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Abstract. The concentration (cluster) of mobile entities in a certain region, e.g., a mass
street protest, a rock concert, or a traffic jam, is an information that can benefit several
distributed applications. Nevertheless, cluster detection in on-line scenarios is a challenging
task, primary because it requires efficient and complex algorithms to handle the high
volume of position data in a timely manner. To address this issue, in this paper, we
proposed dg2cep, an on-line algorithm inspired by data mining algorithms and based on
Complex Event Processing stream-oriented concepts for on-line detection of such clusters.
Our experiments indicates that dg2cep can rapidly detected, in less than few seconds,
the cluster formation and dispersion. In addition, the required time to detect such clusters
scale linearly with the number of nodes. Finally, regarding accuracy, the experiments shows
that the cluster detected by dg2cep presented a very high degree of similarity with the
classic data mining clustering algorithm.

Keywords: Cluster Detection; Mobility Patterns; Complex Event Processing; Crowd
Sensing; Pervasive Computing

Resumo. A concentração ou aglomerado (cluster) de nós móveis em dadas regiões, e.g.,
um protesto em larga escala, um show de rock, ou um engarrafamento, é uma informação
que pode beneficiar diversas aplicações distribuídas. Entretanto, a detecção de clusters em
cenários de tempo real é uma tarefa desafiadora, principalmente devido a necessidade de
desenvolver algoritmos complexos e eficientes para lidar rapidamente com a alta quantidade
de dados móveis. Abordando esse problema, neste artigo, propõe-se o dg2cep, um algo-
ritmo em tempo real baseado nos conceitos de processamento de fluxos de processamento
de eventos complexos e inspirado em algoritmos de mineração de dados. Os experimen-
tos indicam que o dg2cep pode detectar rapidamente, em menos de alguns segundos, a
formação e dispersão de aglomerados. Além disso, o tempo necessário para detectar esse
padrão aumentar linearmente com a quantidade de nós móveis. Por fim, analisando a



acurácia, os experimentos indicam que o cluster identificado no dg2cep apresentam uma
altíssima similaridade com os descobertos utilizando o clássico algoritmo de mineração de
dados.

Palavras-chave: Detecção de Aglomerados; Padrões de Mobilidade; Processamento de
Eventos Complexos; Sensoriamento de multidão; Computação Ubíqua
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1 Introduction

Several distributed applications [1], such as fleet monitoring, mobile task force manage-
ment, air traffic control, or intelligent transportation systems, can benefit from the on-line
detection of collective mobility patterns of the corresponding mobile entities, i.e., getting
timely notifications when a given subset of mobile nodes are collectively moving according
to a certain pattern of interest. A collective mobility pattern that is relevant for many
applications is the cluster, a concentration of mobile nodes in a certain region, e.g., a mass
street protest, a flash mob, a sports or music event, a traffic jam, etc. The detection of this
pattern is motivated by reasons such as ensuring safety of the people, identifying suspi-
cious or hazardous group behaviors, rapid deployment of resources at the cluster places, or
optimizing global operation of the mobile entities (avoiding bottlenecks). In metropolitan
traffic control, for example, it is important to rapidly detect a traffic jam, so to be able
to solve the bottleneck as fast as possible. On the other hand, it may also be important
to early detect the dispersion of a cluster, e.g. a crowd rushing away from some specific
spot in an environmental disaster scenario. This information can be useful for dispatching
additional rescue staff to the place. Surprisingly, so far, on-line cluster dispersion detection
has not been explored and described in literature.

As can be seen from these examples, cluster formation of mobile nodes is a recurrent
mobility pattern of interest in many applications. However, implementing cluster detection
for huge sets of nodes poses several challenges to those applications [2]. First, the system
has to process high volumes of position data - sent by mobile nodes - in a timely manner.
Secondly, it has to design efficient pattern detection algorithms to cope with the intrinsic
algorithmic complexity of the position comparisons. Third, it has to consider that the set
of monitored mobile nodes is open and dynamic, with new nodes joining and other leaving
the area of interest (e.g. new vehicles entering or leaving a city perimeter), making the
cluster boundary difficult to detect. Finally, it must be able to detect arbitrary clusters
shapes, i.e., for example, a traffic jam that reaches over neighborhoods.

The majority of approaches for on-line cluster detection found in literature only tackle
some of these problems. For example, several generic data stream clustering algorithms
[3,4] can be applied to cluster detection from streams of position data, but do not consider
that the set of monitored nodes can be variant but instead are restricted to fixed-volume
data streams from a known set of sources. Solutions that do consider open/variable node
sets [5, 6], on the other hand, require a priori information - provided by the user - of the
possible locations of clusters. In other words, they are only capable of detecting clusters in
previously specified regions, and with pre-defined borders, which is, of course, not possible
in many real-world applications.

To address these issues, we propose dg2cep (Density-Grid Clustering using Complex
Event Processing), an on-line algorithm that combines data mining clustering algorithms
[7] with Complex Event Processing (CEP) [8], to detect the formation and dispersion of
clusters based on position data streams. This paper is an extended version of [9], where
we had just outlined our approach, but had neither completed the design, implemented or
evaluated its performance. dg2cep defines an Event Processing Network of CEP agents
that together implement the detection logic over the stream of position data. In this paper,
we describe all the used CEP rules that comprise our algorithm and show how the CEP
agents are to be interconnect to achieve the detection. In addition, throughout the paper
we provide an in-depth discussion around the design decisions made for dg2cep. The

1



main contributions of this paper are the following:

• Proposal of an on-line cluster detection algorithm as an Event Processing Network
of CEP agents that analyze and process streams of position data;

• Elegant formulation of the cluster formation and dispersion pattern detection algo-
rithm using the same EPN, but only using appropriate CEP rules;

• Extensive performance analysis of our dg2cep showing that it can efficiently and
reliably detect clusters of arbitrary size out of high volume of position data streams.

The remainder of the paper is structured as follows: Section 2 overviews fundamental
concepts and related work used. Section 3 presents our algorithm, dg2cep, for on-line
clustering detection based on CEP. In Section 4 we evaluate the performance of our im-
plemented algorithm, show and discuss the obtained experimental data. Finally, Section 5
presents some concluding remarks and future works towards this work.

2 Fundamentals & Related Works

We use the same definition of a cluster that is adopted in Dbscan [10], a classic data
mining clustering algorithm. Thus, in this section we briefly review the Dbscan cluster
definition and algorithm. After that, we briefly explain CEP concepts, such as events and
rules, that are used throughout the paper to express our algorithm. Finally, we discuss
some ongoing efforts to address position data stream clustering.

2.1 Clustering

Clustering is the process of grouping data into one or more sets. In essence, a cluster is
a collection of data objects that are similar to each other [7], for example, group mobile
nodes based in the city that they live. The majority of generic clustering algorithms are
based on k-Means [11], which divides the data into k sets. Since we do not know the
number k of clusters ahead, we need to use a different approach.

Dbscan [10] is a clustering algorithm based on the concept of node density. The
algorithm assigns a density value, called ε–Neighborhood, to each node. It defines the set
of nodes that are within distance ε of a given node. Thus, in Dbscan a cluster is found
when a mobile node core consists of a minimum number (minPts) of neighbors in its
ε–Neighborhood. Both, the core mobile node and its neighbors are added to the cluster.
The main idea of Dbscan is to recursively check each neighbor to expand the cluster,
i.e. for each neighbor discovered, if it also contains minPts neighbors, its neighbors are
also added to the cluster, which in turn are recursively visited. Thus, Dbscan recursively
processes and expands the cluster using the nodes’ neighbors.

The bottleneck of Dbscan is the ε–Neighborhood property [7]. During the algorithm
execution, a function is recursively called to retrieve the mobile node neighbors. The
problem with this function is that, for each node it needs to compare with all the remainder
nodes to identify those that are within the ε distance. This pairwise mutual comparison
costs O(n) per node, turning the algorithm quadratic O(n2). Since the Dbscan algorithm
was designed for static datasets, one can optimize this process by storing the nodes’ position
data in a spatial index (e.g., R-Tree or Quad-Tree). These data structures can reduce the
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ε–Neighborhood function cost to O(lg n) per node, thus reducing the total complexity of
the Dbscan algorithm to O(n lg n). However, when we consider online cluster detection
based on position data (data streams) this primary premises becomes troublesome. It is
well known that it is practically impossible to maintain a spatial index for online data,
both due to its size - each node may have many neighbors - and because it is very costly
to continuous update and maintain the spatial data structure [12].

On the other hand, grid-based clustering algorithms [13] can be used to scale the
detection process, as grids provide static references (i.e., the grid cells) for the clustering
problem. In this approach, the mobile nodes are mapped to grid cells, and the cost is
proportional to the number of cells rather than the number of nodes [1]. Each grid cell
thus only “holds” the mobile nodes that are within the cell’s geographic area. The density
of each cell is calculated as the number of mobile nodes mapped to the cell divided by
the mean density of the grid, i.e., of all cells. Note that this view provides a different
density semantics than Dbscan’s notion of density. Here, clusters are detected based
on the density of all cells rather than the density of the neighborhood of a node, as in
Dbscan. This semantics requires that the algorithm must store and calculate the density
of the entire grid at every location update, which is quite costly when processing streams
of position data. In addition, grid based algorithms usually divide the space in a small
number of cells to reduce the cost of recalculating the grid density, thus reducing the cluster
precision. To complicate even further, these algorithms need to manage each cell, e.g., to
store and retrieve the nodes in the grid cells.

Both, D-Stream [13] and DENGRIS-Stream [14] proposes a traditional grid-based clus-
tering algorithm for data streams. Their work are not focused on any particular domain.
However, the main limitation of their approach compared to dg2cep is that their algo-
rithm operates in a bulk scheme. The stream clustering algorithm runs at every specific
periods, e.g., every minute, thus, clusters formed during this period are not detected until
the algorithm is re-executed. The clustering function performs a global search for dense
cells on the grid, a high cost for streaming data. In addition, this function also update
and remove sporadic cells. This extra cost eventually increases the detection period. We
believe the management cost is the reason why the clustering function is only executed
at certain periods. Both works rely on spatial data structure, providing an imperative
approach to this problem. In contrast to that, we propose an event-based approach to
the problem using CEP concepts. Further, the main difference between our approach and
their’s is that we aim to interpret and provide a Dbscan-like clustering algorithm in CEP,
while their work focus on solely detecting grid cell clusters.

2.2 Complex Event Processing

To efficiently handle and process position data streams, we have explored Complex Event
Processing (CEP) [8] concepts. CEP provides a set of stream-oriented concepts that facil-
itates the processing of events. It defines the data stream as a sequence of events, where
each event is an occurrence in a domain. In our case, an event is a location update of a
mobile node, which contains the new coordinate of the node’s position.

CEP provides concepts for processing events, which includes the consumption, manip-
ulation (aggregation, filtering, transformation, etc.) and production of events. The CEP
workflow continuously process the events received, which are then manipulated and sent
to event consumers (e.g. online monitoring applications), that are interested in receiving
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notifications about detected situations.
The manipulations of events are described by CEP rules. CEP rules are Event-

Condition-Action functions that use operators (e.g. logical, quantifying, counting, tem-
poral, and spatial) on received events, checking for correlations among these events, and
generating complex (or composite) events that summarize the correlation of the input
events. Most CEP systems have the concept of Event Processing Agents (EPAs), which
are software modules that implement an event processing logic between event producers
and event consumers, encapsulating some operators and CEP rules. The type of an EPA
is defined by the behavior of the CEP rules it implements, such as filtering, transformation
or specific event pattern detection. In addition, CEP rules can manipulate directly the
event stream by adding, removing or updating raw events.

An Event Processing Network (EPN) is a network of interconnected EPAs that imple-
ments the global processing logic for pattern detection through event processing [8]. In an
EPN the EPAs are conceptually connected to each other (i.e. output events from one EPA
are forwarded and further processed by other EPA) without regard to the particular kind
of underlying communication mechanism between them.

Before we insert events into our EPN, we group them into a specific partition using
CEP’s context. A context takes a set of events and classifies it in one or more partitions
[15]. For example, it may group all events whose coordinate fall inside a latitude interval
into a CEP context partition. The CEP context concept resembles grid cells, mentioned
previously. However, the primary difference between them is the abstraction level. While
a grid cell just stores data, a CEP context partition does the same, but in addition also
represents an isolated CEP runtime within that context partition, i.e., EPAs operators
will apply to events associated with a same partition, thus substantially reducing the
processing load. In addition, they are auto-managed “grid cells” in the CEP engine, that
can be dynamically activated and deactivated based on EPAs that refer to them. For
example, a context partition is created when it becomes active, i.e., an event is mapped to
it. As soon as there is no active EPA, i.e., it is not processing or storing an event window,
the partition becomes inactive.

Finally, we also use the concept of time windows, specifically sliding windows. A time
window is a temporal context [15] that chops the stream of events into intervals which
enable CEP rules to be applied only to events in that intervals. The three primary time
window models are Landmark, Sliding, and Fading. The Landmark (Batch) time window
acts as a buffer for a given time interval ∆ and all events in the window are processed at
the end of the interval. However, giving the waiting period, they are not well suited to data
streams [16]. Sliding windows are moving Landmark windows. This window return the
events from the current time to the past ∆ time units. They are well suited to data streams,
since they are continuous and consider a past history. Finally, Fading windows are Sliding
windows with weights. A weight λ is applied to the events according to their position
in timeline to differentiate their relevance for the processing. Frequently, an exponential
value is used, where current events have more impact. The problem with this approach
is that the λ is tied to the domain and scenario desired. Since we are primary concerned
about on-line and continuous detection, in dg2cep we opted for a sliding window model.

Considering CEP-based solutions for clustering position data stream, the majority of
works encountered [5, 6], requires developers to specify the possible cluster locations in
advance, which is not feasible in many systems. In addition, it does not detect clusters
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with arbitrary shapes, such as a traffic jam in a long avenue, since the cluster boundary is
already predefined. Contrary to that, dg2cep can detect both the formation and dispersion
of arbitrary clusters without the need of specifying the clustering region. In addition, these
studies lack scalability tests and analysis of their algorithm.

3 dg2cep: A CEP-based cluster detection algorithm

To detect the formation and dispersion of clusters, we now present dg2cep, a density-
grid data stream clustering algorithm expressed as a set of CEP rules. dg2cep provides
a Dbscan-like clustering semantic, being able to approximately identify Dbscan cluster
shapes using CEP context partitions. The main idea of our algorithm is to mitigate the
clustering process by first mapping the location update to CEP context partitions, and
then clustering the partitions rather than the nodes (using a Dbscan-like expansion).
However, this process only occurs if the given context partition has at least the minimum
number minPts mapped to it (as in Dbscan core points). The overall processing flow is
illustrated in Figure 1.

Figure 1: An overview of dg2cep processing workflow.

3.1 Stream Receiver

First, we need to handle and map the position data stream to a context partition. Consider
that the domain we want to monitor is delimited by [latmin, latmax] and [lngmin, lngmax],
the respective latitude and longitude interval. To provide a precision similar to Dbscan,
we divide this interval into partitions of size ε× ε. Thus, our space is segmented into the
following context partitions:

• [latmin, latmin + ε, latmin + 2ε, . . . , latmax] and

• [lngmin, lngmin + ε, lngmin + 2ε, . . . , lngmax]

for latitude and longitude respectively. To calculate each interval of our domain we use an
offset function1, that takes an angle with an ε distance (in meters) as parameter and returns
the offset value in angle for the latitude or longitude interval respectively. Code 1, written
in the Event Processing Language (EPL) [15, 17], a CQL-like [18] language to express
CEP rules, creates a context named PartitionCluster that segments the LocationUpdate
stream into partition according to the latitude and longitude attribute of the event.

1See Ed. Willlians Aviation Formulary (http://williams.best.vwh.net/avform.htm) for a sample imple-
mentation of an offset spatial function.
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1 CREATE CONTEXT PartitionCluster
2 PARTITION BY latindex AND lngindex
3 FROM LocationUpdate

Code 1: Context Partition Creation (in EPL), i.e., segmenting the data stream in partitions
using latindex and lngindex.

We map the mobile node location update to a context partition (latindex, lngindex)
using the combination of its latitude and longitude attribute, as described in Algorithm
1. Since we need to map each location update from the position data stream to a context
partition, we store the intervals in a static data structure, such as segment tree, binary
tree or a vector, which allow us to quickly identify the latitude and longitude interval of a
given event. Note that, we need to calculate only once the interval data-structure, since all
mobile location updates use the same static structure to identify their partition. Finally,
we emit an LocationUpdate event in our EPN.

Algorithm 1: Stream Receiver Function
Input: DataStream DS

Distance Threshold ε
Domain [latmin, latmax] and [lngmin, lngmax]

Output: An enriched LocationUpdate event

1 latintervals ← Intervals (latmin, latmax)
2 lngintervals ← Intervals (lngmin, lngmax)

3 while data stream DS is active do
4 position ← read data from DS
5 latindex ← Index (position[lat], latintervals)
6 lngindex ← Index (position[lng], lngintervals)
7 emit LocationUpdate(position, latindex, lngindex)
8 end

3.2 Context Partition Cluster

The events assigned to a context partition are all within ε distance (precisely at maximum
ε
√

2 apart), which is approximately the ε–Neighborhood defined by the Dbscan algorithm,
as shown by Figure 2. To compensate the normalization of Dbscan ε–Neighborhood, that
is a circle of radius ε, to a context partition of size ε× ε in dg2cep, we have to consider
more nodes than minPts to form a cluster, as some nodes might be outside the Dbscan
ε–Neighborhood (dashed area). The minimum number of nodes to form a cluster in the
square ε×ε, considering an uniform distribution, is the ratio between the area of the circle
and of the square, i.e.:

1 +

(
1− π(ε/2)2

ε2

)
= 2− π(ε2/4)

ε2
= 2− π��ε2

4��ε2
= 2− π

4
≈ 1.21

Thus, to provide a Dbscan cluster semantic using context partitions we have to consider
the concentration (mapping) of at least 1.21minPoints nodes to form a cluster.
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Figure 2: Context Partition and Dbscan ε radius.

Since events in the partition are already close to each other (considering ε), to identify
a cluster in our algorithm we just need to count the number of events received, as described
by Code 2. If the number of events received in the context partition over a period of ∆
seconds (window period) is larger than 1.21minPts, then the partition forms a cluster and
emits a complex event named PartitionClusterEvent.

1 CONTEXT PartitionCluster
2 INSERT INTO PartitionClusterEvent
3 SELECT LU.latindex, LU.lngindex, win(LU.∗)
4 FROM LocationUpdate.slidingWindow(2∆) AS LU
5 HAVING count(∗) ≥ 1.21minPts

Code 2: EPA for Detecting a Cluster Formation in a Context Partition.

As mentioned before, it is also important to detect when a detected cluster disperses,
i.e., when the context partition cluster is not valid anymore. We can now build an EPA
to expresses this relationship, as shown in Code 3. We define a CEP rule that fires if a
PartitionClusterEvent is not followed by another one within 2∆ seconds. If the context
partition does not generate a following cluster event within 2∆, this means that the number
of location updates mapped to the context partition is no longer bigger than 1.21minPts,
and, thus, no longer constitutes a cluster. We consider a time period of 2∆, instead of just
∆, in order to tolerate the situation where the location updates mapped to the partition
are generated out of sync by the corresponding mobile nodes.

1 CONTEXT PartitionCluster
2 INSERT INTO PartitionDisperseEvent
3 SELECT Dispersed
4 FROM PATTERN

5 EVERY PartitionClusterEvent AS Dispersed →
6 (Timer(2∆) AND NOT PartitionClusterEvent)

Code 3: EPA for Detecting a Cluster Dispersion in a Context Partition.

3.3 Clustering the Partitions

Currently, in our EPN flow, we are detecting the formation and dispersion of context
partitions clusters. To provide a Dbscan-like cluster semantics, of finding arbitrary shapes,
we must be able to aggregate these partitions. Thus, we define a named window, Clusters,
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to merge context partitions events. A named window is an event stream, but with the
distinctive feature that it allows manipulation of its raw events, while in a traditional data
stream the events are immutable. Clusters events are composed of a single field, an array
of PartitionClusterEvent, that refers to the context partitions that form the cluster. We
manipulate the events in the named window to group/merge and divide/split clusters, e.g.,
we merge a PartitionClusterEvent event with a cluster when the partition is a neighbor
of the cluster, or split a cluster when we receive a PartitionDisperseEvent event.

Before clustering the partition, we need to verify if we are adding/merging a cluster or
updating an existing one with that partition. To do that, we use a merge (or upset) EPA.
A merge operation is a composed SQL primitive that insert or update a stream depending
on the condition. When we receive a PartitionClusterEvent we check if a cluster contains
a partition (our condition). This condition can be checked by comparing the partition and
the cluster partitions indexes. If the partition is not contained in any cluster, we proceed
to add/merge the cluster partition.

1 ON PartitionClusterEvent AS partitionCluster
2 MERGE INTO Clusters AS cluster
3 WHERE cluster CONTAINS partitionCluster
4 WHEN MATCHED

5 THEN UPDATE partition
6 WHEN NOT MATCHED

7 THEN INSERT INTO AddMergeClusterEvent
8 SELECT partitionCluster

Code 4: EPA for Updating or Initiating Add/Merge Process.

Now, we define an EPA to add or merge partition clusters with the Clusters named
window using an extraction query, as shown in Code 5. When we receive an AddMergeClus-
terEvent we check if there is any neighbor cluster in Clusters. The isNeighbor routine does
this verification by comparing the cluster’s boundaries. A cluster partition is a neighbor
of another partition if the difference between their indexes are both less than one.

1 ON AddMergeClusterEvent AS partitionCluster
2 SELECT AND DELETE partitionCluster, win(C.∗) AS N
3 FROM Clusters.slidingWindow(∆) AS C
4 WHERE isNeighbor(partitionCluster, C)

Code 5: EPA for Adding / Merging a Partition.

This EPA extracts clusters that are neighbors of the partition that generated the
PartitionClusterEvent event. If the EPA returns an empty set for N (Neighbors), that
is, if there are no neighbor clusters to this partition, then we insert a new cluster that
is composed by that single event. If the N set is non-empty, i.e., the EPA identified
clusters that are neighbors with the partition cluster, we need to merge them with the
partition. The resulting cluster is formed by the combination of all neighbors’ with the
PartitionClusterEvent, since the event will serve as a link to connect the neighbors’
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clusters. Thus, the resulting cluster is the union of all neighbor cluster partitions from
Neighbors with PartitionClusterEvent, which is reinserted in Clusters. Algorithm 2
expresses this simple processing.

Algorithm 2: Add/Merge Function
Input: PartitionCluster partitionCluster

Set of Neighbors N
Output: A single Cluster

1 pArray ← partitionCluster
2 foreach Cluster Neighbor n from N do
3 pArray ← pArray

⋃
n.partitions

4 end
5 emit Cluster(pArray)

When a partition cluster disperses, we need to reflect the change in the Clusters stream.
Thus, we describe an EPA that when receives a PartitionDisperseEvent, that will split,
if necessary, the cluster that hold the partition into one or more clusters. We can reuse the
EPA described in Code 5 to extract the cluster that contains the PartitionDisperseEvent.
After extracting this cluster, we only need to identify (possible) remaining clusters after
we remove that partition. This is done, by first removing the dispersed partition and then
looping through the remainder ones to group them into distinct sets as shown in Algorithm
3. The separated clusters, if they exist, are then re-inserted in the Clusters stream.

Algorithm 3: Disperse Routine.
Input: PartitionDisperseEvent dispersed

Cluster that contains the partition C
Output: Zero or more Clusters events

1 setlist← {}
2 remainderPartitions ← C.partitions− dispersed
3 foreach Partition p from remainderPartitions do
4 hasNeighbor ← false
5 foreach Set of partitions s from setList do
6 if s contains a neighbor of p then
7 hasNeighbor ← true
8 s← s

⋃
{p}

9 end
10 end
11 if hasNeighbor is false then
12 setlist← setlist

⋃
{p}

13 end
14 end
15 foreach Set of partitions s from setList do
16 emit Cluster(s)
17 end
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3.4 The Final Cluster: Detecting the Border Nodes

So far, the detected cluster includes only the core mobile nodes, i.e., all selected con-
text partitions that forms the cluster has at least minPts nodes. However, to provide
a Dbscan cluster semantic, we need to include the border mobile nodes. These are the
mobile nodes that are reachable from the core points (context partitions) but does not have
ε–Neighborhood < minPts. In our case, these are the neighbors context partitions. Thus,
the final cluster OutputClusterEvent will include the cluster and its neighbors context
partitions mobile nodes. To do that, we design an EPA that extract the mobile nodes from
the cluster neighbors context partitions, as shown by Code 6.

As a side-effect of this EPA, and by extension of the grid-like scheme, some of the
extracted mobile nodes may not be in range of the core nodes. As a trade-off, we can add
an extra EPA that filters and remove mobile nodes that are outside the core reach, at the
cost of increasing the detection time.

1 INSERT INTO OutputClusterEvent
2 SELECT cluster AS core,
3 (SELECT win(n.*)
4 FROM LocationUpdate.slidingWindow(∆) AS n
5 WHERE isNeighbor(n, cluster)) AS neighbors
6 FROM Cluster AS cluster

Code 6: EPA for Enriching Final Cluster with Border Nodes.

3.5 Discussion

A primary benefit of dg2cep is that it changes the stream clustering from a comparison
problem to a counting one. At first, clustering (as specified in Dbscan) requires an
explosive pairwise comparison between the mobile node’s location at every location update.
By using ε× ε context partition tiles, we reduced the problem to counting the number of
mobile nodes that fall into each tile. In dg2cep we still need to cluster the context
partition, however, the comparison between context partitions is trivial, since they are
disposed in a grid-like scheme. This fact enables dg2cep to scale, since the primary
limiting factor is not the number of mobile nodes anymore, but the number of context
partitions. If ε is large, the precision is lower, but the algorithm is faster, while smaller ε
yields a precise detection, but slower.

To summarize the algorithm workflow, Figure 3 illustrates the complete interconnection
between dg2cep’s CEP rules and routines. It is hard to calculate the complete computa-
tional cost of dg2cep, given the event nature of CEP and the processing network. Most

Figure 3: The complete EPN of dg2cep.
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of the operations and EPAs described can be implemented in constant time. In the worst
case scenario, a location update would pass trough all the EPAs described in the cluster
formation. Thus, in this case, the simplified computational cost of dg2cep would be:

dg2cep = O(StreamReceiver × Part×Merge×Out)
= O(O(lg g)×O(1)×O(s)×O(n))

= O(sn lg g))

s = number of current clusters in the stream (“s”);
n = number of mobile nodes;
g = number of context partitions (“grid”).
The stream receiver cost is associated with g, the number of context partitions that

forms the monitored domain. Using an interval data structure, such as Segment Tree or
Binary Tree, we can identify the location update partition in O(lg g). After mapping the
mobile node to a context partition, we proceed to verify if that context partition forms
a cluster. The context partition EPA computational cost is constant, since we only need
to increment the number of mapped mobile nodes and check if it is bigger than minPts.
When we receive a context partition cluster we need to check for neighbor clusters. This
process, iterates over all current clusters s in the stream (O(s)). After merging the cluster,
we need to enrich the final cluster with its border nodes. In the worst case scenario, we
would need to check all n mobile nodes to extract those that are in a neighbor partition.
This entire chain of calls can be simplified in a computational cost of O(sn lg g) per update.

While the counting semantic of dg2cep context partitions gives a performance boost, it
also contains a blind spot. A primary limitation is that dg2cep cannot detect a cluster for-
mation when the minPts are scattered near the border of context partitions. For example,
suppose that minPts = 4 and the context partitions are dissposed as illustrated by Figure
4. In this case, the context partitions would not emit the PartitionClusterEvent, since
they do not contain minPts. He et al. [19] discuss this issue in a parallel non-streaming
Dbscan implementation. Their solution is to map the border points to adjacent cells,
when they are within ε distance of the border. However, in dg2cep all nodes are within
ε, thus this solution would not apply.

Figure 4: Blindspot of dg2cep detection.
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4 Evaluation

To evaluate our work, we used several synthetic position data streams2 generated by our
mobility model simulator. The primary metric we wanted to investigate was the time
required to detect the formation and dispersion of clusters and how this time would vary
according to the number of nodes and context partitions (w.r.t. ε). In addition, we are
interested in the accuracy of dg2cep, and in order to evaluate this we measured the Rand
Index [20]. The Rand Index measures the degree of similarity between the clusters detected
in dg2cep to those found by running Dbscan on the data stream. It measures how close
the clusters found in dg2cep are to the ones detected using Dbscan, considering true
positive, true negative, false positive, and false negative, when compared to Dbscan.

4.1 Geographic Domain

Our geographic domain monitors nodes in the south part of the city of Rio de Janeiro (RJ
- Brazil), here, delimited by [−22.964083,−22.989528] and [−43.234763,−43.183737], lati-
tude and longitude intervals respectively. This covers an area of approximately 14.77km2.
Figure 5 shows a small part of this domain, subdivided by the context partition tiles.
All simulated mobile nodes move around in this region, and send their position in raw
LocationUpdate event every 5 seconds. In total, we generated over 650 million location
update events.

Figure 5: Sample of Simulated Domain (South Part of Rio de Janeiro).

The simulated mobile nodes are of two classes: noise and con-and-divergence nodes.
Noise nodes are used only to generate processing load to the dg2cep. They start at
random location in the monitored region and move in random direction. To dg2cep, they
are like any other ordinary mobile node. At each location update, they move between 3 to
5 meters. Contrary to noise nodes, con-and-divergence nodes are positioned at predefined
locations and move slowly, between 2 and 4 meters every location update. Each set of
con-and-divergence nodes are placed near each other (< ε) in a disposition that should
trigger the corresponding cluster event. We use them to check if dg2cep detected the
expected clustering situation. With this information, we can discover the elapsed time
required to detect the formation and dispersion of each cluster. In the beginning, the con-
and-divergence are near each other, however as times passes each node will slowly move

2The generated data stream is available to be downloaded and reproduced in http://www.lac.inf.

puc-rio.br/dg2cep/.
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in a random direction. They do not move together, i.e., in the same direction, and they
slowly move away from each other. Since they do not necessary move together, they slowly
diverge from each other and from the context partition.

A round-based model was used as guideline for the simulation tool. The simulation is
divided into rounds and the interval between them is 5 seconds, the LocationUpdate event
period. Each simulation run for 100 rounds, thus, the total simulation period is 100× 5 =
500s ≈ 8.3minutes. In each round, the simulator might send the LocationUpdate for each
simulated node. In respect to noise nodes, the simulator sends their LocationUpdate event
in all rounds. Contrary to that, the LocationUpdate event for con-and-divergence nodes
are only sent in rounds 20 to 50. We log the timestamp of the beginning and end of this
interval. These values are used to identify and compare the elapsed time required for the
algorithm to detect the formation and dispersion of the clustering activity. We chose this
interval to generate prior working load in dg2cep before starting the clustering process.

To verify our algorithm precision, whenever dg2cep detect a cluster we take a snapshot
of all mobile nodes, and compare the discovered clusters with the ones using Dbscan3 in
the snapshot. Given the quadratic number of comparisons and the computational cost of
calculating the spatial (non-Euclidean) distance between two latitude and longitude points,
this process takes much time. Thus, we used a sample from the snapshot set to calculate
the accuracy. To assess the accuracy, we used the Rand Index [20] criteria, which measures
the percentage of similarity between two clusters. Rand Index is a number between 0 and
1, where 1 represent that the clusters are identical, and 0 represent that they are totally
different. Rand Index is expressed as TP+TN

TP+FP+FN+TN , where TP , TN , FP , FN , are the
number of true positive, true negative, false positive, and false negative respectively, when
compared to the cluster found in dg2cep with the one in Dbscan.

Since our primary goal is to verify our algorithm’s scalability and precision, the primary
variable in the simulated domain are the total number of mobile nodes and the partition
size (w.r.t. ε). For our experiments, we fixed a series of variables. The minimum number
of mobile nodes to form a cluster is minPts = 150. In addition, for all experiments, we
are using 1000 con-and-divergence nodes. These nodes are divided in four sets, three sets
of 200, and one of 400. Two con-and-divergence sets of 200 nodes are positioned near each
other, and can form a merged cluster (depending on ε), while the other two are far apart
from each other. Note that, we are expecting that at least 1000 con-and-divergence nodes
to form a cluster at every simulation. In addition to these nodes, noise nodes can join the
cluster if they are near of it or form their own cluster. In all case, when dg2cep detects
a cluster it saves the snapshot of all nodes to recheck and compare with Dbsan.

A primary concern of our algorithm is the context partitions ε size. Thus, to verify the
impact of the context partition size in dg2cep, we tested all scenarios with three context
partitions sizes: 10, 50, and 250 meters. We choose this partitions values because they are
multiple of each other (of five). In all tests, we used a sliding window ∆ of 30 seconds. In
our opinion, this interval suits the majority of applications described in the beginning of
the paper. We also varied the total number of mobile nodes, con-and-divergence nodes +
noise nodes, in each scenario from 1000, 5000, 10000, 25000, and 50000, as shown in Table
1. We simulated 10 times each configuration, i.e., ε, # of Mobile Nodes, minPts, ∆, and
LocationUpdate (LU), giving a total of 150 simulations.

3We used the Apache Math implementation of Dbscan - http://commons.apache.org/proper/

commons-math/.
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ε # Mobile Nodes minPts ∆ LU

10 m 1K, 5K, 10K, 25K, 50K 150 30s 5s
50 m 1K, 5K, 10K, 25K, 50K 150 30s 5s

250 m 1K, 5K, 10K, 25K, 50K 150 30s 5s

Table 1: Simulated Scenarios

4.2 Simulation Setup

We executed all experiments in Microsoft R© Azure Cloud. In this experiment, we used five
virtual machines, which are all running Ubuntu GNU/Linux 14.04.1 64-bit as operating
system. All virtual machines are interconnected with Gigabit connectivity and have the
following hardware configuration:

• 4 x Intel Xeon CPU E5-2660 @ 2.20GHz

• 28 GiB Memory RAM

To simulate the mobile nodes, we used three virtual machines running our simulation
tool. We developed a simulator tool in Lua, that interprets and executes a mobility model.
It simulates the random movement of noise mobile nodes in the given domain, and the
con-and-divergence model. The entire simulation output is saved and made available to
be reproduced by other studies. In addition, whenever the simulator initiate a con-and-
divergence cluster in a given position, it will log the cluster information and the timestamp
in a separate output file so we can compare with the detection time in dg2cep.

We used the SDDL, a real-time communication middleware [21] to connect the sim-
ulator to the CEP processing server. Each simulator instance send periodically, every 5
seconds, the location update of its simulated nodes to a SDDL Gateway. We dedicated an
entire virtual machine for this component. It is responsible for receiving the simulation
data and routing to the CEP processing server. In a real-world scenario, we could scale
the receiving and distribution process of data to the CEP processing server by adding
additional gateways.

dg2cep was implemented as a SDDL processing server using the Esper CEP engine
[17]. Esper is a popular open source Java/.NET CEP engine. We specify and implement
dg2cep CEP rules using Esper EPL and Listeners respectively. A virtual machine is solely
used for the dg2cep implementation.

4.3 Results

In this subsection, we present the results for each configuration of the simulated scenario.
Each variation of scenario was simulated 10 times. The memory usage in all experiments
were constant, around ≈ 2.3 GiB.

Figure 6 shows the elapsed time, in milliseconds, that dg2cep took to detect a cluster
formation when compared to the timestamp (from the simulator). The graph shows that
the size of ε impact in the detection time. As expected, a smaller ε yields a slower detection
time when compared to large ε. A smaller ε subdivides the monitored domain into a large
number of context partitions, which in turn increases the cost of identifying the context
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Figure 6: Elapsed time to detect a cluster formation in dg2cep.

partition index of each mobile node location update. In addition, the CEP engine will
also need to manager a larger number of context partitions. However, a larger ε can also
slightly increase the detection time for cluster formation when compared to a lower ε value.
The primary reason is the increase workload in the processing network. Since more mobile
nodes are mapped to the same context partition, which in turn generate events to the
network, this additional load is reflected in the elapsed detection time.

The elapsed time, in milliseconds, to detect a cluster dispersion by dg2cep are illus-
trated in Figure 7. All values presented are higher than the ones required to detect a
cluster formation. The reason for that comes from how dispersion is detected in dg2cep.
A dispersion event is triggered when dg2cep does not receive a PartitionClusterEvent
within a 2 × ∆ period. Thus, all disperse events will take at least 60 seconds, since our
time window ∆ is 30 seconds. One can remove this period to consider the “real” elapsed
time. For example, dg2cep takes 72300ms to identify a dispersed cluster in a scenario
of 5000 mobile nodes and ε = 50, by shifting this “interval”, the elapsed time would be
12300ms.

In addition, Figure 7 shows a direct correlation between context partition ε size and the
elapsed time required to detect a dispersed cluster. A larger ε takes more time to detect.
Since the context partition is larger, more mobile nodes are taken into account. Thus,
noise nodes act as heartbeat and maintains the context partition valid, since a noise node
located inside the cluster context partition would trigger the PartitionClusterEvent on
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Figure 7: Elapsed time to detect a cluster dispersion in dg2cep.
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sending its LocationUpdate. Finally, a smaller ∆ implies that the dispersion event will be
triggered faster, since we need to wait for a 2×∆ period without a PartitionClusterEvent.
However, the cluster formation could be delayed since it would consider less nodes.

Figure 8 shows the Rand Index, (“accuracy”) for each simulated scenario. Surprisingly,
the results were almost identical to Dbscan for ε = 10 and ε = 50. For example, in the
scenario of 10000 mobile nodes, dg2cep presented a similarity of 99.59%, 98.33%, 82.11%
with Dbscan’s output, for ε = 10, ε = 50, and ε = 250 respectively. The scenarios that
used ε = 10 were the ones that presented most accuracy. The primary reason is that
smaller ε yields smaller context partitions, which in turn has smaller “error” area, thus
nodes in that cluster are more likely to be near each other (w.r.t. ε).
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Figure 8: Rand Index (“accuracy”) of dg2cep cluster detection.

We did not expect such low precision for large ε. The results show only very little
similarity (of 3.96%) between the cluster identified using dg2cep and Dbscan for this
configuration – more than 10000 nodes and large ε = 250. We examined this result in
detail and discovered that the main problem was the scattering of mobile nodes close to
the border areas of the context partition, as illustrated by Figure 4. With such large ε, not
only is there more area in the context partitions with nodes that are not within distance
ε to each other, but also there are more nodes close to the borders, that will be within
distance ε of nodes in adjacent context partitions. In the first case, dg2cep will count
them, while Dbscan not, and for the second case, Dbscan will count them, while they
will be ignored by dg2cep. When measuring only the core nodes, i.e., those that have
ε–Neighborhood > minPts, the clusters detected through dg2cep are ≈ 82% similar to
Dbscan’s. Thus, it is the border nodes of the context partitions that account for the low
precision of clusters detection in dg2cep.

5 Conclusion

Clustering of mobile nodes is a recurrent mobility pattern in several distributed applications
[1]. Nevertheless, on-line cluster detection for many mobile nodes is a challenging task since
it requires efficient and complex algorithms to handle the high volume of their position
updates in a timely manner. Current works [5,6] requires developers to specify the possible
cluster locations in advance, which is not feasible in many systems. In addition, they do
not detect clusters with arbitrary shapes, e.g., a traffic jam in a long avenue, since the
cluster boundary is already predefined. To address this issue, in this paper, we proposed
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dg2cep, an on-line algorithm that uses Complex Event Processing (CEP) to provide a
Dbscan-like [10] clustering as a network of CEP rules. Using this network of rules, our
algorithm is able to rapidly detect both the formation and dispersion of clusters of arbitrary
clusters.

Experimental results show that dg2cep can detect cluster formation and dispersion
in a few seconds, e.g., in the scenario of 25000 mobile nodes sending their position every
5 seconds, dg2cep detected the cluster formation in 7882ms, 2461ms, and 3521ms, for
ε = 10, ε = 50, and ε = 250 respectively.

The experiments also indicate that the algorithm scales with the number of nodes,
showing a linear increase in the cluster formation and dispersion detection time when
increasing the number of nodes. In addition, in most cases dg2cep produces high precision
results that are almost identical to the ones of the much slower Dbscan: e.g., in the
scenario of 5000 mobile nodes, dg2cep presented a similarity of 99.98%, 99.52%, and
84.76% with Dbscan’s output, for ε = 10, ε = 50, and ε = 250 respectively. However, in
configurations with large ε and large number of nodes, dg2cep delivered poor accuracy.
The primary reason for this is the scattering of mobile nodes along the border area of the
context partition, as discussed in Subsection 3.5. This is a limitation derived from the
arrangement of the context partitions in a grid-like scheme.

As future work, we plan to address and solve the border nodes’ problem that can
lower dg2cep accuracy in some configurations. In addition, we plan to test dg2cep with
real-world position data streams, such as urban vehicle traffic and pedestrian movement
data. We are also interested on exploring different ways to implement dg2cep using other
stream processing models, such as the one of Apache Spark.
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