
PUC
ISSN 0103-9741

Monografias em Ciência da Computação

n° 04/2015

FIoT: An Agent-Based Framework for Self-
Adaptive and Self-Organizing Internet of Things

Applications

Nathalia Moraes do Nascimento

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

 



Monografias em Ciência da Computação, No. 04/2015 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena November, 2015

FIoT: An Agent-Based Framework for

Self-Adaptive and Self-Organizing Internet of

Things Applications

Nathalia Moraes do Nascimento, Carlos José Pereira de Lucena

nnascimento@inf.puc-rio.br, lucena@inf.puc-rio.br

Abstract. The agreed fact about the Internet of Things (IoT) is that, within the coming
years, billions of resources, such as cars, clothes and foods will be connected to the Internet.
However, several challenging issues need to be addressed before the IoT vision becomes a
reality. Some open problems are related to the need of building self-organizing and self-
adaptive IoT systems. To create IoT applications with these features, this work presents a
Framework for Internet of Things (FIoT). Our approach is based on concepts from Multi-
Agent Systems (MAS) and Machine Learning Techniques, such as a neural network and
evolutionary algorithms. To illustrate the use of FIoT, we derived two different instances
from IoT applications: (i) Quantified Things and (ii) Smart Cities. We show how flexible
points of our framework are instantiated to generate an application.

Keywords: Internet of Things, Multi-Agent System, Self-Organizing, Self-Adaptive,
Quantified Things

Resumo. A ideia principal da Internet das Coisas (IoT) é conectar bilhões de coisas à
Internet nos próximos anos, a exemplo de carros, roupas e comidas. Entretanto, muitos
problemas precisam ser resolvidos antes que essa ideia possa ser concretizada. Alguns des-
ses problemas estão relacionados à necessidade de construir sistemas para IoT que sejam
auto-organizáveis e autoadaptativos. Este trabalho, portanto, apresenta a elaboração do
Framework para Internet das Coisas (FIoT), um Framework para suporte ao desenvolvi-
mento de aplicações para IoT com essas caracteŕısticas. Ele é baseado nos paradigmas de
Sistemas Multiagente (SMA) e algumas técnicas abordadas em Aprendizado de Máquina,
a exemplo de redes neurais e algoritmos evolutivos. Para demonstrar o uso do FIoT, dois
grupos de problemas em IoT serão instanciados: (i) Cidades Inteligentes e (ii) Quanti-
ficação de Coisas.

Palavras-chave: Internet das Coisas, Sistema Multiagente, Auto-Organização, Autoa-
daptação, “Quantified Things”



In charge of publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii



1 Introduction

Internet of Things (IoT) is a broad concept. In general, IoT refers to a global infras-
tructure of networked physical things interconnected through Internet [1, 2]. The central
perspective is that, within the coming years, billions of resources, such as cars, lamps, fo-
ods and factory machinery will be connected to the Internet and share information about
themselves and their environments. IoT will make it possible to develop a variety of ap-
plication scenarios, such as smart homes and cities, e-health, environmental monitoring
and many others. Smart traffic management is an example of a smart city application,
which aims at providing intelligent transportation through real-time traffic information
and path optimization [3].

According to the authors in [4], the potentialities offered by IoT make it possible to
develop a huge number of applications, a very small part of which is currently available
to our society. Most IoT applications are not developed yet because they require scalabi-
lity beyond millions of devices where centralized solutions could exceed their boundaries.
Further, they cannot have fixed deployments or fixed systems configurations, as the en-
vironment is in continuous transition [5]. For example, an autonomous application for
traffic management depends on the abilities of the traffic light controllers to adapt to
changing traffic situations [6]. We can observe that traffic changes according to different
time-scales. As the authors describe in [6], a typical workday can be divided into several
periods of different traffic situations, including two peak periods with high demands due
to commuter traffic.

The truth is that several challenging issues still need to be addressed before the IoT
vision becomes a reality [7, 8, 4]. A possible further complication is the fact that the
vast majority of present research in universities and industry is paying more attention
to operational technology, in order to solve problems related to limited Internet traffic
capacity, communication protocols, and network architecture [9]. For example, the authors
in [3] discuss the open challenges and future directions in the Internet of Things. They
present global addressing schemes, cloud storage, and wireless power as the key elements
of the current IoT research. In their opinion, self-adaptive system of systems is an example
of the key application outcomes that are only expected in the next decade.

In [5], one of the few works that bring a non-operational IoT approach, the authors
relate some open issues which are needed to build elements capable of copping with the
changing environments and taking appropriate decisions autonomously. Therefore, they
discuss about the importance of creating autonomous and adaptive IoT systems. In an
effort to call attention to these issues, a new terminology associated with IoT is emerging:
Smart Objects (SOs) or Smart Things. They represent loosely coupled and decentralized
systems of cooperating objects. Editors in [5] discuss smart objects and define them as
an autonomous, physical digital object augmented with sensing/actuating, processing,
interpretation, storing, and networking capabilities.

IoT is a new and exciting approach, and will soon be adopted by the market [3]. To
define new frameworks/middlewares [10, 11] for the rapid prototyping, there is a need to
facilitate the development process of SOs. Frameworks are general software systems (i.e.
systems that consist of abstract and concrete classes), which can be adapted or extended
to create more specific applications. According to Ian Sommerville [11], “the sub-system
is implemented by adding components to fill in parts of the design and by instantiating
the abstract classes in the framework.”

1



Meanwhile, a few framework/middleware approaches have been proposed to support
the creation of a SO-based IoT infrastructure [12]. The authors in [13] analyze the existing
approaches and discuss their limit in the management of a vast number of cooperative SOs
- none of them presented the design of any complex application scenario (i.e. using a vast
number of cooperative things, such as traffic scenarios). For example, the authors in
[14] developed a middleware for smart objects and affirm that the support of distributed
computing entities is the key and novel feature of their approach. Nonetheless, to illustrate
the use of their architecture, they present a simple case study, which refers to a smart
office environment constituted by only two cooperating things. These works do not show
efficiency in complex scenarios, where things must cope with a changing environment and
where a sophisticated organization system is required.

According to the authors in [13], to develop SO-based IoT systems, novel software
engineering methodologies for dynamic systems need to be defined. Due to proliferation
of the Internet and the spread of mobile devices, an increasing number of applications are
suitable for using self-organization to fulfill their goals, such as manufacturing control and
traffic management [15]. Accordingly, we aim at facilitating the development of smart
systems within the Internet of Things domain, providing them with more autonomy, self-
adaptive and self-organizing properties. In order to do this, we first propose a model to
create smart things. Our approach is based on Multi-Agent Systems (MAS) and adaptive
techniques that have been commonly used in robotics to develop autonomous embodied
agents (as robots) (see [16, 17]). Thus, we present a framework, named “Framework for
Internet of Things”(FIoT), as an effort to facilitate the process of creation of smart things.

The objective of FIoT is to facilitate the creation of diverse applications, such as
controllers for car traffic, factory machines, public lighting, and smart homes. Hence,
the framework allows the creation of autonomous controllers for groups of homogeneous
things which can be connected to the Internet. To illustrate the use of FIoT, we will
present examples from two of the Internet of Things applications: (i) Quantified Things
and (ii) Smart Cities.

1.1 In what follows we try to addres the following question: Why use
MAS and Adaptive Techniques from the Robotic area?

Multiagent Systems (MAS) are widely used to model real-world and social systems, whe-
reas agents are proper to model real entities [18]. MAS provides a useful paradigm for
managing large and distributed information handling systems [19]. In addition, an agent
could have some characteristics, such as autonomy and social ability, which make MAS
suitable for systems requiring self-organization (SO).

Multi-agent systems can gain in robustness, management, and simplicity if they are
developed according to the principles of self-organization. However, the models used in
Self-Organized Multiagent Systems (SO MAS) tend to be very complex [19]. The use of
learning and evolution strategies in a design of SO MAS reveals new possibilities to reduce
this complexity [20, 18].

Robotic researchers already have devoted considerable time to study autonomous self-
organizing physical systems and their problems [21, 22, 23]. They intend to develop
methods that allow robots to learn how to perform complex tasks automatically. A pri-
mary focus of contemporary autonomous robotics research is to develop machine learning
methods for use in robotic systems. In recent years, a new machine learning method

2



appeared and gained academic and industrial attention: the Evolutionary Robotic (ER)
[24, 16, 17]. The primary goal of ER is to develop methods for automatically synthesizing
intelligent autonomous robot systems. Evolutionary Robotic have the potential to lead to
the development of robots that can adapt to uncharacterized environments, which may be
able to perform tasks that human designers do not thoroughly understand [25].

The paper is organized as follows. Section 2 provides a literature survey as related
work. Section 3 describes our model and the FIoT framework. Section 4 discusses how
the proposed framework can be used to create IoT instances, presenting experiments setup.
The paper ends with conclusive remarks in Section 5.

2 Related Work

We first present an overview of frameworks in the literature while addressing the idea of
mixing Artificial Intelligence and Internet of Things concepts, especially those with focus
on multi-agent systems. We also describe a framework for physical agents that not have
focus on IoT, but which provides physical systems with self-organizing and self-adaptive
properties.

We know of few research efforts in the literature about smart objects for Internet of
Things applications. The authors in [13] aim at providing a clear picture of the suitability
of middlewares to support the development of Smart Objects-based Internet of Things
systems. The main SO middlewares have been described and compared in their paper
based on a set of requirements for smart environments and objects.

Finally such authors listed four middlewares which provide efficient management to
develop and deploy SOs: ACOSO (Agent-based Cooperating Smart Objects) [12, 14], Fed-
Net [26], Ubicomp [27] and Smart Products [28]. They make use of different architectural
models: the ACOSO is agent-oriented and event-driven, the FedNet is service-oriented,
while Ubicomp and Smart Products are component-based.

However, authors in [13] also discuss the limit of these middlewares in the management
of a vast number of cooperative SOs, since none of them presented a case study to de-
monstrate its efficiency in wide scenarios. According to the authors, to develop SO-based
IoT systems, novel software engineering methodologies for extreme-scale dynamic systems
need to be defined. It is also necessary to include specific abstractions able to deal with
system/component evolution that is a typical property of SO systems. The authors argue
that agent-oriented methodologies could be exploited by engineers as the basis for forma-
lizing such an effective development method for SOs. Multiagent Systems were widely
employed to cope with the main requirements for IoT systems: interoperability, abstrac-
tion, collective intelligence and experience-based learning.

The work performed in [9] also proposes a framework for the IoT based on a multi-
agent System Paradigm. In this sense, the authors listed some requirements needed for
developing IoT applications. This list gives support to the domain analysis of our propo-
sed framework. According to authors, requirements are the acquisition of measurements
and data from devices, its processing and translation of a context of useful information,
and actuation over the environment. Moreover, the approach showed that agents have
characteristics that are suitable for those requirements, such as perception, autonomy and
social ability.

Despite the fact that the paper presents a real motivation to our approach, it only

3



offers a brief description of a framework components. The authors have also mentioned
that there is still the need for detailing every component and give them the intelligent
characteristics. Our approach provides intelligence components to develop IoT applicati-
ons through adaptation and organization algorithms, since we agree that it is crucial to
model this type of application.

A framework developed by the Italian Institute of Cognitive Science and Technologies
[29], and used to support FIoT is the Framework for Autonomous Robotics Simulation
and Analysis (FARSA) [30]. This framework was created to assist research in the area of
embodied cognition, adaptive behaviour, language and action. A set of works on Evolu-
tionary Robotics [16, 31, 32, 33] were developed using FARSA or related software. Most
of these experiments presents a group of embodied agents that evolves for the ability to
solve a collective problem.

Another related work to our approach is the framework presented in [34], Framework
for Evolutionary Design (FREVO). The authors in [34] presents Frevo as a multi-agent
tool for evolving and evaluating self-organizing simulated systems. The authors affirm
that Frevo allows a framework user to select a target problem evaluation, controller re-
presentation and an optimization method. However, it concentrates only on evolutionary
methods for agent controllers. As a result, this tool can only provide offline adaptations
and evolve only simulated environments. In addition, it is often applied in the creation of
autonomous robots.

Unfortunately, we can not reuse these referred platforms to control smart objects
since it they are very oriented towards the simulation of robotic agents. Furthermore,
these platforms have limited communication structure since they do not give support to
heterogeneous platforms required by current networks, such as desktop, web, mobile and
microcontroller boards.

3 FIoT: Framework for Internet of Things

In this section, we first perform a survey of Internet of Things requirements taking pre-
viously published and personal experiences into account. Then we describe our proposed
agent-based model to create IoT systems and we show how this model meets these requi-
rements. Our proposed model consists of three layers: (i) physical, (ii) communication,
and (iii) application. To facilitate the development process of the communication and
application layers of an IoT system, we developed the Framework for Internet of Things
(FIoT). Therefore, we also present the FIoT in this section.

During framework developments, three stages must be considered: (i) domain analysis,
(ii) framework design, and (iii) framework instantiation [35]. A domain analysis stage
provides a survey of domain requirements. In the framework design stage, we used the
Unified Modeling Language (UML) diagrams [10] to specify FIoT structure, behavior,
and architecture. UML use case [36] and UML activity diagrams [37] are used to assist
the description of the main idea of FIoT. In addition, we present the FIoT UML class
diagram [35], followed by the analysis of its kernel (“frozen-spots”) and flexible points
(“hot-spots”). “Frozen-spots”are immutable and must be part of each framework instance.
“Hot-spots”represent the flexible points of a system, which must be customized in order
to generate a specific application [35].

According to the authors in [35], the abusive use of hot spots in a framework design

4



will inevitably lead to complex software systems. Therefore, the framework designer has
to choose the hot spots carefully, neither exaggerating nor creating a far too generic
framework.

The instantiation stage is presented in the section 4, performing the generation of new
instances through implementation of the FIoT’s hot spots.

3.1 Domain Analysis

As we emphasized in the section 1 and 2, we used the works in [5] and in [9] as basis of our
domain analysis. We also consider the requirements for the development of self-organizing
and self-adaptive applications proposed by the authors in [38].

From an engineering perspective, IoT systems are distributed systems consisting of
components (things) that may be physical devices, animals or people. As we aim at giving
support to the development of smart things, these components have to autonomously
collect data about themselves and their environments and take actions [39]. A smart IoT
system can make decisions based on collected data and use dynamic reconfiguration to
improve its performance.

All IoT applications share common features, such as to connect and collect data; but
they have different features that vary according to specific application scenarios. To assist
the development of self-organizing and self-adaptive IoT applications, we performed a
discovery domain requirement (R), as follows:

• R1. Design-time description (problem domain):

– R1.1 To analyze environmental conditions that are associated with the problem
goal (e.g., temperature, gases)

– R1.2 To define how to collect environmental conditions (e.g., a microcontroller
board and sensors)

• R2. Decentralization and Interoperability.

• R3. Autonomous things:

– R3.1 Things should be capable of autonomously sensing/monitoring themselves
and their environments

– R3.2 Actuation over the environment

• R4. Self-adapting capability:

– R4.1 The individual components or the whole system should be capable of
identifying any new condition, failure, or problem by themselves/itself

– R4.2 Run-time capability of reasoning and of acting/adapting

• R5. To design a software to allow the system:

– R5.1 To recognize devices in the environment;

– R5.2 To acquire the data from devices that are collecting environmental data;

– R5.3 To interface with device sensors; and

– R5.4 To process and translate the data to a context of useful information.

5



In the next subsections, we show how our proposed model and framework meet the
requirements listed above.

3.2 Agent-Based Model

We developed an agent-based model to be used as a basis for generating different kinds
of applications for Internet of Things. Our approach is completely based on Artificial
Intelligence paradigms, such as multi-agent systems, neural networks and evolutionary
algorithms. We aim at providing mechanisms to automatically recognize and manage
things in the environment.

As depicted in Figure 1, our model consists of the design of three layers: (L1) physical,
(L2) communication, and (L3) application. Each device in the environment (physical
layer) can be recognized and controlled by agents in the application layer.

Figura 1: An agent-based model to generate IoT applications.

The physical layer can consist of simulated or real devices (also named as things/objects)
and environments. In order to model the physical layer, the project designer has to define
the features of things as well as the features of the environment in which these things
are situated. He must raise the environmental conditions that need to be monitored (e.g.
temperature, relative humidity and car flow). Then he can make specifications for devices.
For example, to set their sensors and actuators (i.e. the necessary technology to collect
data or make changes on the environment).

The communication layer defines that communication among agents on the application

6



layer and devices must occur using the Internet. Each thing has one address, so an agent
can access this address to get and set the necessary information to control the device.
We suggest the Java Agent Development Framework (JADE) [40] [41] to implement the
communication among agents and things. JADE implements the Foundation for Intelligent
Physical Agents (FIPA) protocol for agent communication. It allows the development of an
interoperability communication structure, which agents can execute on different platforms
and exchange information.

The application layer uses a Multi-Agent System (MAS) to provide services, such
as collecting, analyzing and transmitting data from several sensors to the Internet and
back again. We aim at providing decentralization, autonomy and self-organizing features
to applications through MAS. In addition, we provide the capacity of creating physical
agents capable of interacting dynamically with complex environments by using approaches
commonly applied in Robotics.

We suggest developing controllers at the application layer to allow autonomous mana-
gement of devices in the physical layer.

3.3 Central Idea for the Framework Design

A FIoT application consists of the development of three kinds of agents: (i) God Agents
[42]; (ii) Adaptive Agents; and (iii) Observer Agents [43]. The primary role of the God
Agent is to detect new Things, that are trying to connect to the system. Thus, the
God Agent allows the automatic connection of new devices to the system, as a “plug
and play”connection. The “plug”in this example, means that the device needs to send a
message to the God Agent’s IP address, excluding manual settings. For each connected
device, the God Agent creates an Adaptive Agent to control it. An Adaptive Agent is an
agent embodied in a Thing, according to the description provided in [44] . While a device
represents its body, a JADE software agent contains its controller. The God Agent sets
the controller (i.e. the “brain”of the agent) for an Adaptive Agent according to the type
of its device (e.g. the number of sensors and actuators). Therefore, the controller creation
is a flexible point on FIoT system implementation.

Authors in [45] developed a framework to implement self-adaptive software agents
based on the autonomic computing principles proposed by IBM [46, 47]. In order to create
adaptive agents, they provided a control loop composed of four activities: collect, analyze,
plan and execute. What follows is a brief description of each of these four activities:

• Collect: to collect application data;

• Analyze: to analyze those data by trying to detect problems;

• Plan: to decide what should be done in the case of problems; and

• Execute: to change the application due to executed actions.

We customized the control loop used in their work to define the behaviors of the
FIoT’s Adaptive Agents. Instead of executing the analyze and plan activities, the FIoT’s
Adaptive Agents make decisions based on a controller, which can be, for example, a finite
state machine (FSM) or an artificial neural network (ANN), as shown in Figure 2.

Therefore, our Adaptive Agent must execute a sequence of three key activities: (i)
collect data from the thing; (ii) make decisions; and (iii) take actions. The task of data

7



Figura 2: Control loop provided by the FIoT framework.

collection focuses on processing information coming from devices, such as reading data
from input sensors. These collected data are used to set the inputs of the agent’s controller.
Then, the controller processes a decision to be taken by the agent.

Adaptive Agents act according to the controller output. An action (effector activity)
can be to interact with other agents, to send messages, or to set actuators data of devices,
allowing them to make changes to the environment.

The Observer Agent aims at allowing Adaptive Agents to cope with the changing
(dynamic) environments, and at making them capable of adapting to the unexpected.
By using an adaptive approach, we expect the emergence of features that have not been
defined at design-time, including a sophisticated self-organizing system.

Some researchers [17, 24, 48, 23, 21, 49] investigate the emergence of cooperative or
competitive self-organizing multi-agent systems. One of the specifications to generate a
cooperative self-organizing multi-agent system is to conduct the adaptive process according
to collective evaluations. Self-organizing systems have global goals. Thus, we aim at
investigating during the adaption process if a collection of agents are attending together
the global goal or not. If the system needs to adapt, the adaptation is performed for
the whole multi-agent system. If we conduct the adaptive process according to individual
evaluations, the agents may compete with each other. This is the main reason that we
provide an Observer Agent to evaluate the global behavior of the collection of Adaptive
Agents and to conduct the adaption process of the whole system. Therefore, its main
goal is to verify if the Adaptive Agents need to adapt or not. When the actions of agents
are far from what it expects, the Observer Agent executes a supervised or unsupervised
learning method, such as backpropagation or genetic algorithm.

The process of adaptation consists of generating new configurations for Adaptive
Agents’ controller and test how agents will behave in the environment. The Observer
Agent selects the configuration used when the collection of Adaptive Agents shows a de-
sired global action to set their controller. While the Observer Agent looks for the new
controller configuration, Adaptive Agents continue their execution normally.

The Observer Agent is tightly coupled to the application being developed. The evalu-
ation process has to be implemented according to the expected global solution. Another
variable activity is the generation of new configurations for controllers. It depends on the
applied adaptive technique.

8



As agents execute specific activities to virtualize things and communicate with them
at the physical layer, these things must execute the following sequential activities:

• Connect to the Internet

• Send message to the GodAgent, reporting your type of controller. The GodAgent
has some controllers already registered. Thus, the type of controller indicates the
characteristics of a device, such as the list of sensors and actuators.

• Wait message from GodAgent containing the address of its AdaptiveAgent. Then,
the thing will use this address to send and receive the next messages in a cycle:

– Send message with data sensors

– Wait message with data to set its actuators.

Table 1 summarizes the model and framework description in this section, and presents
how them meet the requirements listed in Section 3.1, according to their layers. FIoT
meets the requirements associated with the layers of communication (L2) and application
(L3).

Tabela 1: How the model and FIoT meet the IoT requirements.

9



3.4 Details of FIoT

As presented in the section 3.2, our model proposes the use of JADE to support the
communication among agents and things. FIoT extends JADE, a Java framework to
implement multi-agent systems. The project consists of the development of JADE agents,
the behaviors of agents, the controller to be used by Adaptive Agents, and the adaptive
process to be executed by the Observer Agent. In addition, the system gives support
to different interface communication message systems, such as sockets and ACL. We will
present the main FIoT classes [11] of the main packages.

The class diagram depicted in Figure 3 illustrates the FIoT classes associated with the
creation of agents and their execution loops. As described before, the FIoT agents are
represented by the GodAgent, ObserverAgent and AdaptiveAgent classes, which extend
the FIoTAgent class. Then, they can access and make changes to the list of controllers
(ControllerList class). This list stores all controllers already created by the GodAgent for
each thing type (e.g. chair with one temperature sensor, lamp with one presence sensor
and one alarm actuator).

Figura 3: Class diagram of FIoT - Agents.

All agents execute sequential behaviors, named as ExecutionLoop: GodLoop, Adapti-
veLoop and ObserverLoop classes. The sequential behavior is a type of JADE behavior
that provides support to the implementation of composed activities [40]. Thus, the Exe-
cutionLoop is a sequence of smaller actions. For example, for Adaptive Agents, these
execution loops are composited of collect, decision and effector activities.

The class diagram depicted in Figure 4 illustrates the collection of behaviors already
developed. Activities such as making evaluation and controller adaptation are examples
of hot spots. Therefore, new strategies for evaluation and adaptation can be developed to
be used by agents. The God Agent’s execution loop performs three behaviors: “Detect”,
“CreateAgent”, and “ControllerProvision”.

While ObserverAgent access the ControllerList to adapt controllers configuration th-
rough ChangeControllers behavior, AdaptiveAgent uses it to get its controller, set data
input, and then obtaining the calculated output.

The class diagram depicted in Figure 5 illustrates the controllers classes. Agents whe-
reas virtualize homogeneous devices can use the same controller to make decisions. For
example, in a scenario where similar smart lamps have to be managed, the same ANN
controller can be used by Adaptive Agents. The GodAgent stores their controller in Con-
trollerList as “lampNeuralNetwork”. If there is another group of devices, the GodAgent
has to attribute a different controller for them.

10



Figura 4: Class diagram of FIoT - Behaviors.

Figura 5: Class diagram of FIoT - Controllers.

4 Evaluation: Illustrative Examples

We evaluate FIoT by implementing the flexible points of it to generate different applica-
tions. As discussed in the section 3, the framework instantiation is the last stage to be
considered during the development of a framework [35].

We consider the following IoT instances in FIoT evaluation process: (i) Quantified
Things and (ii) Smart City. For each one, we developed an illustrative example, and this
section presents a brief description of them. We also show how the generated application
adhere to the proposed framework, filling the main variable parts.

11



4.1 FIoT’s Instances

The frozen spots are part of FIoT kernel. Then each of the proposed applications will
have the following modules in common:

• Detection of devices by the GodAgent;

• The assignment of a controller to a particular Adaptive Agent by the GodAgent;

• Creation of Agents;

• Data Collection execution by Adaptive Agents;

• Making decision by Adaptive Agents;

• Execution of effective activity by Adaptive Agents;

• The communication structure among agents and devices.

Some features are variable and may be selected/developed according to the application
type, as follows:

• Controller creation;

• Making evaluation by the ObserverAgent;

• Controller adaptation by the Observer Agent.

Therefore, to create a FIoT instance, a developer has to implement/choose: (i) a
control module (e.g. neural network, finite state machine); (2) an adaptive technique
to train the controller; and (iii) an evaluation process (e.g. genetic algorithm performs
evaluation via fitness function). As shown in this section, we only evaluate applications
using a neural network. However, we implemented FIoT to give support for the use of
finite state machines (fsm), since we provided an abstract controller class. A framework
user can implement a Mealy machine (a special case of a fsm), for example, and use an
evolutionary algorithm to evolve its structure and transition probabilities [50, 34]. Thus,
it is possible to generate applications using different configurations. A framework user
needs to select a configuration that works better for solving a given problem.

4.2 Quantified Things

A new trend in Internet of Things is “Quantified Self”[51, 52], bringing the idea of conti-
nuous self-tracking. A person, equipped with sensors, allows his data to be available on
the Internet and can monitor and evaluate his health information, for example. Since this
information is already available, the community started to ask which kind of inferences is
possible to make if selected groups of people share their tracked data, then the “Quantified
Us”movement appeared [53, 52].

What happens if instead of asking “What can people learn when pooling data among
themselves?”[54], we start to ask, “What can things ‘learn’ when pooling data among
themselves?”. ? These things could be factory machines, where one machine could predict
a fault based on collective data shared among them. These things could also be bean

12



plantations, where the owner of one plantation can predict the crop yield based on the
history of crop from other bean plantations. Thus, a new branch of the quantify movement
is proposed in this work, named “Quantified Things”. In addition, a solution to design
these kinds of experiments is presented using FIoT, as depicted in Figure 6.

Figura 6: An instance of FIoT to create “Quantified Things”Instances.

Devices scattered across different environments are managed by adaptive agents. In
turn, these agents populate a cloud database with sensored data from devices and their
inferences. If new devices connect to the system, they can access this database and make
predictions based on this historical data.

Quantified Bananas

The chosen scenario to make an instance of “Quantified Things”is “Quantified Bananas.”In
this example, stored data about similar bananas share data to predict how many days the
bananas will spoil under specific environmental conditions. The data tracked from each
bananas store are the temperature, humidity, luminosity and some gas sensors, as methane
and hydrogen. The physical layer of this experiment scenario is depicted in Figure 7.

Adaptive agents use a three-layer feedforward neural network to predict the number
of days to spoil. The sensored data from a device is used as the input of this three-layer
network.

The ObserverAgent monitors executions, checking if prediction have been correct or
not. To compare results, a user system needs to inform how long the monitored banana
lasted. If results are not similar, the ObserverAgent executes the adaptation process to
adjust the network parameters. The technique used is a supervised learning (backpropa-
gation) since it has historical data to compare results and predict a new one.

13



Figura 7: Physical layer for ”Quantified Bananas”instance.

The Table 4.2 shows how the “Quantified Banana”application adhere to the propo-
sed framework, extending the FIoT flexible points. The spot of “making evaluation”is
developed for this applications as individual evaluation. The Observer Agent maintains
a dataset containing input from Adaptive Agents and neural predictions. Based on this
historical data, for each agent execution, the Observer Agent evaluates if individual result
will generate a collective adaptation or not.

Tabela 2: Case I: Flexible Points
Framework Application

Controller Three Layer Neural Network

Making Evaluation Individual Evaluation: for each
agent evaluation, the Observer
Agent concludes if all Adaptive
Agents need to adapt or not

Controller Adaptation Supervised Learning (Backpropaga-
tion)

4.2.1 Experimental Description

We carefully selected the individual bananas for haven a similar look. Each experiment
was executed in a different condition. The experiments were created combining four
parameters, as shown in Table 3: (i) dark (i.e. in a closed or open box); (ii) fridge
(i.e. in the fridge or at room temperature); (iii) rotten fruit (i.e. put together with rotten
fruit or not); and ripe fruit (i.e. put together with ripe fruit or not).

For example, in the first experiment, we placed a banana in an open box (not dark),
at room temperature, and by itself. The ninth experiment was executed in a dark place,
in the fridge, and together a rotten fruit.

14



Tabela 3: Experimental Description
Experiment Dark Fridge Rotten Fruit Ripe Fruit

1
2 X
3 X
4 X X
5 X
6 X X
7 X X X
8 X X
9 X X X
10 X X

4.2.2 Training Results

We verified the training process getting the predictions and comparing them with values
registered as actual fruit shelf life for each experiment. This comparison is shown on
Table 4, where the column “Expected Results”shows the “actual”shelf life, the column
“Real Results”shows the predictions provided by the neural network, and the column
“Error”the difference between these values, based on the normalized values.

Tabela 4: Results of backpropagation execution
Experiment Expected Results Actual Results Error

1 1.0 0.999 ≈ 0
2 0.857 0.866 -0.0095
3 0.35 0.340 0.01
4 0.357 0.382 -0.025
5 0.714 0.719 -0.005
6 0.642 0.614 0.028
7 0.214 0.207 0.006
8 0.214 0.225 -0.010
9 0.285 0.285 ≈ 0
10 0.428 0.428 ≈ 0

As shown on Table 4, differences between expected and actual results are not so far
off. The largest errors were presented in experiments four and six, corresponding to
approximately one day. Both tests were executed at room temperature and with ripe fruit
inside the box. A possible solution to reduce this error is to provide new experiments with
similar settings, since the backpropagation algorithm needs an extensive dataset to train
neural networks.

4.3 Smart City

Smart Cities is currently the hottest trend associated with the Internet of Things [55, 56, 3].
In order to have a Smart City it is fundamental to have many sensors scattered throughout
the whole city collecting information, such as water and energy consumption, traffic and
garbage monitoring.

15



In order to support smart services, IoT principles are applied to create self-managing
car traffic control applications [57, 58], aiming at rebuilding the actual structure of traffic
lights. For instance, cars, traffic lights and pedestrians will all be connected via the
Internet, collecting and sharing data, such as GPS data from cars, traffic lights intervals,
and camera images [58]. Based on this data, traffic lights will turn green or red, GPS
consoles will offer drivers different routes, etc.

The reduction of urban traffic congestion continues to be the main goal of this new
smart approach of car traffic management. For example, [59] propose that optimized
traffic policies should be determined by the use of autonomous cars. However, given that
their research focus on a intersection control mechanism, they only analyze how different
policies affect a small portion of the road network.

According to Standford-Clark, an IBM engineer, the problem is not to change the
traffic lights, but the “interconnection of unintended consequences.”Thus, most traffic
lights sequences are set via longer term algorithms, taking the whole of the road network
into account [58]. Unfortunately, determining such sequences is a non-trivial and time
consuming task, as one must take into account a wide range of factors like, traffic density,
pedestrian flows, and road complexity.

FIoT makes it possible to create dynamic controllers for homogeneous things situated
in a distributed environment by using a self-developing decentralized and adaptive process.

4.3.1 Car Traffic Application

In this subsection, we describe a simulated car traffic scenario, that stands as our appli-
cation physical layer. Figure 8 depicts the elements that are presented in our scenario:
vehicles, traffic lights, road segments, dividers and intersections. All roads are one-way;
a segment is a portion of a road; intersections connect two or more segments; and a road
divider divides a segment into two segments. We modeled our scenario as a graph, in
which the edges represent segments and nodes represent road dividers and intersections.

Figura 8: Traffic elements.

16



Smart Road Segment

Each road segment has a simulated microcontroller board associated with it that has an
apparatus for calculating the rate of vehicles, interacting with the closest segment, and
changing its own traffic light color.

Thus, the GodAgent creates an Adaptive Agent for each road segment in the scenario.
Independently of the application, an Adaptive Agents always has to execute three tasks:
data collection, decision making and action enforcement. For this experiment, the first
task consists of receiving data collected by the respective road segment’s microcontroller.
It provides data related to vehicle flow, information from its neighbor segment and its
current traffic light color.

To make decisions, Adaptive Agents use a “three-layer feedfoward”with a feedback
loop (see [60]). Feedback occurs because the output of its traffic light color influences its
next network input, as shown in Figure 9.

Figura 9: Adaptive Agent’s Neural Controller.

By using a recurrent network, we aim at providing a kind of memory for these agents.
Thus, our goal is to enable them to consider the duration span of a traffic light in a specific
color. Therefore, the input layer consists of three neurons. The middle layer of the neural
network has two neurons to connect the input and output layers. These neurons provide
associations among sensors and actuators. These associations represent the system policies
changing according to the encoded neural network configuration.

ObserverAgent: Adaptive process

Evolutionary algorithms have been applied to provide the design of system features auto-
matically. By using a genetic algorithm, we expect that a light policy, sporting a simple
communication system among road segments, will emerge from this experiment. There-
fore, no system feature was specified at design-time (e.g. a communication system, the

17



effect of vehicle rate on road segment decision). The evaluation and adaptation process
performed by the Observer Agents is depicted in Figure 10.

Figura 10: Performing an adaptive process to ajust the Traffic Neural Controller weights.
Figure adapted from [61]. P.7.

The weights of the neural network used by the Adaptive Agents vary during the adap-
tive process. The ObserverAgent applies a genetic algorithm to find a better solution. It
contains a pool of candidates to represent the network parameters. The ObserverAgent
evaluates each one of them according to the number of cars that concluded their routes
after the end of the simulation.

The Table 4.3.1 summarizes how the “Car Traffic Control”application adhere to the
proposed framework, extending the FIoT flexible points.

Tabela 5: Case II: Flexible Points
Framework Application

Controller Three Layer Neural Network

Making Evaluation Collective Fitness Evaluation: Test
a pool of candidate to represent the
network parameters. For each can-
didate, it evaluates the collection of
Adaptive Agents, comparing fitness
among candidates

Controller Adaptation Evolutionary Algorithm: Generate
a pool of candidate to represent the
network parameters

18



Experiment

The first simulation scenario is depicted in Figure 11. We have created the urban road
network scenario based on a small section of a real city, Feira de Santana, Bahia, Brazil.
This chart is composed of 31 nodes and 48 segments. Each segment links two nodes having
only one-way direction. For simulation purpose, we established 15 nodes as departures
(yellow points) and two as targets (red points). Each segment has a traffic light. In the
graph, the green and red triangles represent the traffic light colors.

Figura 11: Simulation Urban Road Network. Adapted from Waze (2014) [62].

We started with 1000 vehicles for this experiment. The capacity of each road segment
in this experiment is 75 vehicles. As we described before, the only role of the vehicles is
to try to end their routes.

Evolutionary Algorithm: Simulation Parameters

Given that we are proposing a simple experiment, the evolutionary process lasts only 20
generations (i.e. the process of testing, selecting and reproducing candidates is iterated 20
times). During the test stage, each team of 48 Adaptive Agents (i.e. the number of road
segments in the scenario) is allowed to “live”for 30 cycles by using a candidate, as shown
in Figure 10. As each car departure and target are randomly selected and can affect the
test result, more than one test is performed for each candidate.

The fitness of each candidate consists of the number of vehicles that concluded their
route after the simulation ended. The individuals with the highest fitness are selected to
generate the new generation by using crossover and mutation.

19



Evaluation of the Best Candidate

After executing the evolutionary algorithm, Adaptive Agents evolve the ability to find a
satisfactory logical of traffic light decision in order to improve urban traffic flow.

We selected the best candidate from the evolutionary process to provide comparisons
between our approach and “conventional”traffic light policies. We have been considering
as conventional the normal way to control traffic lights, the so called fixed-time control.
This type of control fixes the sequence of phases (red or green) and their durations [63].
We simulated two fixed-time approaches. The former changes all traffic lights colors in
every cycle. The latter changes all the traffic lights colors at the intersections every two
cycles, and sets the others green for 5 cycles and then red for only one cycle.

We executed the simulation three times, using the best solution presented above and
each one of the two “conventional”solutions. Figure 12 presents the number of vehicles
that concluded their routes.

Figura 12: Comparison of the FIoT approach and conventional systems in the first scena-
rio.

By using the evolved agents approach, the number of vehicles that concluded their
routes is higher than using other approaches.

5 Conclusion

The area of Agent Oriented Software Engineering (AOSE) has so far addressed only small
scale and even toy applications. We showed in this paper that a self-organizing and
adaptive multi-agent software framework can be designed and implemented to derive now-
a-days complex applications while doing so in an effective way. Software frameworks are
domain oriented and we have chosen the Internet of Things (IoT) as such domain.

IoT applications are increasingly complex and require scalability beyond billions of
devices and the ability to cope with environments that are in continuous transition. IoT is
an emergent technology which has the potential for significant impact [64]. Self-organizing
and self-adapting IoT multi-agent applications are an important evidence to show that

20



agent oriented IoT assistants are an original contribution to both AOSE and IoT. The
breath and relevance of MAS associated with Software Engineering to solve real world
problems is the evidence we used to support our above claims.

We know of few research results in the literature about agent-based architectures for
Internet of Things [14, 9]. None of them presents the design of a complex case study
(i.e. using a vast number of cooperative things). Thus these works do not show efficiency
in wide scenarios, where things must cope with a changing environment and where a
sophisticated organization system is required. Therefore, important features mentioned
on our work regarding self-organization and self-adaptation are not covered by the related
literature. On the other hand, we found several effective experiments in the Robotic
Agents literature about complex autonomous physical systems (as swarm of robots). We
used in our approach assumptions made by those studies regarding self-adaptive and self-
organizing properties for physical agents domain.

We provided two instances of our proposed agent-based framework for the IoT domain:
(i)quantified bananas; and (ii)traffic light control. Through those instances we have showed
that our agent-based general software system satisfies its main goals:

• Autonomous things;

– Things that are able to cooperate and execute complex behavior without the
need for centralized control to manage their interaction.

– Things that are able to have behavior assigned at design-time and/or at run-
time.

• Feasible modelling characteristics;

– It is possible to use our framework model to deal with complex problems in
considerable time.

– In particular, it is possible during the design phase, that one does not need to
be concerned with the application domain.

6 Future Works

We believe that as FIoT matures, it will be able to support the development of more
complex and realistic IoT applications, especially in actual distributed environments. As
future work, we want to investigate the generalization capacity of our proposed framework
and its application limits. As such, we need to evaluate FIoT by taking the following
criteria into account:

• To investigate different applications types from prediction and control to discover
which IoT application types can be created by using FIoT;

• To investigate different techniques from back-propagation and genetic algorithm to
discover which types of adaptive techniques can be used;

• To evaluate which types of control can be used to meet the requirements imposed by
the FIoT’s controller abstract class. In addition, we have to investigate the adaptive
techniques that are suitable with each proposed control.

21



• To investigate which IoT applications require adaptation and the types of (self)adaptations
that are useful for them.

As a result, new FIoT requirements and hot spots can appear. For example, a further
application may require the management of heterogeneous environments and devices.
Thus, to enable the production of new instances, we will probably need to increase the
FIoT domain coverage and create new hot spots.

The centralized architecture is the major problem on God Agent specifications. There
is only one God for each application. It may be a problem for applications that requires
multiples devices connecting simultaneously. In future works, we can investigate existing
discovery services architectures to provide FIoT applications with self-discovery protocols
and more scalability.

Acknowledgements

This work has been supported by the Laboratory of Software Engineering (LES) at PUC-
Rio. Our thanks to CNPq, CAPES, FAPERJ and PUC-Rio for their financial support.

References

[1] P. Rodrigues, Y.-D. Bromberg, L. Reveillere, D. Negru, Zigzag: A middleware for
service discovery in future internet, in: Distributed Applications and Interoperable
Systems, Springer Berlin Heidelberg, 2012, pp. 208–221.

[2] J. Park, L. Barolli, F. Xhafa, H. Jeong, Information Technology Convergence: Secu-
rity, Robotics, Automations and Communication, Lecture Notes in Electrical Engi-
neering, Springer, 2013.
URL https://books.google.com.br/books?id=6sbEBAAAQBAJ

[3] J. Gubbia, R. Buyyab, S. Marusic, M. Palaniswami, Internet of things (iot): A vision,
architectural elements, and future directions, Future Generation Computer Systems
29 (2013) 1645–1660.

[4] L. Atzori, A. Iera, G. Morabito, The internet of things: A survey, Computer networks
54 (15) (2010) 2787–2805.

[5] G. Fortino, P. Trunfio, Internet of Things Based on Smart Objects: Technology,
Middleware and Applications, Springer, 2014.

[6] F. Rochner, H. Prothmann, J. Branke, C. Müller-Schloer, H. Schmeck, An organic
architecture for traffic light controllers., in: GI Jahrestagung (1), 2006, pp. 120–127.

[7] E. Velloso, A. Raposo, H. Fuks, Web of things: The collaborative interaction designer
point of view, in: 1st Workshop of the Brazilian Institute for Web Science Research,
2010.

[8] D. Bandyopadhyay, J. Sen, Internet of things: Applications and challenges in tech-
nology and standardization, Wireless Personal Communications 58 (1) (2011) 49–69.

22



[9] P. Lopez, G. Perez, Collaborative agents framework for the internet of things, in:
Ambient Intelligence and Smart Environments, 2012, pp. 191–199.

[10] S. Beydeda, M. Book, V. Gruhn, Model-Driven Software Development, Springer-
Verlag Berlin Heidelberg, 2005.

[11] I. Sommerville, Software Engineering, International computer science series,
Pearson/Addison-Wesley, 2004.
URL http://books.google.com.br/books?id=fIJQAAAAMAAJ

[12] G. Fortino, A. Guerrieri, W. Russo, Agent-oriented smart objects development, in:
IEEE International Conference on Computer Supported Cooperative Work in Design
(CSCWD), 2012.

[13] G. Fortino, A. Guerrieri, W. Russo, C. Savaglio, Middlewares for smart objects and
smart environments: Overview and comparison, in: Internet of Things Based on
Smart Objects: Technology, Middleware and Applications, Springer, 2014, pp. 1–29.

[14] G. Fortino, A. Guerrieri, M. Lacopo, M. Lucia, W. Russo, An agent-based middleware
for cooperating smart objects, in: Highlights on Practical Applications of Agents and
Multi-Agent Systems, Springer Berlin Heidelberg, 2013, pp. 387–398.

[15] G. Di Marzo Serugendo, M.-P. Gleizes, A. Karageorgos, Self-organization in multi-
agent systems, The Knowledge Engineering Review 20 (02) (2005) 165–189.

[16] D. Marocco, S. Nolfi, Emergence of communication in embodied agents evolved for
the ability to solve a collective navigation problem, Connection Science.

[17] D. Floreano, C. Mattiussi, Bio-Inspired Artificial Intelligence. Theories, Methods, and
Technologies, Cambridge: MIT Press, 2008.

[18] G. Weiss, S. Sen, Adaptation and Learning in Multi-Agent Systems,, Springer-Verlag,
1995.

[19] G. Di Marzo, A. Karageorgos, O. Rana, F. Zambonelli, Engineering Self-Organising
Systems, Springer, Berlin, 2004.

[20] K. Cetnarowicz, K. Kisiel-Dorohinicki, E. Nawarecki, The application of evolution
process in multi-agent world to the prediction system, in: Second International Con-
ference on Multiagent Systems, 1996, pp. 26–32.

[21] M. Quinn, L. Smith, G. Mayley, P. Husbands, P. H. Nds, Evolving controllers for a
homogeneous system of physical robots: Structured cooperation with minimal sensors
(2003).

[22] L. Steels, Ecagents: Embodied and communicating agents, Tech. rep., SONY (2004).

[23] V. Trianni, S. Nolfi, Engineering the evolution of self-organizing behaviors in swarm
robotics: A case study, Artificial Life 17 (3) (2011) 183–202.

[24] S. Nolfi, D. Floreano, Evolutionary Robotics: The Biology,Intelligence,and Techno-
logy of Self-Organizing Machines, MIT Press, Cambridge, MA, USA, 2000.

23



[25] A. Nelson, G. Barlow, L. Doitsidis, Fitness functions in evolutionary robotics: A
survey and alasysis, Robotics and Autonomous Systems.

[26] F. Kawsar, T. Nakajima, J. Hyuk Park, S. Yeo, Design and implementation of a
framework for building distributed smart object systems, Supercomputing.

[27] C. Goumopoulos, A. Kameas, Smart objects as components of ubicomp applications,
International Journal of Multimedia and Ubiquitous Engineering.

[28] M. Muhlhauser, Smart products: An introduction, Communications in Computer and
Information Science.

[29] G. Pezzulo, G. Baldassarre, A. Cesta, S. Nolfi, Research on cognitive robotics at
the institute of cognitive sciences and technologies, national research council of italy,
Cognitive processing 12 (4) (2011) 367–374.

[30] G. Massera, T. Ferrauto, O. Gigliotta, S. Nolfi, Farsa: An open software tool for
embodied cognitive science, in: Advances in Artificial Life, ECAL, Vol. 12, 2013, pp.
538–545.

[31] S. Nolfi, D. Parisi, Learning to adapt to changing environments in evolving neural
networks, in: Adaptive Behavior, 1997, pp. 75–98.

[32] S. Nolfi, D. Floreano, Co-evolving predator and prey robots: Do ‘arms races’ arise in
artificial evolution? (1998).

[33] G. Massera, T. Ferrauto, O. Gigliotta, S. Nolfi, Designing adaptive humanoid robots
through the farsa open-source framework, Tech. rep., Institute of Cognitive Sciences
and Technologies (CNR-ISTC) (2013).

[34] A. Sobe, I. Fehervari, W. Elmenreich, Frevo: A tool for evolving and evaluating self-
organizing systems, in: IEEE Self-adaptive and Self-organizing Systems Workshop,
2012.

[35] M. E. Markiewicz, C. J. P. de Lucena, Object oriented framework development, Cros-
sroads 7 (4) (2001) 3–9. doi:10.1145/372765.372771.
URL http://doi.acm.org/10.1145/372765.372771

[36] T. von der Maßen, H. Lichter, Modeling variability by uml use case diagrams, in:
Proceedings of the International Workshop on Requirements Engineering for product
lines, Citeseer, 2002, pp. 19–25.

[37] M. Dumas, A. ter Hofstede, Uml activity diagrams as a workflow specification lan-
guage, in: UML 2001 â The Unified Modeling Language. Modeling Languages, Con-
cepts, and Tools, Springer Berlin Heidelberg, 2001, pp. 76–90.

[38] G. D. M. Serugendo, J. Fitzgerald, A. Romanovsky, N. Guelfi, A generic framework for
the engineering of self-adaptive and self-organising systems, University of Newcastle
upon Tyne, Computing Science, 2007.

[39] M. Kuniavsky, Smart Things: Ubiquitous Computing User Experience Design Book,
Morgan Kaufmann, 2010.

24



[40] F. Bellifemine, G. Caire, T. Trucco, G. Rimassa, R. Mungenast, Jade Administrator’s
Guide, JADE, jade.tilab.com/doc/administratorsguide.pdf (2007).

[41] F. Bellifemine, G. Caire, T. Trucco, G. Rimassa, Jade Programmerâs Guide,
jade.tilab.com/doc/programmersguide.pdf (April 2010).

[42] A. J. Riel, Object-oriented design heuristics, Vol. 335, Addison-Wesley Reading, 1996.

[43] C. Müller-Schloer, Organic computing: on the feasibility of controlled emergence,
in: Proceedings of the 2nd IEEE/ACM/IFIP international conference on Hard-
ware/software codesign and system synthesis, ACM, 2004, pp. 2–5.

[44] M. Wooldridge, An introduction to multiagent systems, John Wiley & Sons, 2009.

[45] B. Neto, A. Costa, M. Netto, V. Silva, C. Lucena, Jaaf: A framework to imple-
ment self-adaptive agents, in: International Conference on Software Engineering and
Knowledge Engineering, 2009.

[46] P. Horn, Autonomic computing: Ibm\’s perspective on the state of information tech-
nology.

[47] B. Jacob, R. Lanyon-Hogg, D. K. Nadgir, A. F. Yassin, A practical guide to the ibm
autonomic computing toolkit (2004).

[48] M. Dorigo, V. Trianni, E. Şahin, R. Groß, T. H. Labella, G. Baldassarre, S. Nolfi, J.-
L. Deneubourg, F. Mondada, D. Floreano, et al., Evolving self-organizing behaviors
for a swarm-bot, Autonomous Robots 17 (2-3) (2004) 223–245.

[49] L. Panait, S. Luke, Cooperative multi-agent learning: The state of the art, Autono-
mous Agents and Multi-Agent Systems 11 (3) (2005) 387–434. doi:10.1007/s10458-
005-2631-2.
URL http://dx.doi.org/10.1007/s10458-005-2631-2

[50] A. Pintér-Bartha, A. Sobe, W. Elmenreich, Towards the lightâcomparing evolved neu-
ral network controllers and finite state machine controllers, in: Intelligent Solutions
in Embedded Systems (WISES), 2012 Proceedings of the Tenth Workshop on, IEEE,
2012, pp. 83–87.

[51] D. Rose, Enchanted Objects: Design, Human Desire, and the Internet of Things,
Scribner, 2014.
URL https://books.google.com.br/books?id=8QIGAgAAQBAJ

[52] M. Jordan, N. PFARR, Forget the quantified self. we need to build the quanti-
fied us, http://www.wired.com/2014/04/forget-the-quantified-self-we-need-to-build-
the-quantified-us/ (April 2014).

[53] V. Lee, Learning Technologies and the Body: Integration and Implementation In For-
mal and Informal Learning Environments, Routledge Research in Education, Taylor
& Francis, 2014.
URL https://books.google.com.br/books?id=iVacBQAAQBAJ

25



[54] J. Havens, Hacking Happiness: Why Your Personal Data Counts and How Tracking
it Can Change the World, Penguin Publishing Group, 2014.
URL https://books.google.com.br/books?id=rRQLZTnkUpYC

[55] J. Bohli, P. Langendorfer, A. F. Skarmeta, Security and privacy challenge in data
aggregation for the iot in smart cities, Internet of Things: Converging Technologies
for Smart Environments and Integrated Ecosystems (2013) 225–244.

[56] S. Mitchell, N. Villa, M. Stewart-Weeks, A. Lange, The internet of everything for
cities: Connecting people, process, data, and things to improve the âlivabilityâ of
cities and communities (2013).

[57] D. P. Möller, Introduction to Transportation Analysis, Modeling and Simulation,
Springer, 2014.

[58] TheGuardian, Can the internet of things save us from traffic jams?,
http://www.theguardian.com/technology/2015/apr/20/internet-of-things-traffic
(April 2015).

[59] D. Carlino, M. Depinet, P. Khandelwal, P. Stone, Approximately orchestrated routing
and transportation analyzer: Large-scale traffic simulation for autonomous vehicles,
in: Intelligent Transportation Systems (ITSC), 2012 15th International IEEE Confe-
rence on, IEEE, 2012, pp. 334–339.

[60] S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan, 1994.
URL http://books.google.com.br/books?id=PSAPAQAAMAAJ

[61] S. Nolfi, O. Gigliotta, Evorobot*, in: Evolution of communication and language in
embodied agents, Springer, 2010, pp. 297–301.

[62] W. MOBILE, Waze. dispońıvel em:¡ https://www. waze. com/pt-br¿, Acesso em 2.

[63] H. Prothmann, S. Tomforde, J. Branke, J. Hähner, C. Müller-Schloer, H. Schmeck,
Organic traffic control, Springer, 2011.

[64] C. Stamford, 2014 hype cycle for emerging technologies maps the journey to digital
business, Tech. rep., Gartner, http://www.gartner.com/newsroom/id/2819918 (Au-
gust 2014).

26


