
���
����������	
��

��������������������������������

����� !���

��������	��
�������	�������	����������������
����������������	��������

�������	�����

���������	��

�������������	��

�����	���������	��

������������

���������� �	������ �	��

"�������������������#����

!"#���$��%�&#��� �'%'��%�(���%�'"���"�'�)%#��"

�&%��%�*&+ �'� ,"����#�-�../�0��!�..1/20344

��"�'�)%#��"�0�5�% ��

�



Monografias em Ciência da Computação, No. 04/2014 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena October, 2014

The Mobile Hub Concept: Enabling applications
for the Internet of Mobile Things1

L.E. Talavera, M. Endler, I. Vasconcelos,
R. Vasconcelos, M. Cunha

Francisco Silva da Silva1

1 Department of Informatics - Federal University of Maranho

{lrios,endler,ivasconcelos,rvasconcelos,mcunha}@inf.puc-rio.br
fssilva@deinf.ufma.br

Abstract. Few studies have investigated and proposed a middleware solution for the In-
ternet of Mobile Things (IoMT), where the smart things (Smart Objects) can be moved,
or else can move autonomously, and yet remain accessible and controllable remotely from
any other computer over the Internet. Examples of mobile Smart Objects include vehicles
of any nature, wearable devices, smart watches, sensor tags, mobile robots, Unmanned
Aerial Vehicles (UAVs), i.e., any mobile thing with embedded sensors and/or actuators.
In this context of general and unrestricted mobility of Smart Objects, the main challenge
is to ensure endured connectivity and discovery of Smart Objects, as well as the efficient
scalable and reliable remote access to its sensors and actuators. This paper describes
the concept a Mobile Hub as a key enabler of the Internet of Mobile Things, its design
and an initial implementation of the concept for Android and a single WPAN technology:
Bluetooth Low Energy. The M-Hub is the natural extension of the Scalable Data Distri-
bution Layer (SDDL), a mobile communication middleware developed by our group that
adopts a mobile-cloud architecture and provides scalable mobile-mobile communication
and processing capabilities. Preliminary experiments have shown that our implementa-
tion for BLE delivers good mobility responsiveness and that the concept is suitable for
applications which have to deal with the mobility of Smart Objects/ things.

Keywords: Context-Awareness, middleware, context modeling, mobile computing

1
ContextNet project is being supported by TecGraf Institute (PUC-Rio), by the PUC-Rio Microsoft

Open Source Alliance and by several CNPq stipendia.



Resumo. Poucos estudos têm investigado e proposto soluções de middleware para a
Internet das Coisas Móveis (IoMT), onde as coisas inteligentes (Smart Objects) podem
ser movidas, ou mover-se de forma autânoma, e ainda permanecer acesśıvel e controlável
remotamente a partir de qualquer outro computador da Internet. Exemplos de objetos
móveis inteligentes incluem véıculos de qualquer natureza, dispositivos portáteis, relógios
inteligentes, etiquetas de sensores, robôs móveis, véıculos aéreos não tripulados (UAVs), ou
seja, qualquer coisa móvel com sensores e / ou atuadores embarcados. Neste contexto, de
mobilidade geral e irrestrita de objetos inteligentes, o principal desafio é garantir e manter
a conectividade e descoberta de objetos inteligentes, bem como o acesso remoto escalável
e confiável eficiente de seus sensores e atuadores. Este artigo descreve o conceito de um
Mobile Hub (M-Hub), como um fator-chave da Internet das Coisas Móveis, seu design
e uma implementação inicial do conceito para Android e uma única tecnologia WPAN:
Bluetooth Low Energy. O M-Hub é a extensão natural do Scalable Data Distribution
Layer (SDDL), um middleware de comunicação móvel desenvolvido pelo nosso grupo que
adota uma arquitetura móvel em nuvem e fornece capacidades de comunicação e de proces-
samento escalável de clientes móveis para móveis. Experimentos preliminares mostraram
que a nossa aplicação para BLE oferece boa mobilidade de resposta e que o conceito é
adequado para aplicações que têm de lidar com a mobilidade de objetos inteligentes /
coisas.

Palavras-chave: Percepção de contexto, middleware, modelagem de contexto, com-
putação móvel

2



In charge for publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii



1 Introduction

Despite the huge number of potential applications and the increasing proliferation of ap-
pliances with embedded processing and wireless communication capacity, yet there is no
widely accepted approach, established standards and consolidated technologies for the
Internet of Things at global scale. In other words, Internet-wide communication and pro-
cessing of data from tens of billions of sensors and actuators within devices and smart
objects is still a challenge. In particular, very few studies have focused on the Internet of
Mobile Things (IoMT), in which the connectable things (or Objects) can be moved or can
move independently, and yet remain remotely accessible and controllable from anywhere
in the Internet. Mobile Objects (M-OBJs) may have very different size, purpose and com-
plexity - they may span from from terrestrial vehicles of any type (cars, busses, etc.), over
mobile domestic or industrial robots, aerial robots (UAVs), to very tiny and light-weight
wearable devices, badges or tokens, and eventually, even ”smart dust”. In fact, a M-OBJ
may be any movable object that carries sensors and/or actuators and has provides some
means of wireless connectivity. In this context of general and unrestricted mobility of
Smart Objects, the main challenge is to ensure best possible connectivity with mobile
sensors/actuators, fast discovery, seamless handovers, and continuous tracking and access
to the M-OBJ’s resources, capability-based search and selection, as well as management
of data streams to and from the M-OBJs in efficient, scalable ways.

Several wireless technologies for short range and low power connectivity (the last 100
meter connectivity - last100m) have recently emerged, such as Bluetooth 4.0, ZigBee, NFC,
WiFi Direct, 6lowPAN, or ANT+, which support some interconnection among Smart
Objects. However, most of these wireless technologies have the common drawback of
supporting connectivity only within limited scope, and imposing significant latency on
the inter-device discovery and pairing procedures, which on the one hand prevents the M-
OBJ’s access from anywhere on the globe, and on the other hand hinders fast reconnections
and re-arrangements in stringent mobility scenarios. Hence, in this project we aim to
investigate several research challenges and issues associated with the Internet of Mobile
Things (IoMT), where M-OBJs of any sort are accessed through the now most disseminated
pervasive devices: smart phones and other portable and personal devices such as tablets.

According to Francis daCosta [3], IPv6 does not solve all IoT problems because man-
agement, rather than addressing and routing, will be the biggest challenge of IoT. In fact,
IP-based protocols will neither be supported by the vast majority of Smart Objects, nor
will their over-provisioned and reliable services be suited to most IoT applications. The
reason is that IP-based protocols ”...are intrinsically designed for high-duty cycles, large
data streams, and reliability.”, while in IoT communication involves small but frequent
messages, where each message individually is unimportant, but the statistical properties
of the corresponding data flows carry the relevant pieces of information. Moreover, the IoT
networking will not have a flat Peer-to-Peer architecture as some believe, since ”...many
devices at the edge of the network have no need to be connected with other devices at the
edge of the network...”, and since ”...the communications intelligence and functionality
does not exist within the end devices, other devices - propagator nodes - must be present
in the network to transport data efficiently and manage the data flows...” [3].

Thus, considering that smart phones are becoming ubiquitous2, cheeper and more

2
According to eMarketer, smartphone users will total 1.75 billion users in 2014 - almost 24% of the

1



powerful, and that disconnections and message loss will be the norm in IoT, where reliable
delivery of single messages from/to M-OBJs will be less important, smart phones and
tablets are the natural candidates for serving as IoT propagator nodes. This makes us
propose the concept of Mobile Hubs(M-Hub) as the intermediate between the myriad of
different Smart M-OBJs and the long-haul Internet connection.

By supporting the Internet of Mobile Thing (IoMT) through this concept of M-Hub
we are, in fact, coping with a more general - and harder - problem than traditionally
addressed by the IoT community, that usually assumes that both the peripheral/edge
devices (the Objects) and the propagator nodes are fixed at some place. Essentially, the
IoMT paradigm considers any situation in which the relative position and velocity between
the M-OBJs and the M-Hub is variable and may change anytime, and where M-OBJs may
be reached through different and even multiple M-Hubs over time. Therefore, IoMT
encompasses situations where:

1. the M-OBJs are permanently associated with a place and the M-Hub moves across
the places to opportunistically interact with the M-OBJs, e.g. for sampling local
sensor data;

2. the M-OBJs are attached to movable items, while the M-Hub is linked to a place,
e.g. a warehouse, and the M-OBJs reveal their presence to the M-Hub whenever
they get close to it and

3. the M-OBJ stays in co-movement with the M-Hub for a certain period of time, e.g.
passengers in a vehicle, health-sensors carried by a patient, etc.

Of course, this more generic model of IoMT brings along the burden of potentially
much more indeterminism in the form of unpredictable sensor/actuator availability, less
reliability, more connectivity volatility, higher probability of interferences, and much more.
Nevertheless, we believe that there exist several (non-critical) applications which have this
intrinsic characteristics of unrestricted mobility and which may benefit from our approach.
In particular, we envision several applications that will benefit from another important
characteristics of the M-Hub: its ability to enrich the M-OBJ’s data streams with contex-
tual information, obtained from its own sensors, such as its current geographic position.
This feature will open up to applications new ways of classifying, filtering or searching
for data to/from the M-OBJs. Finally, it is worth noting that in IoMT mobility is just
an option: M-OBJs and M-Hubs may also be deployed in a static configuration, and be
associated with a specific place, for applications such as Smart Home/Buildings, etc.

The remainder of this paper is structured as follows. In the next section we describe
two potential applications for IoMT, and in Section 3 give an overview of the ContextNet
project and its already implemented mobile communication infrastructure. Then, in sec-
tion 5, we present the concept and main functions of the Mobile Hub, as well as its general
architecture and its main components. In Section 6 we describe some details our current
M-Hub prototype and results of performance tests done so far. In Section 7 related work
is discussed, and 8 contains a discussion of other roles that the M-Hub may assume in
future applications. Finally, in Section 9, we draw concluding remarks and point to future
work.

world population!

2



2 Possible IoMT applications

In the following we present two hypothetic IoMT applications, which require the concept
of a Mobile Hub, and which illustrate the three situations presented in Section 1.

Application 1: In a region with high density of smartphone users, such as a metropoli-
tan area, we can imagine the need for collaborative air quality monitoring. Common cit-
izens may obtain tax incentives to install and deploy affordable Wireless Air Monitoring
Stations (WAMS) in their yards, along neighborhood driveways, parks or other public
spaces. All such WAMS would have CO, NO2, SO2, Lead sensors, etc., a short range and
low-power wireless interface, be weather-resistant and run on solar energy. In this context,
the collaborative monitoring app would be a crowd-sourced one where pedestrians passing
close to some WAMS would donate their smartphone’s Internet connectivity and energy
to upload the current collected sensor data from the nearby WAMS to a city-wide moni-
toring service in the cloud, where all this information would be presented on a map both
on-line and in consolidated statistics, for access by any citizens. Actually, through this
IoMT application air quality indeed would not be be monitored uniformly for the entire
city region, but only at those parts of the city where it is most relevant, i.e., the places
with much intense pedestrian and bike traffic. Moreover, some citizens may even opt for
a air monitoring on the go-attitude, carrying a smaller and lighter version of the WAMS
on their bike baskets or their knapsacks, so as to measure the air pollution on their ways.
And through their smartphone, this data would be uploaded to the central monitoring
service.

Application 2: Nowadays, several goods and merchandise require specific minimal
transportation and storage conditions on their routes from producer to consumer. For
example, meat and some fruits need ambient temperatures of less than 10 degrees Celsius,
special flowers and plants should be in ambients with air humidity above certain level,
livestock requires smooth movement as well as places with sufficient air circulation (i.e.,
O2 concentration), etc. Hence, it would be advantageous to be able to monitor the ambi-
ent and movement conditions along all the transport path of these and other ”sensitive”
merchandise. This could be done by placing some smart sensors (M-OBJs) close to the
goods, and having the sensor values probed in all the stages of transportation and inter-
mediate storage. These data could then be send in real-time to interested users (e.g. the
customer, or the transportation company) so as to early detect some non-conformance in
the transportation conditions, or else, be the input for transport reports. Such a monitor-
ing could be achieved by having M-Hubs placed in the array of vehicles (trucks), vessels
or delivery personal involved in the transportation. By such, as soon as the merchandise
cargo is loaded, stored or picked by the next transportation means, the M-Hub would
connect with the M-OBJs, send messages acknowledging the arrival/ handing-over of the
goods to the clients, and start receiving, checking the M-OBJs sensed data, and eventually
sending alert notifications about inadequate transport conditions.

As can be noticed, Application 1 illustrates situations 2 and 3, whereas Application 2
illustrates situation 1.

3



3 The ContextNet project

The goal of the ContextNet project is to extend the SDDL communication middleware
[11, 14, 15], its protocols, APIs and services to enable discovery, management and access
to Mobile Objects (M-OBJ) through Mobile Hubs (M-Hubs). While the former can be
very simple sensor or actuator devices with no significant processing and storage capacity
(dump objects), the latter are resource-full portable personal devices (smart phones or
tablets) that will ”bridge the gap” between the Internet connection with the SDDL Core
(e.g. executing in a cloud) and the short-range wireless connections established with
nearby M-OBJs. For this short-range wireless connectivity, we have designed S2PA, a
general and technology-independent communication protocol and API which runs on the
M-Hub. As its first realization we are implementing S2PA it for Bluetooth 4.0 (Bluetooth
Smart or Bluetooth Low Energy - BLE).

In fact, BLE is emerging as a very promising technology for WPAN, because it is
power efficient, enables fast discovery of devices and supports approx. 2500 simultaneous
connections. But the most important reason for choosing BLE is the fact that being made
available on a growing array of Android, iOS, Blackberry smart phones and moreover is
being deployed into many peripheral devices, gadgets, beacons and small Sensor Tags3.

Although the ContextNet IoMT support encompasses some other services on the SDDL
core, presented in [13], in this paper we will explain the design and preliminary performance
results of our M-Hub/S2PA prototype implementation for Bluetooth LE.

4 SDDL Middleware: an Overview

The Scalable Data Distribution Layer (SDDL) is a communication middleware that con-
nects stationary DDS nodes in a wired core network to mobile nodes with an IP-based
wireless data connection. Some of the stationary nodes are information and context data
processing nodes, others are gateways for communication with the mobile nodes, and yet
others are monitoring and control nodes operated by humans, and capable of displaying
the mobile nodes current position (or any other context information), managing groups,
and sending message to the mobile nodes4. SDDL employs two communication protocols:
the Data Distribution Service (DDS) Real Time Publish/Subscribe Protocol for the wired
communication within the SDDL core, and the Mobile Reliable UDP (MR-UDP) [12] for
the inbound and outbound communication between the core network and the mobile nodes.
DDS [9] is a standard of the OMG that specifies a peer-to-peer middleware architecture for
real time and high-performance data distribution, with Quality of Service (QoS) contracts
between producers and consumers of data (e.g., reliable communication, data persistency,
priority lanes, etc.). In a nutshell, MR-UDP is Reliable-UDP with mechanisms for tol-
erating intermittent connectivity, dynamic IP address changes of the Mobile nodes and
reaching these nodes behind firewalls/NATs. It is used by the mobile nodes to connect
with a special type of SDDL Core node called Gateway (GW), of which any number can be
deployed in the SDDL Core. Each Gateway maintains one independent MR-UDP connec-
tion with each mobile node, and is responsible for translating application-messages from
MR-UDP to the intra-SDDL core protocol, and, in the opposite direction, converting core

3
See: www.bluetooth.com/Pages/Bluetooth-Smart-Devices-List.aspx

4
A mobile node is the generic term for an end user terminal or a Mobile Hub

4



messages to MR-UDP messages and delivering them reliably to the corresponding mobile
nodes.

The SDDL Core has several other specialized nodes: the PoA-Manager, which holds
the addresses list of all currently active Gateways and eventually requests mobile nodes
to switch Gateways; GroupDefiners evaluate the group-memberships of all mobile nodes
(based on some attribute of their inbound application messages) and manage the reliable
delivery of group-cast messages to the mobiles, and the Controller, which provides a Map-
based user interface to visualize and interact with any mobile node of the system. Finally,
there is the ClientLib, a Java/Lua library which establishes and manages a MR-UDP
connection of a mobile node client and the Gateways. It hides most MR-UDP details
and message retransmission issues from the application layer, and also supports a fully
application-transparent handover of the mobile node between SDDL Gateways.

More information about SDDL components and applications can be found in the papers
[11, 15]. The interested reader can download a VM with pre-installed SDDL, as well as
find examples and tutorials for implementing SDDL-based applications in Java, Android
and Lua5.

5 The Mobile Hub concept and its design

Since the Mobile Hub plays a crucial role as the intermediary between the Mobile Objects
and the Internet, it must have full-fledged processing power, sufficient memory, and net-
work interfaces both to Mobile Internet (2G/3G/4G) and to some low-range, low-power
WPAN communication technology. We further assume that the M-Hub has some means
of learning its current location, e.g. by sampling its GPS sensor, through network-based
positioning, or else, by manual configuration (when used in stationary settings).

The main mandatory tasks of the M-Hub thus include:

Discovery, monitoring and registration of nearby M-OBJs periodically, the M-Hub
will scan for nearby M-OBJs announcing their IDs and capabilities. This information
about reachable M-OBJs will be kept stored in the M-Hub database and eventually
forwarded to some service executing in the SDDL core.

Connecting to a M-OBJ depending on the kind of interaction (and the WPAN tech-
nology capabilities) a stable communication link may be established with some M-
OBJ, over which the M-Hub will execute a request-reply protocol.

Protocol Transcoding Data packets and messages from/to M-OBJs may have different
formats and encodings. Thus, the M-Hub will transcode them from/to serialized
objects, encoded with Protocol Buffers, and transmitted over the MR-UDP connec-
tion.

Caching of recent M-OBJ sensor/status information in order to optimize commu-
nication over the Mobile Internet, the M-Hub may group several pieces of sensor data
or commands from the set of nearby M-OBJs into a single ”bulk message” for trans-
mission. And in order to do this it will cache the most recent (the current) data
items obtained from the M-OBJs.

5
http://www.lac-rio.com/dokuwiki/doku.php?id=tutorial

5



Sending requests to M-OBJs depending on the services/ resources offered by the M-
OBJ, the M-Hub will periodically or sporadically send queries about sensor readings
and/or the M-OBJ’s current state, or commands to set some parameter or drive
some local actuator of the M-OBJ, e.g. rotate 45 degrees left;

Managing handover of M-OBJs to/from other M-Hubs since moving M-OBJs may
enter and leave the WPAN coverage area of different M-Hubs over time, but one
should attempt to keep the M-OBJs as long as possible accessible through any M-
Hub, it is necessary that M-Hubs also keep track of other, nearby M-Hubs that may
take over the role of serving a M-OBJ that is supposedly ”drifting away”.

In order to perform these functions, the M-Hub will use the ClientLib for commu-
nication with the Gateways, and the S2PA API for discovering and interacting with the
M-OBJs. In our current M-Hub prototype, we have implemented S2PA only for Bluetooth
Smart technology.

5.1 Short-Range Sensor, Presence and Actuation API

The Short-Range Sensor, Presence and Actuation (S2PA) API was designed to be a generic
interface for short-range communication between the M-Hub and M-Objects, that can be
directly mapped to the specific capabilities of the underlying short-range wireless commu-
nication technologies (a.k.a., WPAN). To achieve this we identified some basic functions
that most of these technologies should implement: 1) Discovery and connection of M-
Objects, 2) Discovery of services provided by M-Objects, 3) Read and write of service
attributes (e.g., sensor values, and actuator commands) and 4) Notifications about dis-
connection of M-Objects. Hence, each WPAN should implement the following interface
that defines these features in order to be used.

As one of its main elements S2PA defines the Technology Interface, as shown in Figure
1. The Technology interface posses a unique ID that is defined at programming time to
identify each technology (e.g. BLE, ANT+, etc). Also, we believe that the interface has
the required methods to handle different short-range protocols that are based on the idea of
things. Some functions that need to be explained are the followings: exists, verifies if the
technology exists on the device, readSensorValue, and writeSensorValue, request a
read or a write of a sensor respectively, where serviceName represents the sensor and could
be ”Temperature”, ”Humidity”, etc. All the important information that a technology can
offer is sent to the TechnologyListener, where is the main logic of the S2PA Service, since
it takes care of sending the information from the different technologies to the Connection
Service.

5.2 Main Components

The M-Hub will be multi-threaded and will consists of the following four local services
and two managers, all executing in background. The LocationService is responsible for
sampling the M-Hub’s current position and attaching it to whatever message is sent by
the M-Hub to the Gateway (GW). The S2PA Service uses the S2PA library to interact
with all nearby M-OBJs that ”talk” the WPAN communication technologies supported by
S2PA. This service is responsible for periodically doing scanDevices in all the supported
WPAN technologies, registering discovered the M-OBJ’s IDs and their capabilities in the

6



Figure 1: Main two interfaces of the S2PA

SensService Registry, and transcoding sensor data and commands from the specific SF
protocol format to Java objects to be transmitted to the GW, and vice-versa. Mobile
Internet messages are received from and sent to the GW by the ConnectionService,
which runs the ClientLib and manages a msg buffer of ready-to-send messages. These
messages are either created by other mobile apps running on the device, or assembled by
the S2PA Service. It is also important to mention that some messages (like connection or
disconnection) won’t be added to the buffer, instead they will be sent immediately. These
messages are either created by other mobile apps running on the device, or assembled by
the S2PA Service. The periodicity and duration of all of these three services’ actions,
is influenced by device’s current energy level (LOW, MED, HIGH) which in turn will
be controlled by the Energy Manager, which from time to time sample’s the device’s
battery level and checks if it is connected to a power source. Finally, the Handover
Manager, queries some specific data produced by the S2PA Service, such as the sensed
RF signal strengths of nearby devices, and according to the situation, interacts with other
M-Hubs (detected nearby) so as to proactively share information and parameters about
M-OBJs, and ultimately swap responsibility for handing-out or handling-in M-OBJs, with
these M-Hubs.

Figure 4 shows more details of the interactions between these components of M-Hub.
SensorTag, DevType2, etc.. are modules that handle the information received from/ sent
to specific M-OBJs. Each of them extends the TechnologyDeviceService class, and

7



Figure 2: M-Hub’s main components while it interacts with two M-OBJs, with different
WPAN technologies.

overrides its abstract methods, among which the most important are the convert(),
which handles the transformation of the raw data (bytes array) received from the M-
OBJ’s sensors to a JSON array format. The SF module performs the aforementioned
conversion and is specific for each type of M-OBJ.

The S2PA Service is thus capable of managing several short-range communication
technologies by calling generic methods (and registering listeners), that are mapped to the
classes and methods of the different WPAN modules. As soon as a new M-OBJ is detected,
S2PA Service places its services into the Sensor Service Registry , and starts getting data
from the M-OBJ, which are then handed over to the Connection Service, where they
are stored in a buffer (msg buffer) . The ConnectionService may also interact with any
mobile app executing on the smartphone (the upper tier), forwarding application messages
between the ClientLib and the apps, in both directions (see vertical arrow at the left). The
ConnectionService periodically also receives position data from the Location Service, which
is then simply added any ClientLib outbound message. The Energy Manager is the one
that controls the periodicity intervals for all the three Services, depending on the current
battery level, and if the M-Hub is plugged or not to the power supply. For example, if
energy supply is LOW, MEDIUM or HIGH the S2PA Service will perform the scan (for

8



all M-OBJs on all WPAN technologies) every 20, 30 and 40 seconds, respectively. These
thresholds are configurable for different smartphone devices.

6 Current Status and Preliminary Results

Our current M-Hub prototype is for the Android platform and supports only a single
WPAN, namely Bluetooth LE. It extends a previous set of Android components called
ELISA (Energy-aware cLIent Service Library for Android)6 by adding the S2PA Service
and the modules for Bluetooth LE. In this prototype, we have not yet implemented the
Handover Manager.

Nevertheless, our prototype already implements the first four mandatory functionalities
(c.f., Section 5) of the M-Hub. It discovers, connects and starts receiving sensor data
updates from any number of nearby M-OBJs. In our case, we tested it with off-the-shelf
SensorTags7. This SensorTag has 6 sensors and no actuator.

At the level of S2PA Service it is only relevant to get all the sensor data from each M-
OBJ. For this, we could either use the function readSensorValue() of the Technology In-
terface (see Figure 1) or take advantage of the special feature of Bluetooth LE, which allows
us to receive a sensor data as soon as it changes, in the listener function onMObjectValueRead().

The SensorTag’s sensor data is then buffered in the Connection Service and sent pe-
riodically to a monitoring node in the SDDL Core. This monitor displays the M-Hubs
on a map, together with the most recent sensor data obtained from the M-OBjs in the
M-Hub’s vicinity. Figure 3 shows two M-Hubs and the M-OBjs sensor readings.

Figure 5 show two screens of an Android app for visualizing the M-Hub settings and
received values: i.e., the connection, location and scan settings, (left screen) as well as the
discovered M-OBJs, their MO-UUIDs, and the current values obtained from each of its
sensors (right screen).

6.1 Preliminary Performance Tests

Using this prototype, we already did some preliminary experiments to access the latency
of the discovery & connection-to process of the M-Hub with up to four Sensor Tags, and
obtained encouraging results. For these experiments, we configured S2PA to perform a
WPAN scan every 3 seconds and let the scan last for 2 seconds. The smartphone used
as M-Hub for the experiments, is a Motorola Moto X (2013) with Android 4.4.2 KitKat.
The notebook used to run the SDDL Core (Gateway and Controller/Monitor) for all the
experiments is an ASUS Intel(R) Core(TM) i7-4500U CPU 1.80GHz with 5857 MB of
RAM, running Arch Linux (Kernel 3.16.3-1-ARCH). The type of WLAN used is IEEE
802.11bgn.

In our first tests, we measured the Connection Time (CoT), Services Discovered Time
(SDT), and Enable Notification Time (ENT), all in seconds, in Bluetooth LE for a single
SensorTag, both for the first connection of the M-Hub with the M-OBJ (Table 1), and
then for subsequent M-Hub to M-OBJ connections (Table 2). We ran each experiment 12
times and calculated the mean value and the standard deviation.

6
ELISA - http://www.lac-rio.com/software/elisa-energy-aware-client-services-library-android

7
Texas Instruments CC2541 Sensor Tag - http://www.ti.com/lit/ml/swru324b/swru324b.pdf

9



Figure 3: Two M-Hubs, with one and three M-OBJs (SensorTags), displaying four (or
five) current sensor readings.

As can be seen from Table 1 the Service discovery process in BLE is the heaviest
operation. And since it will find all the services, characteristics and descriptors that the
M-Object possesses, its delay will be proportional to the number of services, in our case,
the 6 sensors. However, we found out that this Services Discovery time decreases very
much for subsequent connections, as can be seen from Table 2. Hence, for subsequent
connections, the total delay from the first contact to the data notifications takes less than
700 milliseconds.

Also, we also saw that the M-Hub almost immediately detects when a M-OBJ dis-
connects from it. Unfortunately, the precise latency of this detection - the callback of
onMObjectDisconnected() in the TechnologyListener - could not be measured, but it
is probably less than 500 milliseconds.

Further experiments were realized using two M-Hubs and four M-Objects (Sensor
Tags). Here, we measured the amount of time that it takes for a server in the the SDDL
Core to receive the sensor data from one M-Hub (MHUB2) that established a connection
with all M-Objects (until services are discovered) since another M-hub (MHUB1) was dis-
connected from them. This time interval was measured at the server, from the moment it
receives M-OBJ DisconnectMessage from MHUB1 until it receives a confirmation message
that the M-OBJs services have been discovered. The same Motorola Moto X smartphone
used in the first experiments was used as the MHUB1 and a Moto E with Android 4.4.4
KitKat was used as MHUB2. In these experiments, the scan interval was 0, so the scans

10



Figure 4: Two M-Hubs interacting with four M-OBJs during tests

started immediately after the stop of the previous scan. . Similar to the previous tables,
the connections of the MHUB2, to all four M-OBJs, could be for a first one (Table 3) and
for subsequent connections (Table 4). We ran each experiment 12 times and present the
mean value and the standard deviation. It is also important to remark that the behavior
of BLE in Android is synchronous, so the connections to each of the M-Objects is done
sequentially.

The times in Tables 3 and 4 show that BLE enables a very fast connection-plus-service
discovery latency of peripheral devices, specially if the M-Hub has already connected to
them previously. So, if sensor data from M-OBJs has to be collected and transmitted to
servers in almost real time by any M-Hub that happens to be its BLE wireless range, then
it will suffice for an approaching (or moving by) M-Hub to stay at least 10 seconds nearby
to the M-OBJ, and it will already start to receive and be able to relay the M-OBJ’s sensor
data to the server. Considering that BLE’s communication range is approx. 20-30 meters,
this means that if the relative speed between the M-Hub and the M-OBJ is slower than 3
m/s, then there is high probability that the M-Hub will transmit the sensor data to the
server. And the chances are even higher, it there are more than one M-Hub in the vicinity
of the M-OBJ.

11



Figure 5: Screens of the MHub Viewer: M-Hub settings (left) and four discovered Sen-
sorTags with their current sensor readings (right)

7 Related Work

Most of the works, in both industry and academia, on service discovery protocols and
connectivity for IoT in mobile environments are based on fixed communication infrastruc-
tures and centralized database servers. They utilize a client-server model, where mobile
clients issue range queries to central query processing servers or brokers using protocols
like MQTT over WiFi or ZigBee. In these systems, the stationary objects continuously
transfer their data to a central server and clients can obtain information about near-by
objects by issuing queries to the central server [7].

Some of the recent works address peer-to-peer and mesh network connectivity with
service discovery in a mobile environment. There are industry protocols like Thread, from
TheadGroup, AllJoin, from All Seen Aliance that are specialized on support of discovery
and interoperability of things across devices and platforms in a specific environment (e.g.
home, office), and academia protocols designed to be mobile and energy efficient by group-
ing devices in a neighborhood such that devices in a group will take turns to announce the

12



Table 1: First Connection to M-Object (BLE)

Run CoT (s) SDT (s) ENT (s)

1 0.314 9.159 0.430
2 0.393 8.960 0.498
3 0.201 9.157 0.311
4 0.102 9.132 0.214
5 0.045 9.411 0.158
6 0.605 8.815 0.723
7 0.128 9.232 0.237
8 0.197 9.094 0.306
9 0.094 9.188 0.206
10 0.143 9.164 0.258
11 0.111 9.172 0.228
12 0.210 9.100 0.331

Mean 0.21192 9.132 0.325
St.Dev 0.1578 0.14381 0.15839

existence of other devices in a group [6]. There are also technologies like Bluetooth Service
Discovery Protocol (BSDP) [1], Universal Plug and Play (UPnP) [8, 4] and Secure Service
Discovery Service (SSDS) [2] as a specification which enables close devises to communicate
with each other at low cost and low power consumption, defines interactions among smart
object, people, and environments and also supports authentication, privacy, and integrity.

Many efforts also have been based on the CoAP protocol. CoAP natively provides
a mechanism for service discovery and location [10]. Each CoAP server must expose an
interface to which the generic node can send requests for discovering available resources.
The CoAP server will reply with the list of resources and, for each resource, with an
attribute that specifies the format of the data associated to that resource. CoAP, however,
does not specify how a node joining the network for the first time or how it must behave
in order to announce itself to the resource directory node.

Although there are many protocols for Internet of Thing, many of them didn’t embrace
mobile nodes, do not consider mobile or movable smart objects, or do not scale. We are
unaware of a comprehensive approach focused on the Internet of Mobile Things, in which
the connectable things can be moved or can move independently, and yet remain remotely
accessible and controllable from anywhere in the Internet with handover. Nor have we
seen any work showing the design, concrete prototype implementation and experiments of
a Mobile Hub. with a concrete WPAN technology. The only work that presents a similar
idea of using the smartphone as an IoT Gateway is [5], but their software architecture
for the smartphone is rather high-level, uses traditional protocols (e.g., TCP, UDP ), and
does not consider any concrete short-range, low-power WPAN or WLAN technology.

8 Discussion

We believe that for future IoT applications, users and developers should not need to
know the URI of individual smart things. The mere scale of the problems, involving

13



Table 2: Subsequent Connections to M-Object (BLE)

Run CoT(s) SDT (s) ENT (s)

1 0.077 0.158 0.193
2 0.395 0.161 0.496
3 0.164 0.165 0.268
4 0.102 0.126 0.210
5 0.256 0.165 0.360
6 0.316 0.179 0.423
7 0.161 0.134 0.359
8 0.153 0.159 0.259
9 0.315 0.153 0.423
10 0.316 0.133 0.422
11 0.231 0.170 0.335
12 0.304 0.159 0.407

Mean 0.2325 0.15517 0.34625
St.Dev 0.10007 0.01609 0.0953

thousands of things and millions of sensors and actuators will make such system impossible
to manageable at the level of things. Instead, what will matter for the applications are
just the data, their context and the semantically rich information that can be derived from
this data. For example, instead of subscribing for a data stream from a specific sensor, the
IoT applications will probably issue more abstract queries or subscriptions like: ”mean
pressure value at a given place”, or ”is there some discrepancy of the temperature readings
within a building”, or else ”show me the air pollution indices along my biking route”.

Hence, we think that future IoT applications will require the following two things:

1. a means of enriching the collected data on its path from the source/s to the consumers
(i.e. the application or users);

2. ways of discovering, selecting, subscribing or querying these data based on high-level
filtering and correlation expressions in terms of the data’s semantics and its context
information.

In this sense, the Mobile Hub concept supports item (1), since it not only adds Internet
connectivity to the otherwise isolated smart things, but is also capable of executing basic
aggregation, summarization and transformation functions on the sensor data, as well as
enrich this data with contextual information, such as the approximate geographic position
of the sensor; if it is moving and how fast; which is the current sound level (i.e., activity)
of the environment; whether there is some other sensors in the vicinity that can provide
complementary or confirmatory information, etc.

Moreover, the M-Hub also enables tangible anywhere-accessible user interfaces for
managing (configuration, state monitoring, operation control, etc.) of sensors and control
units embedded in smart things (and Mobile Objects in particular), that lack an own user
interface.

14



Table 3: Handover for First Connections to all M-Objects (BLE), in seconds

Run 1 M-OBJ 2 M-OBJs 3 M-OBJs 4 M-OBJs

1 10.307 20.045 29.693 39.503
2 11.034 20.804 30.437 40.283
3 11.593 21.079 30.909 40.666
4 9.286 18.856 28.733 38.605
5 11.679 21.459 31.312 41.381
6 9.357 19.309 29.288 38.940
7 9.243 18.957 28.784 38.490
8 9.400 19.047 28.901 38.888
9 9.401 19.038 28.974 39.004
10 11.570 21.120 31.082 40.805
11 11.043 20.562 30.487 40.122
12 9.980 19.705 31.607 41.182

Mean 10.32442 19.99842 30.01725 39.82242
St.Dev 1.00115 0.96796 1.07327 1.04175

9 Conclusion

We have presented the concept, design and a prototype implementation of the Mobile
Hub, as the main enabler for the Internet of Mobile Things (IoMT), where any smart
thing/object with some short-range and low-power wireless interface (WPAN technology)
is movable and nevertheless can be connected to the Internet. We have also presented
some hypothetic applications for IoMT to illustrate the potential benefit of this new IoT
paradigm. The M-Hub concept is independent of the mobile platform and has been de-
signed to be used with several WPAN technologies, since its constituent S2PA Service
defines a generic Technology Interface that has to be implemented for each WPAN tech-
nology.

However, our first prototype has been implemented for Android only, uses our mobile
communication middleware SDDL, and has used Bluetooth Low Energy (BLE) as the
showcase WPAN. Actually, because of the high efficiency of this WPAN technology, this
turned out to be an excellent choice. Yet another advantage, is that BLE is being widely
adopted for smart objects, and is being supported by most smartphone makers. For
IoMT, where fast connection with objects and discovery of their (sensor/actuation) services
will be paramount because of the fast variability of the relative distance between Mobile
Hubs and its nearby mobile objects, Bluetooth LE showed excellent results for discovery,
reconnection and handover of BLE-enabled M-OBJs. For example, if a M-Hub and a
M-OBJ have already discovered each other before, the subsequent reconnection takes
0.9 seconds, and can be done for four M-OBJs in less than 5 seconds. Moreover, these
latencies are strongly affected by Android’s KitKat current support for Bluetooth LE,
which implements just sequential connections and service discovery of M-OBJs. We have
made all our experiments with four BLE-enabled SensorTags, and have shown how their
sensor data can be instantly received by the M-Hub and then relayed to any server/monitor

15



Table 4: Handover for Subsequent Connections to all M-Objects (BLE), in seconds

Run 1 M-OBJ 2 M-OBJs 3 M-OBJs 4 M-OBJs

1 0.379 1.640 2.104 3.350
2 0.212 2.237 3.535 4.252
3 0.372 0.915 1.688 2.311
4 2.936 3.852 4.856 5.468
5 0.033 1.103 1.956 2.274
6 0.426 1.010 1.639 2.454
7 1.992 3.016 3.629 4.448
8 0.393 1.507 2.074 3.018
9 0.535 4.444 5.217 6.021
10 2.192 2.861 3.775 4.388
11 1.361 2.176 3.000 3.782
12 0.271 0.920 1.626 2.235

Mean 0.92517 2.14008 2.94992 3.66675
St.Dev. 0.95336 1.18817 1.25685 1.28251

through the M-Hub’s Internet connection. We have also testes other Android apps8 with
some similar capability to connect and receive sensor data from BLE objects. However,
none of them supports such fast transfer of data to the internet, and also is restricted to
connecting to a single BLE at a time.

In spite of the encouraging preliminary results, we are aware that our current M-
Hub prototype is only ”scratching the surface of IoMT”, and much interesting research,
software development and applications can be derived from this work. In particular, our
future work includes: investigate the problems and possible approaches inter- M-Hub
handover protocols aiming to reduce the latency of the first connections with M-OBJs,
including an local Data (Stream) Processing Service into the M-Hub, so that it is capable
of processing the sensor data received from the M-OBJs, so as to correlate it and infer
higher-level information from the sensed data stream before sending this information via
its Internet connection. Moreover, we also plan to study means of sending commands
to M-OBJs with actuators, and thus support any Internet-wide remote control of smart
things, such as home appliances. In particular, we also want to study if the local local
Data Stream Processing Service can be used for local feedback-control-loops on sets of
M-OBjs with sensors and actuators.

References

[1] BluetoothSIG. Specification of the bluetooth system – core. Available online.

[2] S. Czerwinski, B. Y. Zhao, T. Hodes, A. Joseph, , and R. Katz. An architecture for a
secure service discovery service. In Fifth Annual International Conference on Mobile
Computing and Networks (MobiCom ’99), 1999.

8
SenseView - http://senseview.mobi

16



[3] F. DaCosta. Rethinking the Internet of Things: a scalable approach to connecting
everything. ApressOpen, New York, NY, 2013.

[4] U. Forum”. Universal plug and play device architecture 1.0, 2013.

[5] R. Golchay, F. L. Mouël, and S. Frénot. Towards bridging iot and cloud services:
Proposing smartphones as mobile and autonomic service gateways. arXiv preprint
arXiv, 1107.4786., 2011.

[6] P. Huang, E. Qi, M. Park, and A. Stephens. Energy efficient and scalable device-to-
device discovery protocol with fast discovery. In IEEE International Conference on
Sensing, Communications and Networking (SECON 2013), pages 1–9, 2013.

[7] U. Hunkeler, H. Truong, and A. Stanford-Clark. Mqtt-s - a publish/subscribe protocol
for wireless sensor networks. In 3rd International Conference on Communication
Systems Software and Middleware and Workshops (COMSWARE), pages 791–798,
2008.

[8] B. A. Miller, T. Nixon, C. Tai, and M. D. Wood. Home networking with universal
plug and play. IEEE Communications Magazine, pages 104–109, 2001.

[9] G. Pardo-Castellote. Omg data-distribution service: Architectural overview. In Pro-
ceedings of the 2003 IEEE Conference on Military Communications - Volume I, MIL-
COM’03, pages 242–247, Washington, DC, USA, 2003. IEEE Computer Society.

[10] Z. Shelby, K. Hartke, , and C. Bormann. Constrained application protocol (coap),
2013.

[11] L. Silva, R. Vasconcelos, L. Alves, R. Andre, and M. Endler. A DDS-based middleware
for scalable tracking, communication and collaboration of mobile nodes. Journal of
Internet Services and Applications, 4(1):1–15, 2013.

[12] L. D. Silva, M. Endler, and M. Roriz. Mr-udp: yet another reliable user datagram
protocol, now for mobile nodes. Monografias em Ciencia da Computacao 06/2013,
Departamento de Informatica, PUC-Rio, May 2013.

[13] I. Vasconcelos, R. Vasconcelos, and M. Talavera, L. Endler. Towards a model and
middleware for the internet of mobile things. In Wireless Days (to appear), 2014.

[14] R. Vasconcelos, M. Endler, B. Gomes, and F. Silva. Autonomous load balancing
of data stream processing and mobile communications in scalable data distribution
systems. International Journal On Advances in Intelligent Systems, 6(3-4):300–317,
2013.

[15] R. O. Vasconcelos, L. Silva, and M. Endler. Towards efficient group management
and communication for large-scale mobile applications. In Pervasive Computing and
Communications Workshops (PERCOM Workshops), 2014 IEEE International Con-
ference on, pages 551–556, March 2014.

17


