in the synchronization 
server after the first deploy. We used two approaches to guide the instrumentation: 
code comments and executable assertions [56]. The programming standard used re-
quires describing the logic for each code fragment (feature step) in a comment, and 
write the corresponding code following this comment. The instrumentation process 
just had to transform each of these comments into an event notification. Assertions 
were used to notify events representing failures or warnings based on the application’s 
logic, however their granularity was much smaller than that of comments. The pro-
gramming standard requires one assertion for each contract defined in the specification 
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[57]. Furthermore, these assertions were designed to notify observed violations, as well 
as raising exceptions. 

When the instrumentation process began, the first step was to define the set of tags 
to be used. These were divided into general tags and application domain tags. We de-
fined an initial set in a two-hour meeting involving all developers, and as development 
proceeded we adjusted them according to identified needs. The final set of tags is: 

General tags: 

• Error – Internal failure. 

• Disaster – Failure that causes a non-recoverable damage. 

• Warning – Suspicious operation. 

• Environment – Execution environment (Ex: mobile). 

• Function – Current function name.  

• Action – Current action being performed. 

• CPU – Current processor load. 

• Memory – Current memory load. 

• RequestID – Unique identifier that represents a remote request. 

• DeviceID – Unique identifier that represents a device in the system. 

Application domain tags: 

• User – User that started the operation. 

• Organization – User organization. 

• DeviceStatus – State of the device in this application example. The possi-
ble values are: Active, Inactive, Pending Update, and Synchronizing. 

• CurrentView – Name of the view (window) currently shown to the user. 

• ItemCode – Code of the product currently shown to the user. 

The instrumentation process took 20 hours, involving two developers, which partici-
pated in developing the target system. We measured the percentage of code instru-
mented by counting the number of operations aimed to notify events, dividing it by the 
total number of operations in the code, and the results were 7% for the mobile applica-
tion and 14% for the synchronization service, which showed a higher percentage due 
to being a more complex code.  

From our point of view the instrumentation cost was low. However, usually in-
strumentation and assertions should be inserted while developing, which is expected 
to be less effort prone than adding them after developing. Writing executable asser-
tions together with the initial development of the code contributes to writing correct 
code, as the use of lightweight formal methods stimulates developers to think about 
the problem to be solved instead of starting to write before the solution is sufficiently 
well understood [58]. Hence, one may expect that in the proper form of development 
the overall effort would be fact less than what we have measured. 

4.2  Evaluation of the inspection tool 

We conducted a quasi-experiment with a group of users measuring their efficiency 
while diagnosing faults using the inspection tool. We chose three faults that occurred 
at productive usage time whose diagnostic cost had been high: 

• Problem: “A new client signed up, I configured his account and sent him his login and 
password by e-mail. He just called saying that although he had correctly installed the ap-
plication on the tablet he cannot activate it with his credentials. The error message says 
there is a problem in the account configuration.”   



 

16 

 

Diagnosis: The administrator who registered the account forgot to upload the 
layout produced for this client.  

• Problem: “A client just called complaining that his tablets are not synchronizing.”  
Diagnosis: There is an error in the implementation that allows a dish to be paired 
with a wine that is not available at the client. When the synchronization server 
compiles the data to be sent to the tablet it finds missing information and aborts 
the operation. 

• Problem: “A client installed an experimental version of the mobile application in his tab-
let three months ago and did not activate the account at that moment. Now that he be-
came a regular customer he activated the account, however the tablet says that there is a 
configuration problem. He is using the correct credentials and I am sure I uploaded his 
layout and configuration file correctly.”   
Diagnose: The application version installed on this customer’s tablet was outdat-
ed and required a previous version of the layout. As the account was not active at 
the time when he installed a compatible configuration was not installed automat-
ically. 

The faults chosen are simple; however their diagnosis is difficult when using tradition-
al techniques. Usually the log contained in the tablets is inaccessible and the server 
presents a considerable volume of records involving several operations from different 
clients, turning the analysis more difficult. The first fault occurred in the first months 
after deployment, representing a diagnosing cost of 30 minutes on average per inci-
dent. It occurred several times before its removal. The time to diagnose each failure did 
not vary widely, even after maintainers learned the fault’s cause, since co-evolution of 
the software masked it in different ways, exposing at each occurrence a different foot-
print. The other two faults occurred only once, the first representing a diagnosing cost 
of one hour and the second of 2 hours and 30 minutes. 

The participants in the experiment consisted of four people, more specifically two 
developers and two administrators. For each of the failures, each participant received 
the original log and was asked to diagnose the failure. We recorded the time spent and 
participant comments about the methodology used to diagnose the failure. The meas-
ured times are shown in table 1 along with the times spent using the traditional ap-
proach when the failures were discovered in the production system. 

Table 1 – Time in minutes to diagnose each failure 

  P1 P2 P3 

Traditional approach ≈ 30 ≈ 60 ≈ 150 

Developer 1 18 7 5 

Developer 2 6 6 9 

Administrator 1 3 2 6 

Administrator 2 4 3 2 

All users diagnosed the failures in much less time than the original diagnosis made 
by a developer without instrumentation. The result exceeded our expectations and it 
surprised us observing that the non-technical users had a better performance than the 
developers. When trying to identify the cause, we concluded that this was due to two 
factors: (1) these users act directly on the production environment, close to the types of 
the faults, and (2) have a simplified view of the whole system, generating a smaller set 
of hypotheses about the possible causes of the failure.  
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The three faults were chosen to assure that none of the users would have any privi-
leged knowledge, such as being the coder of the broken feature, or having participated 
in the original diagnosis session when the failure was first detected. Beyond that, dur-
ing the experiment we also took care not to influence users, assisting them only in the 
use of the inspection interface.  

5  Conclusion 

We presented a mechanism to diagnose failures of distributed systems using central-
ized logs. The log contains a timeline of events annotated with meta-information re-
garding the context at the moment it was notified. This meta-information consists of 
tags composed by a name and, optionally, a value. We also developed an inspection 
tool to be used by maintainers helping them to diagnose failures. The maintainer speci-
fies a perspective consisting of filters that select among all events recorded in the cen-
tral log only those that are of his/her interest. While using the tool the perspective may 
be evolved using the maintainer’s knowledge or hypothesis about the failure, selecting 
only events that have some relation with the failure.  

We assessed the approach using a digital wine menu system. This first assessment 
consisted of measuring the effort to instrument the software, and a quasi-experiment 
with a group of maintainers evaluating the contributions of the presented approach. 
The results of this preliminary experiment showed that the tool not only reduced the 
time spent diagnosing failures as it also proved to support non-technical users (main-
tainers without programming expertise). However, to gain a better assessment more 
experiments should be performed involving a larger group of users, and a more com-
plex mix of failures. 

There are some limitations in the current approach. The first one is the query re-
sponse time that grows as the database size grows, which at some point impacts the 
inspection interface usage, reducing the efficiency of the approach. This paper presents 
a discard policy that eases this problem, however more effective solutions are needed, 
as the discarding rules should be designed for each system and continuously improved 
during its lifetime. Future works will investigate two hypotheses: (1) a discard policy 
based on least modified source files and (2) the adaptation of the search engine to ex-
plore the combination of NoSQL replication with a map-reduce algorithm.  

Another limitation of our approach is the impossibility of diagnosing micro-
concurrency failures involving components in different devices, as the event ordering 
may not be precise enough due to transmission delay. This problem is a minor issue in 
hierarchical architectures, but may become relevant in systems implementing a graph 
architecture. 

During this work we have identified several interesting questions, which will be in-
vestigated in future work. The most important is how to identify the set of properties 
that must be represented as tags, which may be required during a diagnosis session to 
filter specific groups of events. The result should be a process to guide software engi-
neers to extract these properties from software specification, based on the project type 
and its architecture. This idea was learned from our experiment and from discussions 
with other researchers during the development of this work. Second, a defined process 
is needed to help developers to adequately instrument the code, as the decision of rep-
resenting a tag in the scope or in a single event is not always trivial. Another problem 
is that the flexibility of the approach enables a concern to be represented in more than 
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one format, which may confuse the maintainer during a diagnose session. The instru-
mentation process must attend the developer to avoid this mistake. 

As mentioned earlier, the inspection tool should be evolved in future work to re-
duce maintainer’s effort during a diagnosis. The data collected during the tool usage 
will serve as a database to study user behavior and identify common strategies. The 
result should help us to develop new features to guide or even automate part of the 
diagnosis.  

Finally, this work is a step in a research focusing on recovery-oriented systems and 
is a basis for future work in automatic failure detection, diagnosis and recovery. The 
approach in this future work will be represent software contracts as expressions com-
posed by tags, which will be evaluated at runtime. A failed contract will be notified to 
system maintainers. If the failure is a manifestation of a diagnosed fault, it can be re-
covered using a procedure previously informed by the maintainer, which may correct 
the faulty state.  
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