
 

PUC 
 

ISSN 0103-9741 
 

Monografias em Ciência da Computação 

n° 05/15 

 
A STORY-BASED APPROACH  
TO INFORMATION SYSTEMS 

 
Vinicius M. Gottin  

Marco A. Casanova  
Edirlei Soares de Lima  

Antonio L. Furtado       
   

Departamento de Informática 

 

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO 

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900 

RIO DE JANEIRO - BRASIL 
 

 

 



   

 

 



   

 

 

Monografias em Ciência da Computação, No. 05/15                                    ISSN 0103-9741 

Editor: Prof. Carlos José Pereira de Lucena                                                  November,  2015 

 

A Story-Based Approach to Information Systems 
 

Vinicius M. Gottin
1
, Marco A. Casanova

1
, Edirlei Soares de Lima

2
, Antonio L. Furtado

1
 

 
1

 PUC-Rio, Departamento de Informática, Rio de Janeiro, Brasil 
2
UERJ/IPRJ, Departamento de Modelagem Computacional, Nova Friburgo, Brasil 

{vgottin,casanova,furtado}@inf.puc-rio.br, edirlei@iprj.uerj.br 

 

Abstract: We claim that characterizing information system domains by what stories can emerge from their 

formal specification helps determining whether a proposed rule-based conceptual modelling operational 

definition of the domain meets the prospective users' expectations. To provide a suitable environment, we 

start with a running specification, where event-producing operations are conceptually defined in declarative 

style in terms of their pre-conditions and post-conditions, and plan generation is employed to compose story-

plots, whose execution is simulated in workspace memory. This three-schemata conceptual specification, 

expressed in a logic programming formalism, is processed along successive stages towards a DBMS 

implementation. While plan generation remains available to examine alternative ways to reach future states, 

an event-oriented database log, which registers the executed event-producing operations with their timestamp 

and transaction reference number, provides a repository of past stories. To conduct experiments while 

investigating how to thus extend data-bases in the direction of intelligent story-bases, we developed a 

prototype tool, called IDB, which is now fully operational.  
 

Keywords: Storytelling, Conceptual Specification, Entity-Relationship Model, Relational Databases, Plan 

Generation, Simulation, Logic Programming, Plot-Mining.  
 

 

Resumo: Afirmamos que a caracterização de domínios de sistemas de informação pelas estórias que podem 

emergir de sua especificação formal ajuda a determinar se uma dada definição operacional, proposta através 

de modelagem conceitual baseada em regras, satisfaz as expectativas dos usuários em perspectiva. Com o 

objetivo de prover um ambiente adequado, partimos de uma especificação executável, onde operações 

produtivas de eventos são definidas conceitualmente em estilo declarativo em termos de suas pré-condições e 

pós-condições, e se emprega geração de planos para compor enredos de estórias, cuja execução é simulada na 

memória de trabalho. Essa especificação conceitual em três esquemas, expressa em um formalismo de 

programação em lógica, é processada ao logo de sucessivos estágios até ser implementada por meio de algum 

SGBD. Enquanto a geração de planos permanece disponível para examinar meios alternativos de atingir 

estados futuros, um log de bancos de dados orientado para eventos – que registra a execução das operações 

produtivas de eventos, junto com seu selo temporal e número de referência da transação – serve de repositório 

para as estórias do passado. Para conduzir experimentos durante a investigação de como assim estender 

bancos-de-dados na direção de bancos-de-estórias, desenvolvemos um protótipo, de nome IDB, atualmente 

em pleno funcionamento. 
 

Palavras-chave: Narração de estórias, Especificação Conceitual, Modelo Entidades-Relacionamentos, 

Bancos de Dados Relacionais, Geração de Planos. Simulação, Programação em Lógica, Mineração de 

Enredos. 
 



   

 

 



   

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In charge of publications 
 
Rosane Teles Lins Castilho 
Assessoria de Biblioteca, Documentação e Informação 
PUC-Rio Departamento de Informática 
Rua Marquês de São Vicente, 225 - Gávea  
22451-900 Rio de Janeiro RJ Brasil  
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530  
E-mail: bib-di@inf.puc-rio.br 



   

 

 



 1  

 

 

1. Introduction 
 
When elaborating a formal specification, designers always strive to make sure that all data integrity 

constraints and business norms, regulating the legitimate processes and barring unauthorized conduct, are 

enforced. Yet, once the specification is formulated as a set of interrelated logic rules, it is hard to predict what 

situations can result.  

This work proposes to view information system domains in terms of the stories emerging from their formal 

specification. As Schank asserts [1995], human intelligence is led in a very high degree by the stories in 

which the person has participated in some role, or has heard from other persons. 

Our approach to, so to speak, upgrade data-bases to story-bases, relies on an environment offering, at least: 

 

• the vocabulary of the stories, consisting of a set of conceptually specified event-producing 

operations; 

• a textual repository of the story events, under the form of a time-stamped LOG of the event-producing 

operations executed; 

• a plot-composition device, to plan sequences of event-producing operations, purporting to satisfy the 

goals of the authorized agents.  

 

A domain-oriented vocabulary lends semantic significance to the state transitions occurring in the system's 

lifetime. Instead of restricting the attention to detailed insertions, deletions or updates of physical records, one 

can, in an academic domain for example, consider events such as offer (a course), enroll (a student in a 

course), etc. In turn, an event-structured LOG meaningfully portrays the stories that happened in the past, 

whereas plan-generation allows to examine alternative future stories. 

Building the proposed environment for a given information system domain involves going all the way 

from conceptual specification, in a Logic Programming formalism appropriate to conduct simulation runs, to 

implementation in a relational Database Management System (DBMS). In this paper, we describe such an 

environment both abstractly and as made to work in a prototype, named IDB, built to illustrate our proposal. 

Section 2 positions our proposal regarding related work. Section 3 reviews our conceptual specification 

discipline, wherein not only the facts that shall constitute the database, but also events and agents are 

modelled, and plan-generation makes the specification executable. Section 4 treats the stepwise transition 

from workspace to DBMS environment. Section 5 deals with IDB, showing how it performs such tasks as 

plot generation, finding recurring patterns, and recovering past stories from an event-oriented LOG. Section 6 

contains concluding remarks. The full conceptual specification and the main components of its 

implementation in the DBMS environment are reproduced in the Appendix. 

 
 

2. Related Work 
 

The formalization of stories as a research field dates back to seminal works based on literary theory [Propp 

1968] and the philosophy of language and cognition [Charniak 1972, Prince 1973]. Early story generation 

programs aiming at the understanding of narrative structure like TALE-SPIN [Meehan 1981] and, in the 

following decade, [Brewer 1980, Lang 1999] enabled and gave rise to works that applied automated planning 

to compose narratives [Mateas 2003, Riedl 2004]. 

The conceptual specification in a logic programming formalism featured in this paper follows [Furtado 

2000], where plots, under the form of plan-generated sequences of events, provide an operational 

characterization of narrative genres. Our work is closely related to previous research on narrative generation 

based on automated planning techniques (as surveyed by Barros [2007]), as well as on the representation of 

actions and hypothetical situations [Miller 1994]. Also, the provision of running conceptual model 

specifications associates our proposal with event simulation [Ciarlini 2002], inasmuch as it allows checking 

whether the behaviour of the system corresponds to the designer’s expectations.  

Some of the tasks involving our LOG of semantically meaningful operations (cf. section 5) – displaying past 

stories and retrieving past database events – relate to the topic of temporal databases [Date 2002].  

Other tasks, such as finding patterns by comparing story sequences or the statistical analysis of the LOG, 

relate to process mining for knowledge discovery [Aalst 2011], aiming, in particular, at the enhancement of 

the system's design. 
 

 
 
 



 2  

 

 

3. Running conceptual modelling specification 
 

The starting point of our long-term project was the development of running conceptual level specifications to 

characterize narrative genres in a logic programming formalism [Furtado 2000].  

To specify an information system application, it is not enough to define the classes of facts that will 

eventually populate the underlying database. One should specify, also in conceptual terms, i.e. in the language 

of the application domain, a fixed repertoire of events, whereby the state of the mini-world would change. 

And a pragmatic aspect, which has to do with how the agents involved would be motivated to reach their 

goals by bringing about the appropriate events, should also be considered (for a comprehensive formal 

discussion, cf. [Ciarlini 2010]). Facts, events and agents are contemplated, respectively, in what we call static, 

dynamic and behavioural schemas. 
 

3.1 The Static Schema 
 

The static schema, wherein facts are specified in the Entity-Relationship model [Batini 1991], defines the 

entity classes (e.g. student) and their identifying attributes (e.g. student_name). Entities can have 

additional attributes (e.g. credits, for the course entity). Relationships associate entities (e.g. takes 

associates student and course entities). One-to-n binary relationships are declared in f_relationship 

clauses, where "f" stand for "functional". 

The complete list of clauses in the static schema of the example used throughout this paper follows below: 
 

entity(student,student_name). 

attribute(student,credits_won). 

entity(program,program_name). 

attribute(program,requirement). 

entity(course,course_name). 

attribute(course,credits). 

entity(teacher,teacher_name). 

attribute(teacher,position). 

relationship(takes,[student,course]). 

attribute(takes,grade). 

relationship(has_finished,[student,course]). 

relationship(has_dropped,[student,course]). 

relationship(graduated_in,[student,program]). 

f_relationship(taught_by,[course,teacher]). 

attribute(taught_by,textbook). 
 

An instantiation of the schema, representing a series of facts in clause format, can be supplied to express an 

initial state. Thus program('Alpha') indicates the existence of a program entity with program_name 

"Alpha" as identifying attribute. A separate attribute clause, requirement('Alpha',5), would further 

characterize "Alpha" as requiring a total of 5 credits. 

Any application domain is subject to integrity constraints, some of which are specific to the domain, 

whereas others are inherent in the Entity-Relationship model. One of the latter is that instances of attributes 

and relationships can only exist while the entity instances of which they are properties exist. This constraint, 

like all others, must prevail in the initial state and must be enforced whenever state changes affecting the 

entity instances occur. Typical policies to prevent integrity violations are: (a) reject updates resulting in 

"dangling" attribute or relationship instances, e.g. do not delete a course in which there are students enrolled, 

or (b) propagate such updates, e.g. if a course is deleted also delete all student enrollments in the course. Our 

method to handle integrity constraints is to embed them in the definition of the chosen event-producing 

operations and only permit updates through these operations. The dynamic schema, to be described next, 

concerns this orientation, whereby a sound abstract data type [Guttag 1977] discipline is imposed.  
 

3.2 The Dynamic Schema 
 

The dynamic schema deals with events able to change the state of the mini-world of the application domain. 

They are limited to a repertoire of operations, defined by their pre-conditions and post-conditions (effects), 

following the STRIPS formalism [Fikes 1971], a representation that lends itself to the application of plan 

generation algorithms, as described in section 3.4. 

The event-producing operations provided for the academic example used to illustrate the discussion are 

informally described below: 
 

 

 



 3  

 

 

- operation offer(C,N,T,B) - offer course C, with N credits, taught by teacher T, using textbook B 

pre-conditions: course C is not offered, even with a different number of credits, and T is already a teacher 

post-conditions: clauses course(C), credits(C,N), taught_by(C,T), and textbook(C,T,B) are added  

 

- operation hire(T,P) - hire teacher T as a (P-)professor, where position P designates an academic level, such as assistant, 

associate, full, etc.  

pre-conditions: none 

post-conditions: clauses teacher(T) and position(T,P) are added 

 

- operation enroll(S,C) - enroll student S in course C 

pre-conditions: course C is currently offered, and student S has neither finished nor dropped it before  

post-conditions: clauses takes(S,C) and grade(S,C,'inc') – where 'inc' stands for incomplete – are added; the clauses 

student(S) and credits_won(S,0) are added only if this is the first enrollment of S in a course  

 

- operation transfer(S,C1,C2) - transfer student S from course C1 to course C2 

pre-conditions: course C2 is currently offered, student S is taking C1 and has neither finished nor dropped C2 before  

post-conditions: clauses takes(S,C1) and grade(S,C1,G) are deleted and clauses dropped(S,C1), takes(S,C2) and 

grade(S,C2,'inc') are added 

- operation drop(S,C) - drop the enrollment of student S in course C 

pre-conditions: none 

post-conditions: clauses takes(S,C) and grade(S,C,G) are deleted and clause has_dropped(S,C) is added 

 

- operation cancel(C) - cancel course C 

pre-conditions: no student is currently taking C 

post-conditions: clauses course(C) and credits (C,N) are deleted 

 

- operation change_cr(C,N1,N2) - change the number of credits of course C from N1 to N2 

pre-conditions: C is being offered with N1 credits 

post-conditions: clause credits(C,N1) is deleted and clause credits(C,N2) is added 

 

- operation mark(S,C,G) - mark with grade G the performance of student S in course C 

pre-conditions: the current grade of S in C is 'inc' (incomplete) 

post-conditions: clause grade(S,C,'inc') is deleted and clause grade (S,C,G) is added  

 

- operation pass(S,C,T1,T2) - let student S pass course C, thereby increasing the total number of credits from T1 to T2 

pre-conditions: S is taking C, which gives N credits, has obtained a 'pass' grade in the course, and until then has completed 

T1 credits; T2 is obtained by summing up N to T1 

post-conditions: clauses takes(S,C), grade (S,C,G) and credits_won(S,T1) are deleted, and clauses credits_won(S,T2) and 

has_finished(S,C) are added 

 

- operation create_program(P,R) - create program P with the requirement of R credits 

pre-conditions: program P is not already being offered, with any number of total credits required 

post-conditions: clauses program(P) and requirement(P,R) are added 

 

- operation receive_degree(S,P) - let student S graduate in program P 

pre-conditions: student S has obtained exactly the total number of credits required for the completion of program P and is 

no longer taking courses 

post-conditions: clause graduated_in(S,P) is added 
 

Every operation is defined in clausal format. The definition of enroll(S,C) is shown below, and for the 

other operations we refer the reader to the source document provided for the full specification.  
 
operation(enroll(S,C)). 

/added(student(S),enroll(S,C)). 

/added(credits_won(S,0),enroll(S,C)) :- 

  not credits_won(S,_). 

added(takes(S,C),enroll(S,C)). 

added(grade(S,C,'inc'),enroll(S,C)). 

precond(enroll(S,C), 

  (course(C), 

   /(not has_finished(S,C)), 

   /(not has_dropped(S,C)))). 

 

 

 

 

 



 4  

 

 

3.3 The Behavioural Schema 
 

The behavioural schema concerns the authorized agents, who are motivated to perform events in order to 

achieve goals induced by certain situations, as expressed in situation-objective (sit_obj) rules. When the 

planner is applied to these rules, alternative future stories are composed, as shown in section 3.4. In [Barbosa 

2015] we considered an extension to the schema, that purports to model the agents' personality in terms of 

drives, attitudes and emotional profile.  

In the rule below the intended agent is a student S. The situation is: student S has dropped course C1, 

which gives Cr1 credits, and is currently taking no course; there exists, on the other hand, a course C2 with a 

smaller number of credits, Cr2, which is therefore presumed to be easier than C1. The goal is that S would be 

advised to take C2. 
 

sit_obj(student(S), 

  ( has_dropped(S,C1), 

    credits(C1,Cr1), 

    not takes(S,Cx), 

    course(C2),  

  credits(C2,Cr2), 

    Cr2 < Cr1),  

takes(S,C2)). 

 

A second rule, where the Chairman is the agent, refers to the critical situation of a course that was created 

two or more years ago and that no student has passed until now. If this occurs for some course C, the 

recommended goal is that C should cease to be offered. 
 

sit_obj(chairman, 

  ( course(C), 

    select_log(R,Ts,offer(C,Cr)), 

    in_timestamp(year,Yevent,Ts), 

  in_current_time(year,Ynow), 

  Diff is Ynow - Yevent,  

    Diff >= 2, 

  not select_log(_,_,pass(_,C,_,_))),              

 not course(C)). 
 

A distinctive characteristic of this rule is that it requires inspection of the database LOG table, and 

consequently assumes that the system has been implemented – a topic to be treated in section 4. 
 

3.4 Plan Generation Features 
 

Our planning algorithms enforce a discipline that in most cases simplifies the definition of the operations. 

First of all, it is not necessary (although it may be done, in order to guarantee the instantiation of certain 

parameters) to declare as a pre-condition that a fact to be added by an operation must not already hold at the 

current state, or that a fact to be deleted does not hold.  

Moreover, an operation is caused to fail if for any reason it cannot produce all the specified effects, except 

for those that, in the clausal notation, are prefixed with a /. This notation indicates that an effect of the form 

/F (or /(not F)) will be performed "if needed"; so if F already holds (or does not hold) no failure will 

result.  Consider again operation enroll: the effects (post-conditions) are that clauses takes(S,C) and 

grade(S,C,'inc') are always added, but student(S) and credits_won(S,0), marked with /, are 

added only if this is the first enrollment of S. 

The planner interprets the pre-conditions both as tests for the applicability of an operation Op and, in case 

of failure, as sub-goals to be fulfilled by operations to be inserted before Op in the plan. In the enroll 

operation, if course C is not offered, its creation becomes a sub-goal, which means that course offerings are 

sensitive to demand. This recursive treatment of pre-conditions as sub-goals constitutes the backward 

chaining strategy, on which many planning algorithms (including ours) are based. 

However not all failed pre-conditions are converted into sub-goals. A second use of the / notation is to 

mark pre-conditions that are to be handled exclusively as tests: if a positive /F or negative /(not F) pre-

condition for an operation fails, the operation is rejected. For example, operation enroll requires the student 

to not have dropped the course before; and if that is not the case no sub-goal is created and the operation fails. 

Hence, marked and unmarked pre-conditions reflect, respectively, policies (a) (reject) and (b) (propagate) 

exposed at the end of section 3.1.  

An especially powerful feature that enables the planner to pursue goals involving numerical expressions is 

constraint programming [Rossi 2006]. Constraint programming also conveniently relies on delayed 



 5  

 

 

evaluation, waiting until all variables have been instantiated before proceeding to compute a formula such as 

T2 #= T1 + N, T1 #>= 0 – a feature employed in our pass operation in which the number of credits of a course 

is added to the previous total of credits obtained by the student. With Prolog alone it would not be possible to 

determine, with a single call to the planner, all events that student Bea should go through to successfully 

fulfill the requirement of program Alpha: 
 

:- plans(graduated_in('Bea','Alpha'),P). 

P = start=>enroll(Bea,Art)=>enroll(Bea,Semiotics)=> 

mark(Bea,Semiotics,pass)=>pass(Bea,Semiotics,0,3)=>mark(Bea,Art,pass)=>pass(Bea,Art,3,5)=>receive_deg

ree(Bea,Alpha) . 

 

Another special feature, needed to specify repetitive pre-conditions, directs the planner to consider, when 

given an expression of the form T : I, all terms T satisfying an iterator expression I. For example, the pre-

condition of the operation cancel(C) that cancels a course is that no student should be taking it, which 

requires that the planner must – as an iterative sub-goal – retrieve and find how to undo each current 

enrollment, which is thus expressed: 
not takes(S,C):(student(S),takes(S,C)) 

 

 
4. From workspace to database environment 
 

Once the schemas have been specified and an initial state has been provided in workspace memory, 

consisting of ground clauses representing instances of the specified entity and relationship classes and their 

attributes, it is possible to achieve state transitions by executing – in the workspace – the clause additions and 

deletions defined as the effect of the event-producing operations. For example, the execution of 

enroll('Bea','Art') would have the effect of adding the clause takes('Bea','Art') and, since this 

would be her first enrollment, of adding clauses to register her as student, with zero credits_won. We 

refer to this as the workspace stage. 

At a second, mixed, stage, one keeps issuing commands in logic programming notation, but their effects 

are redirected to operate over an actual database, handled by a relational DBMS. The first step towards this 

stage is to configure as relational tables the entities, attributes and relationships of the static schema. 

In addition to the tables that store the factual data, two auxiliary tables are needed: the REF table and the 

LOG table. The REF table keeps the granted references that serve as identifiers for transactions composed of 

any number of events, which may be intercalated with events of other transactions and resumed in future 

sessions. The LOG table registers the execution of each event in a record containing the reference of the 

transaction, the timestamp read from the system's clock, and the name and parameter list of the operation 

executed. 

The mixed stage also requires a mechanism that enables the specified operations to act upon and update 

these relational tables. This mechanism should enforce the correct usage of the REF and LOG tables in keeping 

record of the operations. 

The first two stages are intended for the specification tasks and for performing simulation runs, guided by 

the plan-generator. At the third stage, the deploy stage, operations should take place directly in the database 

environment, through in-database execution of procedures equivalent to the operations. In this stage, the 

system would be ready for routine operational usage, employing a commercially available DBMS, coupled 

with a suitable host language. 
 

 

5. Experimenting with the IDB prototype 
 
To test the feasibility of the proposed story-based approach, we developed the IDB (Intelligent Databases) 

prototype tool. Indeed, the logic-oriented language paradigm that we have been consistently following has 

been associated with intelligent databases, given that it "elevates the design and development of database 

applications to the level of declarative, knowledge-based specifications" [Zaniolo 1992]. Ironically, 

experimenting with the prototype was for us a source of surprise, since more than once the goals we submitted 

to the planner led to results contrary to what we anticipated, which proved in retrospect to be an "obvious" 

consequence of the specified rules. That this can occur even in the trivial scope of a toy example would seem 

to confirm the usefulness of automatic devices whose intelligence consists in the ability to play with a given 

set of rules in an inexorably systematic way. 

 In the following sections, we introduce IDB as an implementation of the three stages and the requirements 

associated, as described in section 4. The IDB prototype is implemented in SWI-Prolog, taking advantage of 

its ODBC (Open Database Connectivity) interface to communicate with an Oracle database. 



 6  

 

 

 

5.1 IDB architecture 
  

The IDB prototype straightforwardly implements the workspace stage in Prolog, since the static, dynamic and 

behavioural schemata definitions in logic programming formalism can be directly loaded into such a Prolog 

environment – in fact, the source file provided with the complete specification is a Prolog code file. Figure 1 

represents this stage.  

 
 

Figure 1: IDB’s workspace stage architecture 
 

 For the mixed stage, IDB provides functionality for the setup of the required relational tables. The 

gen_tabs predicate creates separate tables for each entity class, with columns for their attributes, as well as 

the REF and LOG tables. As a customary optimization practice, additional columns are included to embed 

functional (i.e. one-to-n) binary relationships and their attributes. For example, given the constraint that a 

course is offered with just one appointed teacher, who adopts one textbook for the course, the following 

database command is generated to represent the course entity class jointly with the f-relationship 

taught_by in a single relational COURSE table: 
 
CREATE TABLE "COURSE" 

   ("COURSE_NAME" VARCHAR2(100), 

    "CREDITS" NUMBER, 

    "TEACHER_NAME" VARCHAR2(100), 

    "TEXTBOOK" VARCHAR2(100) 

   ); 
  

Separate tables are also created for non one-to-n binary relationships, with columns for their attributes. 

Relationships with more than two participating entities can be reified, i.e. treated as entities, with binary 

relationships leading to each participant.  

 IDB also provides the necessary mechanism for updating relational tables through the compile_ops 

predicate, which translates the original declarative specification of the event-producing operations into logic 

programming predicates exhibiting a procedural style. The pre-conditions are turned into calls to a Prolog-

programmed select predicate that causes the DBMS to perform database select commands, and the post-

conditions (additions and deletions) now take the form of insert, delete and update calls, equally 

programmed in Prolog. 

We note, incidentally, that the argument passed in the calls to our select predicate can either refer 

directly to the relational tables, or, as needed in the compiled operations, to Entity-Relationship facts, which 

are internally translated into the appropriate from and where clauses. For instance, besides 

select(course(C,N,T,B)), which refers to an entire tuple, any of these calls are permitted: 
 

select(course(C)) 

select(credits(C,N)) 

select(taugh_by(C,T)) 

select(textbook(C,T,B)) 

 

As an example of operation converted to procedural style, we show the compiled enroll predicate: 
 



 7  

 

 

enroll(B, A) :- 

        ref(C), 

        select(course(A)), 

        not select(has_finished(B, A)), 

        not select(has_dropped(B, A)), 

        (   select(student(B)) 

        ;   not select(student(B)), 

            insert(student(B, 0)) 

        ), 

        insert(takes(B, A, inc)), 

        ins_log(C, enroll(B, A)). 

 

After both the tables and the procedural operations have been created, a call to env_option(db) turns on a 

flag that directs the planner to no longer check each fact F by looking for clause F in the workspace, but rather 

by accessing the appropriate database table via a select(F) call. The architecture of IDB when acting on the 

mixed stage is shown in figure 2. 

 
Figure 2: IDB’s mixed stage architecture 

 

 Finally, IDB also implements a functionality to ease the transition to the third stage, deploy. With this 

objective, specifically, a second compiler (predicate compile_proc) translates from the procedural version 

of the operations, produced by the first compiler, into DBMS stored procedures: 
 

CREATE PROCEDURE enroll(rn NUMBER, A VARCHAR2, B VARCHAR2) IS 

 found NUMBER; 

 ev VARCHAR(100); 

 course_name_B VARCHAR(100); 

BEGIN 

 SELECT r INTO found FROM ref WHERE r = rn; 

 SELECT course_name INTO course_name_B FROM 

  course WHERE course_name = B;  

 SELECT COUNT(*) INTO found FROM has_finished 

  WHERE student_name = A AND course_name = B;  

 IF found > 0 THEN RETURN; END IF; 

 SELECT COUNT(*) INTO found FROM has_dropped 

  WHERE student_name = A and course_name = B;  

 IF found > 0 THEN RETURN; END IF; 

 SELECT COUNT(*) INTO found FROM student 

  WHERE student_name = A;  

 IF found = 0 THEN INSERT INTO student 

  VALUES(A, 0);   

 END IF; 

 INSERT INTO takes VALUES(A, B, 'inc'); 

 ev := 'enroll(' || A || ',' || B || ')'; 

 ins_log(rn,ev); 

 COMMIT;  

END enroll; 
 

At the deploy stage, IDB allows to operate the database directly through SQL*Plus and the Oracle 

Database Xe shell. But even after reaching this final database stage, we find advisable to keep the logic 

programming specification alive, since it serves several practical purposes, including: documentation; training 

the users; further simulation and continuous testing; redesign; monitoring; data mining; and, especially, plot 

mining (cf. [Aalst 2011, Furtado 2007]). The deploy stage architecture is shown in figure 3. 
 



 8  

 

 

 
 

Figure 3: IDB’s deploy stage architecture 

 

 

5.2 Exploring the System on Hand with IDB 

 

In terms of functionality, IDB enables to perform, among others, the following tasks, to be illustrated by 

example runs: 

 

1. Extract and display past stories from the LOG. 

2. Monitor the occurrence of situations that motivate the agents' goals. 

3. Choose a plan to reach a goal. 

4. Find patterns by comparing story sequences. 

5. Apply statistical analysis to the LOG. 

6. Retrieve past database states. 

7. Schedule future events. 

 

As an example of Task 1 - Extracting and displaying past stories from the LOG, suppose we wish to 

concentrate on some element that may be involved in one or more events, such as the name "Bea", a model 

student with a highly praised performance, enough to obtain the total of 5 credits required by program Alpha. 

The query takes the form: 

 
:- involved(log,'Bea',Story),show_events(Story). 

 

and the answer is given in template-driven natural language, in an event-by-event narrative style that is 

adequate to stress temporal sequentiality:     
 
Student Bea enrolled in course Art. Student Bea enrolled in course Semiotics. Bea's mark in 

Semiotics was 'pass'. Student Bea, having passed course Semiotics, has a total of 3 credits. 

Bea's mark in Art was 'pass'. Student Bea, having passed course Art, has a total of 5 

credits. Student Bea has graduated in program Alpha.  

 

Composing such texts demands little effort. For instance, once the record containing the event 

enroll(Bea,Art) is retrieved from the LOG, the first sentence is obtained by matching the template:  

 
op_template(enroll(S,Co), 

['Student ',S,' enrolled in course ',Co,'.']). 

 

As a useful byproduct, these simple texts can be further processed towards the elaboration of summary 

reports, e.g. by aggregating [Deemter 2005] events into conjunctive structures (regardless of possible 

interspersed events) to form sentences like: S1, S2, ..., and Sn enrolled in C.  

With predicate show_plot, the events are exhibited (figure 4) in storyboard format, with comics style 

images [Lima 2013]. The plot-dramatization program  was written in C# and integrated with the SWI-Prolog 

environment through command-line arguments. 

 
 



 9  

 

 

 
 

Figure 4: Storyboard presentation 
 

 Clearly Task 2 - Monitoring the occurrence of situations is most relevant, since watching for what may 

affect the agents' conduct stands out among the concerns one must have in mind. First in workspace and later 

in the database environments, the sit_obj rules (cf. section 3.3) ought to be tested for this purpose. One may 

eventually detect what follows, as a result of continuously monitoring the relational tables: 
 
:- test_situations(student(S)). 

 

<<Agent>>: student(Zoe) 

<<Situation>>: 

  student(Zoe) 

  has_dropped(Zoe,Art) 

  credits(Art,2) 

  not takes(Zoe,A) 

  course(Design) 

  credits(Design,1) 

  1<2 

<<Objective>>: 

  takes(Zoe,Design) 

 

which indicates that the involved agent, student Zoe, faces a critical situation: she has dropped a two-credits 

course and is no longer enrolled in any course. In this regard an objective is recommended: start taking 

Design, presumably not so hard as Art, since it is merely (in our example!) no more than a one-credit course.  

But suppose that when considering our second sit_obj rule, of interest to the Chairman, which looks for 

courses that have been offered for two years or more and no one has been able to finish successfully, this is 

found to be the case of the supposedly easy Design course: 
 



 10  

 

 

:- test_situations(chairman). 

 

<<Agent>>: chairman 

<<Situation>>: 

  course(Design) 

  select_log(124, 2011/7/15/14/2/50/936, 

             offer(Design,1)) 

  in_timestamp(year,2011,  

               2011/7/15/14/2/50/936) 

  in_current_time(year,2015) 

  4 is 2015-2011 

  4>=2 

  not select_log(A,B,pass(C,Design,D,E)) 

<<Objective>>: 

  not course(Design) 

 

Once a situation that motivates a certain goal is detected, one should look for a suitable plan to satisfy the 

goal, which is the job of Task 3 - Choosing a plan to reach a goal. The plan-generator may come up with a 

number of alternative plans, with different side effects. One criterion to choose the alternative to be executed 

is to take all such effects in consideration. Since a pre-condition to cancel a course is that there should be no 

student taking it, the planner, as expected, treats that as a preliminary sub-goal when responding to the 

Chairman's query: 
  
?- goal_exec(not course('Design')). 

 

Plan: start=>drop(Mary,Design)=>transfer(Joe,Design, Semiotics)=>cancel(Design) 

with effects: 

  not course(Design) 

  not credits(Design,1) 

  not takes(Mary,Design) 

  not takes(Joe,Design) 

  not grade(Mary,Design,pass) 

  not grade(Joe,Design,inc) 

  has_dropped(Mary,Design) 

  has_dropped(Joe,Design) 

  takes(Joe,Semiotics) 

  grade(Joe,Semiotics,inc) 

Want to execute this one? [yes/no/stop] - no 

 

Plan: start=>drop(Mary,Design)=>mark(Joe,Design,pass)=>pass(Joe,Design,0,1)=>cancel(Design) 

with effects: 

  not course(Design) 

  not credits(Design,1) 

  not credits_won(Joe,0) 

  not takes(Mary,Design) 

  not takes(Joe,Design) 

  not grade(Mary,Design,pass) 

  not grade(Joe,Design,inc) 

  credits_won(Joe,1) 

  has_dropped(Mary,Design) 

  has_finished(Joe,Design) 

Want to execute this one? [yes/no/stop]  

 

Again as expected, the firs plan employs drop and transfer as obvious ways to satisfy the pre-condition, 

but the second plan gives a strikingly different solution in Joe's case, much to the Chairman's surprise (and to 

ours, authors of the specification, who failed to recall – but the "system" would not – that ceasing to take a 

course had been declared as one of the effects of the pass operation!). Once this is revealed to be a 

possibility, it is up to those responsible for the policies regulating this particular system (the Chairman, in 

special) to decide whether or not it constitutes an acceptable alternative. In the negative case, a change in the 

specification (to be pursued all the way down to the implementation) may be in order.  

We must note anyway, as we turn our attention to Task 4 - Finding patterns by comparing story 

sequences, that the goals generated by the sit_obj rules are no more than recommendations, which the 

agents are not compelled to accept. Instead of behaving as rational plan-generation counsels, their conduct 

may follow recurring patterns, that can be extracted from the stories registered in the LOG, and that reflect the 

agents' common practice. Some of these patterns may indeed be regarded as typical plans to achieve goals 

that frequently arise, deserving to be kept as adaptable options in an easily accessible library.  

As part of our project, we have been working on the construction of such libraries [Furtado 2001], 

employing most specific generalization, a method that constitutes the dual of unification [Minker 1988]. To 



 11  

 

 

derive a pattern, two or more sequences aiming at the same goal are first located, possibly in separate 

transactions, and then combined in a single sequence containing only the terms in common. Throughout the 

sequence the parameters of the terms are in turn generalized, so that constants that identically fill 

corresponding positions are kept, and variables are introduced consistently wherever different constants 

occur.  

To attain even more generality, we adopt a different representation for plans, which we call a plot data 

structure [Karlsson 2009], in which the fact that plans may be no more than partially ordered is expressed by 

attaching identifying tags to each event and adding a dependence list, where a pair of tags fi-fj means that 

the event tagged with fi should be executed before the one tagged fj. For instance, enrolling a student in two 

courses can be done in any order, but a grade can only be assigned after the corresponding enrollment, as in 

the plan-plot conversion below:  

 
plan:  start=>enroll(S,C1)=>enroll(S,C2)=> 

       mark(S,C1,pass) 

plot:  [[f1:enroll(S,C1),f2:enroll(S,C2), 

         f3:mark(S,C1,pass),  

        [f1-f3]] 
 

Suppose, now, that Zoe, instead of enrolling in Design as recommended, prefers Semiotics (3 credits), 

presumably a more difficult course. Suppose further that the library contains a typical plan allowing those 

who have dropped 'Art' to still be able to graduate, even without meeting the 5 credits requirement of program 

Alpha. The solution shows that a "plan B" is available, leading to the appropriately named program Beta, with 

its more modest 4 credits requirement:  

 
[[f1:drop(S,'Art'), 

  f2:enroll(S,'Semiotics'), 

  f3:enroll(S,'Design'), 

  f4:mark(S,'Design',pass), 

  f5:pass(S,'Design',0,1), 

  f6:mark(S,'Semiotics',pass), 

  f7:pass(S,'Semiotics',1,4), 

  f8:receive_degree(S,'Beta')], 

 [f1-f8,f2-f6,f3-f4,f4-f5,f5-f7,f6-f7,f7-f8]] 

 

Matching the observation of Zoe's conduct against the above plot – a plan-recognition process – yields a 

successful unification, instantiating the S variable in the plot with the involved student's name:  

 
:- Obs =  

[drop('Zoe','Art'),enroll('Joe','Design')], 

recogn(Obs,Plot,Found). 
 
Found =    

[[f1:drop(Zoe,Art), 

  f2:enroll(Zoe,Semiotics), 

  f3:enroll(Zoe,Design), 

  f4:mark(Zoe,Design,pass), 

  f5:pass(Zoe,Design,0,1), 

  f6:mark(Zoe,Semiotics,pass), 

  f7:pass(Zoe,Semiotics,1,4), 

  f8:receive_degree(Zoe,Beta)], 

 [f1-f8,f2-f6,f3-f4,f4-f5,f5-f7,f6-f7,f7-f8]] 
 

which in fact does more than explaining Zoe's conduct: it allows us to predict that Zoe is expected, after all, to 

also enroll in Design sometime in the near future. This might be frustrated if the course is extinguished, as 

discussed earlier – we shall return to that shortly. 

To compute statistics, the job of Task 5 - Applying statistical analysis to the LOG, we employ the facilities 

offered by the R system, also accessible from SWI-Prolog. Figure 5 shows a bar diagram that compares the 

occurrences of event types.  

This simple example aims at demonstrating how an administrator could leverage the LOG to query the 

system on semantically relevant information; as opposed to simple database usage statistics more commonly 

provided by DBMSs. Incidentally, the analysis of figure 5 allowed us to discover that, in this example 

domain, almost exclusively passing grades were being assigned to students, since the mark and pass events 

happen in the same proportion. 
 



 12  

 

 

 
Figure 5: Proportional occurrence of events in the LOG 

 

Coming to Task 6 - Retrieving past database states, we realize that the presence of the LOG, together with 

the logic programming specification of the effects of the operations, contributes the functionalities of a 

temporal database. As a repository of past stories, the LOG contains the answer to temporal queries, such as: 

“How many total credits had Joe in July 15th 2011, and what event produced that value?”. To reply, one searches the 

LOG for an event, prior to the indicated date, that would be able to affect the value, and then makes sure that no 

event able to modify it has occurred between the timestamps of the two events. 
  

:- holds_at(credits_won('Joe',T),2011/7/15,E). 
 

T = 2, 

E = pass(Joe,Art,0,2)  

 

Moreover, it is possible to revert to a past state of the world, by, on the basis of the declarative 

specification of the operations, replicating the net effects of the events registered in the LOG since from the 

moment when the system started until the given date. Indicating as such the precise instant when Joe enrolled 

in Art, we reconstitute the entire set of facts then holding: 
 

:- state_at(Fs,2011/07/15/14/03/48/061), 

show_facts(Fs). 
 

Course Art is being offered. Course Design is being offered. Course Semiotics is being 

offered. Alpha is open as an academic program. Beta is open as an academic program. Joe is 

registered as student. Course Art grants 2 credits. Course Design grants 1 credit. Course 

Semiotics grants 3 credits. Program Alpha requires 5 credits. Program Beta requires 4 

credits. Student Joe is taking course Art. 

 

Yet, it must be admitted that, except when dealing with relatively small data repositories, the reconstitution 

of past database states by re-executing the operations in the LOG is unrealistic. Such overwhelming workload 

can hopefully be reduced to tolerable proportions by taking periodical snapshots of the database tables, so that 

the desired past states would be obtained, so-to-speak, by interpolation inside the time interval between two 

consecutive snapshots, for which only a manageable subsequence of the LOG need be processed. 

With Task 7 - Scheduling future events, we get a glimpse of the future. With the same column structure as 

the LOG, an AGENDA relational table was added to the IDB architecture, wherein events can be scheduled for 

possible future execution with a timestamp anticipating the intended date. If only the day is given, the current 

month and year are assumed; similarly, the current year is assumed if day and month are given explicitly. In 

any case, only future dates are acceptable. A serial number is added to the timestamp to establish a temporal 

order among events scheduled for the same day. The first parameter is the transaction's reference number. The 

example below should raise Zoe's expectations: the creation of a new course is envisaged: 
 

?- schedule(130,offer('Logic',3,'Hermann', 

   'Clocksin and Mellish'),10/10,7). 
 

Like the LOG, the AGENDA can be consulted: 
 

?- select_agenda(R,Ts,enroll('Zoe',C)). 

R = 130, 

Ts = 2015/10/10/7, 

C = Logic . 
  



 13  

 

 

and periodically inspected for optional execution of the items scheduled for the day (or pending, past due 

date). If execution is not solicited, the system asks whether the item should be deleted: 
 

?- exec_agenda. 
 

Want to execute <<enroll(Laura,Art)>> 

reference 125, scheduled for 24 of September of 2015, item 1? [y/n]: n 

Want to remove it from the Agenda? [y/n]: n 

retained 
 

Want to execute <<enroll(Zoe,Logic)>> 

reference 128, scheduled for 1 of October of 2015, item 1? [y/n]: y 
ok 

executed 
 

Pondering once again about Zoe and her unlucky colleagues who began with an ill-advised choice of 

course, the Chairman might ask the designers to provide some device that would allow students to find 

beforehand whether they would be apt to take a given course. One such device would be a multiple-choice 

test to verify if the candidate has bothered to acquire a minimum preliminary knowledge of the topic of the 

course. It was a simple matter to equip IDB with a test to be triggered for the problematic Art course:  
 

?- course(C), eval_min('John',C,Result). 
 

1. Who painted the Virgin of the Rocks? 

a. Raphael b. Picasso 

c. Leonardo da Vinci d. None of these 

Your answer: c 
 

2. Who composed the Magic Flute? 

a. Mozart b. Wagner 

c. Puccini d. None of these 

Your answer: a 
 

3. Who wrote the Divine Comedy? 

a. Goethe b. Dante 

c. Victor Hugo d. None of these 

Your answer: b 
 

4. Who sculpted the Thinker? 

a. Phidias b. Rodin 

c. Michelangelo d. None of these 

Your answer: b 
 

5. Who designed the Palácio da Alvorada? 

a. Lucio Costa b. Candido Portinari 

c. Oscar Niemayer d. None of these 

Your answer: c 

 

C = Art 

Result = pass 

 

This little increment to the tool, as well as a few among the examples discussed in this section, concerning 

the tasks we chose to explore, illustrate another story level: the meta-story of the  specification itself, whose 

inadequacies are revealed as the experiments proceed, mainly through plan generation, analysis of the LOG, 

and simulated execution. Application administrators and users have much to learn by watching how the 

system matures by trial and error, and how the mutually interfering rules that regulate it are more finely tuned 

so as to only enable stories with a happy ending (as far as the proprietary organization is concerned...). IDB 

employs a hosting system to operate this additional version control [Loeliger 2012] task.   
 
 
6. Concluding remarks 
 
The distinctive features of our project, namely conceptual modelling not only of facts but also of events and 

agents, the availability of a LOG to register past events, and of a plan generator and an AGENDA to project 

alternative futures, pave the way to a transition from data-bases to story-bases as a fundamental component of 

information systems. 

Our approach eases the job of application administrators and of the various classes of prospective users to 

assess how effective is the specified system, by discovering in what kinds of stories they are invited to 

participate. Bringing to bear what we learned in another area whereon we have been similarly applying our 

plan-recognition/plan-generation paradigm, namely digital interactive storytelling [Ciarlini 2005], we 



 14  

 

 

endeavour to make the stories not only comprehensible but also somewhat more enjoyable, by telling them in 

colloquial natural language and playful images. 

In the same vein, we are now actively investing on friendly end-user interfaces capable of encapsulating 

the logic programming interactions, such as those in the previous section. For instance, the Chairman can 

already, by filling-up the menu-driven dialog window of figure 6, produced via the XPCE package of SWI-

Prolog, both register Logic (with a current faculty member) in the database (failure being signalled if the 

course already exists) and prepare an announcement. 

 

 
 

Course Logic is now offered, with 3 credits, 

taught by Mr. Edward Haeusler using Clocksin 

and Mellish's book. 
 

Figure  6:  dialog window to offer and announce courses 
  

Still concerning notation, it would be necessary to include facilities to process RDF triples if one wishes to 

incorporate data of Web provenance. Besides representing metadata about Web resources, RDF can also 

represent information about objects that can be identified on the Web, even when they cannot be directly 

retrieved from the Web [Breitman 2007]. That would seem to be a natural extension of our research, since, as 

noted by Chen [2002], "RDF can be viewed as a member of the Entity-Relationship model family".  

Also, for scaling up the IDB prototype to cope with large business applications, more effort should be 

invested, both by enhancing the implemented algorithms and by adopting a modular divide-and-conquer 

design strategy [Casanova 1991, Graeffe 2014] to help reducing the size and complexity of the various tasks 

involved at each stage. 

For future research, two lines seem particularly relevant. The first is to better arrange the environment for 

training purposes. Stories that emerge from the specification would be presented to the trainees with pauses 

between successive phases ("chapters"), as we already do in our Logtell project for the composition of fiction 

tales [Ciarlini 2005]. At each pause, they would be called to interact, by considering the current state of the 

mini-world and, using what they have learned so far about the domain in hand, by making decisions to 

influence how the (non-deterministic) story would branch. By transposing the prototype to a client-server 

architecture, multiuser participation would be enabled, after which a game feature might be incorporated to 

add attractiveness to training, with criteria to grade the participants while they compete and/or collaborate to 

reach goals, subject to scarce resource limitations. 

The other line, that can be termed plot-mining or story-mining, looks even more promising, as evidenced 

by research in the field of process mining [Aalst 2011, Furtado 2007]. We believe that having a time-stamped 

LOG to register transactions – composed, as we have stressed here, of conceptually meaningful events – is a 

major asset towards a semantically and pragmatically richer approach to perform knowledge discovery over 

the processes that may occur during the lifetime of an information system. 
 

 

References 
 
Aalst, W. M. P. van der, 2011. Process Mining: Discovery, Conformance and Enhancement of Business Processes. 

Springer-Verlag, Berlin. 

Barbosa, S. D. J. et al., 2015, Plot Generation with Character-Based Decisions. Computers in Entertainment, v. 12. 

Barros, L. M., Musse, S. R., 2007. Planning algorithms for interactive storytelling. Computers in Entertainment, vol. 5, n 

1. ACM, NY. 



 15  

 

 

Batini, C., Ceri, S. & Navathe, S., 1991. Conceptual Design: an Entity-Relationship Approach. Addison-Wesley. 

Breitman, K.K., Casanova, M.A., Truszkowski, W., 2007. Semantic Web: Concepts, Technologies and Applications. 

Springer. 

Brewer, W. F., Lichtenstein, E. H., 1980. Event Schemas, Story Schemas and Story Grammars. Technical report No 197. 

University of Illinois at Urbana-Champaign. 

Casanova, M.A. et al., 1991. A software tool for modular database design. ACM Transactions on Database Systems, vol. 

16, no. 2, pp. 209-234. 

Charniak, E., 1972. Toward a model of children's story comprehension. Technical Report AITR-266. Artificial 

Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA. 

Chen, P.P. 2002. Entity-Relationship Modeling: Historical Events, Future Trends, and Lessons Learned. In Software 

pioneers. Springer.  

Ciarlini, A. E. M., Furtado, A. L., 2002. Understanding and simulating narratives in the context of information systems. In 

Proc. of 21st international conference on conceptual modeling, Tampere, Finland. 

Ciarlini, A.E.M., Pozzer, C.T., Furtado, A.L., Feijo, B., 2005. A Logic-Based Tool for Interactive Generation and 

Dramatization of Stories In: International Conference on Advances in Computer Entertainment Technology (ACE 

2005), Valencia. 

Ciarlini, A.E.M. et al., 2010. Modeling Interactive Storytelling Genres as Application Domains. Journal of Intelligent 

Information Systems, v. 35, pp. 347-381.  

Date, C.J., Darwen, H., Lorentzos, N.A., 2002. Temporal Data and the Relational Model. Morgan Kaufmann. 

Deemter, K.V.,  Krahmer, E., Theune, M. , 2005. Real versus Template-Based Natural Language Generation: A False 

Opposition?. Computational. Linguistics, vol. 31, n. 1. 

Fikes, R. E., Nilsson, N. J., 1971. STRIPS: A new approach to the application of theorem proving to problem solving. 

Artificial Intelligence , 2(3-4). 

Furtado, A.L., Casanova, M.A., Barbosa, S.D.J., Breitman, K.K., 2007. Plot mining as an aid to characterization and 

planning. Technical Report MCC07, PUC-Rio. 

Furtado, A.L., Ciarlini, A.E.M., 2000. Generating Narratives from Plots using Schema Information. In: Proc. of the 5th 

International Workshop on Applications of Natural Language for Information Systems. Springer. 

Furtado, A.L., Ciarlini, A.E.M., 2001. Constructing Libraries of Typical Plans. In: Proc. of the 13th International 

Conference on Advanced Information Systems Engineering (CAiSE). Springer. 

Graeffe, G. et al., 2014. In-memory performance for big data. In: Proc. of the VLDB Endowment, vol. 8, no 1. 

Guttag J. 1977. Abstract data types and the development of data structures. Communications of the ACM, 20(6). 

Karlsson, B. et al., 2009. A plot-manipulation algebra to support digital storytelling. In: Proc. of IFIP International 

Federation for Information Processing (ICEC). 

Lang, R., 1999. A declarative model for simple narratives. In: Proc. of the AAAI Fall Symposium on Narrative 

Intelligence. 

Lima, E.S., Feijó, B., Furtado, A.L., Barbosa, S.D.J., Pozzer, C.T., Ciarlini, A.E.M., 2013. Non-Branching Interactive 

Comics. In: Proc. of the 10th International Conference on Advances in Computer Entertainment Technology. 

Loeliger, J., McCullough, M., 2012. Version Control with Git. O'Reilly Media. 

Mateas, M. and Stern, A., 2003. Façade: An experiment in building a fully-realized interactive drama. Game Developers 

Conference. 

Meehan, J., 1981. TALE-SPIN and Micro TALE-SPIN. In: Roger C. Schank, & Christopher K. Riesbeck (Eds.), Inside 

computer understanding. Hillsdale, NJ: Erlbaum. 

Miller, R., Shanahan, M., 1994. Narratives in the Situation Calculus. Journal of Logic & Computation, Vol. 4., Number 5, 

1994. 

Minker, J., 1988. Foundations of Deductive Databases and Logical Programming. Morgan Kaufmann. 

Prince, G., 1973. A Grammar of Stories. Mouton. 

Propp, V., 1968. Morphology of the folktale. Austin, TX: University of Texas Press. 

Riedl, M., Young, R. M., 2004. An intent-driven planner for multi-agent story generation. In: Proc. of the 3rd 

International Conference on Autonomous Agents and Multi Agent Systems, July 2004. 

Rossi, F., Beek, P. 2006. Handbook of Constraint Programming, Elsevier Science. 

Schank, R., Morson, G.S., 1995. Tell Me A Story. Northwestern University Press. 

Zaniolo, C., 1992. Intelligent Databases: Old Challenges and New Opportunities. In: Journal of Intelligent Information 

Systems 1, 271-292. 



 16  

 

 

Appendix 

***A Small Academic Example*** 
 

% STATIC SCHEMA - classes of facts 

 

entity(student,student_name). 

attribute(student,credits_won). 

entity(program,program_name). 

attribute(program,requirement). 

entity(course,course_name). 

attribute(course,credits). 

entity(teacher,teacher_name). 

attribute(teacher,position). 

relationship(takes,[student,course]). 

attribute(takes,grade). 

relationship(has_finished,[student,course]). 

relationship(has_dropped,[student,course]). 

relationship(graduated_in,[student,program]). 

f_relationship(taught_by,[course,teacher]). 

attribute(taught_by,textbook). 

 

 

% DYNAMIC SCHEMA - operations to produce events  

  

operation(offer(C,N,T,B)). 

added(course(C),offer(C,N,T,B)). 

added(credits(C,N),offer(C,N,T,B)). 

added(taught_by(C,T),offer(C,N,T,B)). 

added(textbook(C,T,B),offer(C,N,T,B)). 

precond(offer(C,N,T,B),(/(not(course(C))),/teacher(T))). 

 

operation(hire(T,P)). 

added(teacher(T),hire(T,P)). 

added(position(T,P),hire(T,P)). 

precond(hire(T,P),true). 

 

operation(enroll(S,C)). 

/added(student(S),enroll(S,C)). 

/added(credits_won(S,0),enroll(S,C)) :- 

  not credits_won(S,_). 

added(takes(S,C),enroll(S,C)). 

added(grade(S,C,'inc'),enroll(S,C)). 

precond(enroll(S,C), 

  (course(C), 

   /(not has_finished(S,C)),/(not has_dropped(S,C)))). 

    

operation(drop(S,C)). 

deleted(takes(S,C),drop(S,C)). 

deleted(grade(S,C,G),drop(S,C)). 

added(has_dropped(S,C),drop(S,C)). 

precond(drop(S,C),true).    

 

operation(transfer(S,C1,C2)). 

deleted(takes(S,C1),transfer(S,C1,C2)). 

deleted(grade(S,C1,G),transfer(S,C1,C2)). 

added(has_dropped(S,C1),transfer(S,C1,C2)). 

added(takes(S,C2),transfer(S,C1,C2)). 

added(grade(S,C2,'inc'),transfer(S,C1,C2)). 



 17  

 

 

precond(transfer(S,C1,C2), 

  (course(C2),/takes(S,C1), 

   /(not has_finished(S,C2)),/(not has_dropped(S,C2)))). 

 

operation(cancel(C)). 

deleted(course(C),cancel(C)). 

deleted(credits(C,N),cancel(C)). 

precond(cancel(C),  

   not takes(S,C):(student(S),takes(S,C))). 

 

operation(change_cr(C,N1,N2)). 

deleted(credits(C,N1),change_cr(C,N1,N2)). 

added(credits(C,N2),change_cr(C,N1,N2)). 

precond(change_cr(C,N1,N2),credits(C,N1)). 

 

operation(mark(S,C,G)). 

deleted(grade(S,C,'inc'),mark(S,C,G)). 

added(grade(S,C,G),mark(S,C,G)). 

precond(mark(S,C,G),grade(S,C,'inc')). 

  

operation(pass(S,C,T1,T2)). 

deleted(credits_won(S,T1),pass(S,C,T1,T2)). 

deleted(takes(S,C),pass(S,C,T1,T2)). 

deleted(grade(S,C,G),pass(S,C,T1,T2)). 

added(has_finished(S,C),pass(S,C,T1,T2)). 

added(credits_won(S,T2),pass(S,C,T1,T2)). 

precond(pass(S,C,T1,T2), 

    (takes(S,C),credits_won(S,T1),grade(S,C,'pass'))) :- 

      credits(C,N), 

      T2 #= T1 + N, T1 #>= 0. 

     

operation(create_program(P,R)). 

added(program(P),create_program(P,R)). 

added(requirement(P,R),create_program(P,R)). 

precond(create_program(P,R),/(not program(P))).   

 

operation(receive_degree(S,P)). 

added(graduated_in(S,P),receive_degree(S,P)). 

precond(receive_degree(S,P), 

  (requirement(P,T),credits_won(S,T),/(not takes(S,_)))). 

 

 

% BEHAVIOURAL SCHEMA - situation-objective rules 

 

% a student who dropped a course and is not currently taking any course  

% should enroll in some course with smaller number of credits, if such course is available         

      

sit_obj(student(S),  

            (  has_dropped(S,C1), 

                credits(C1,Cr1), 

                not takes(S,Cx), 

                course(C2),  

           credits(C2,Cr2), 

                Cr2 < Cr1  ),  

           takes(S,C2)). 

       

% rule involving the LOG table accessed via ODBC 

% courses created 2 or more years ago and not yet passed by any student  

% should be cancelled by the chairman       



 18  

 

 

 

sit_obj(chairman,  

            (  course(C), 

                select_log(R,Ts,offer(C,Cr)), 

                in_timestamp(year,Yevent,Ts), 

           in_current_time(year,Ynow), 

           Diff is Ynow - Yevent, Diff >= 2, 

           not select_log(_,_,pass(_,C,_,_))  ), 

           not course(C)).        

 

 

% GENERATED RELATIONAL TABLES 

 

CREATE TABLE "STUDENT" 

   ("STUDENT_NAME" VARCHAR2(100), 

    "CREDITS_WON" NUMBER 

   ); 

/ 

 

CREATE TABLE "PROGRAM" 

   ("PROGRAM_NAME" VARCHAR2(100), 

    "REQUIREMENT" NUMBER 

   ); 

/ 

 

CREATE TABLE "COURSE" 

   ("COURSE_NAME" VARCHAR2(100), 

    "CREDITS" NUMBER, 

    "TEACHER_NAME" VARCHAR2(100), 

    "TEXTBOOK" VARCHAR2(100) 

   ); 

/ 

 

CREATE TABLE "TEACHER" 

   ("TEACHER_NAME" VARCHAR2(100), 

    "POSITION" VARCHAR2(100) 

   ); 

/ 

 

CREATE TABLE "TAKES" 

   ("STUDENT_NAME" VARCHAR2(100), 

    "COURSE_NAME" VARCHAR2(100), 

    "GRADE" VARCHAR2(100) 

   ); 

/ 

 

CREATE TABLE "HAS_FINISHED" 

   ("STUDENT_NAME" VARCHAR2(100), 

    "COURSE_NAME" VARCHAR2(100) 

   ); 

/ 

 

CREATE TABLE "HAS_DROPPED" 

   ("STUDENT_NAME" VARCHAR2(100), 

    "COURSE_NAME" VARCHAR2(100) 

   ); 

/ 

 

CREATE TABLE "GRADUATED_IN" 



 19  

 

 

   ("STUDENT_NAME" VARCHAR2(100), 

    "PROGRAM_NAME" VARCHAR2(100) 

   ); 

/ 

 

CREATE TABLE "LOG" 

   ("REF" NUMBER, 

    "TS" VARCHAR2(100), 

    "EVENT" VARCHAR2(100) 

    ); 

/ 

 

CREATE TABLE "AGENDA" 

   ("REF" NUMBER, 

    "TS" VARCHAR2(100), 

    "EVENT" VARCHAR2(100) 

    ); 

/ 

 

CREATE TABLE "REF" 

   ("R" NUMBER 

    ); 

/ 

 

 

% COMPILED OPERATIONS IN PROCEDURAL-STYLE  
 

offer(A, C, B, D) :- 

        ref(E), 

        not select(course(A)), 

        select(teacher(B)), 

        insert(course(A, C, B, D)), 

        ins_log(E, offer(A, C, B, D)). 

 

hire(A, B) :- 

        ref(C), 

        insert(teacher(A, B)), 

        ins_log(C, hire(A, B)). 

 

enroll(B, A) :- 

        ref(C), 

        select(course(A)), 

        not select(has_finished(B, A)), 

        not select(has_dropped(B, A)), 

        (   select(student(B)) 

        ;   not select(student(B)), 

            insert(student(B, 0)) 

        ), 

        insert(takes(B, A, inc)), 

        ins_log(C, enroll(B, A)). 

 

drop(A, B) :- 

        ref(C), 

        delete(takes(A, B, _)), 

        insert(has_dropped(A, B)), 

        ins_log(C, drop(A, B)). 

 

transfer(B, C, A) :- 

        ref(D), 



 20  

 

 

        select(course(A)), 

        select(takes(B, C)), 

        not select(has_finished(B, A)), 

        not select(has_dropped(B, A)), 

        delete(takes(B, C, _)), 

        insert(has_dropped(B, C)), 

        insert(takes(B, A, inc)), 

        ins_log(D, transfer(B, C, A)). 

 

cancel(A) :- 

        ref(B), 

        not select(takes(_, A)), 

        delete(course(A, _, _, _)), 

        ins_log(B, cancel(A)). 

 

change_cr(A, B, C) :- 

        ref(D), 

        select(credits(A, B)), 

        update(course(A, credits: (B=>C))), 

        ins_log(D, change_cr(A, B, C)). 

 

mark(A, B, C) :- 

        ref(D), 

        select(grade(A, B, inc)), 

        update(takes((A, B), grade: (inc=>C))), 

        ins_log(D, mark(A, B, C)). 

 

pass(A, B, C, D) :- 

        ref(F), 

        select(takes(A, B)), 

        select(credits_won(A, C)), 

        select(grade(A, B, pass)), 

        select(credits(B, E)), 

        D#=C+E, 

        delete(takes(A, B, _)), 

        insert(has_finished(A, B)), 

        update(student(A, credits_won: (C=>D))), 

        ins_log(F, pass(A, B, C, D)). 

  

create_program(A, B) :- 

        ref(C), 

        not select(program(A)), 

        insert(program(A, B)), 

        ins_log(C, create_program(A, B)). 

 

receive_degree(B, A) :- 

        ref(D), 

        select(requirement(A, C)), 

        select(credits_won(B, C)), 

        not select(takes(B, _)), 

        insert(graduated_in(B, A)), 

        ins_log(D, receive_degree(B, A)). 

 

 

% COMPILED STORED PROCEDURES 

 

create procedure offer(rn number, A varchar2, B number, C varchar2, D varchar2) is 

 found number; 

 ev varchar(100); 



 21  

 

 

 teacher_name_C varchar(100); 

begin 

 select r into found 

 from ref 

 where r = rn; 

 select count(*) into found  

 from course 

 where course_name = A;  

 if found > 0 then return; 

 end if; 

 select teacher_name into teacher_name_C 

 from teacher 

 where teacher_name = C;  

 insert into course 

 values (A, B, C, D); 

 ev := 'offer(' || A || ',' || B || ',' || C || ',' || D || ')'; 

 ins_log(rn,ev); 

 commit; 

end offer; 

/ 

 

create procedure hire(rn number, A varchar2, B varchar2) is 

 found number; 

 ev varchar(100); 

begin 

 select r into found 

 from ref 

 where r = rn; 

 insert into teacher 

 values (A, B); 

 ev := 'hire(' || A || ',' || B || ')'; 

 ins_log(rn,ev); 

 commit; 

end hire; 

/ 

 

create procedure enroll(rn number, A varchar2, B varchar2) is 

 found number; 

 ev varchar(100); 

 course_name_B varchar(100); 

begin 

 select r into found 

 from ref 

 where r = rn; 

 select course_name into course_name_B 

 from course 

 where course_name = B;  

 select count(*) into found  

 from has_finished 

 where student_name = A and course_name = B;  

 if found > 0 then return; 

 end if; 

 select count(*) into found  

 from has_dropped 

 where student_name = A and course_name = B;  

 if found > 0 then return; 

 end if; 

 select count(*) into found  

 from student 



 22  

 

 

 where student_name = A;  

 if found = 0 then  

 insert into student 

 values (A, 0); 

 end if; 

 insert into takes 

 values (A, B, 'inc'); 

 ev := 'enroll(' || A || ',' || B || ')'; 

 ins_log(rn,ev); 

 commit; 

end enroll; 

/ 

 

create procedure drop(rn number, A varchar2, B varchar2) is 

 found number; 

 ev varchar(100); 

begin 

 select r into found 

 from ref 

 where r = rn; 

 delete from takes 

 where student_name = A and course_name = B;  

 insert into has_dropped 

 values (A, B); 

 ev := 'drop(' || A || ',' || B || ')'; 

 ins_log(rn,ev); 

 commit; 

end drop; 

/ 

 

create procedure transfer(rn number, A varchar2, B varchar2, C varchar2) is 

 found number; 

 ev varchar(100); 

 course_name_B varchar(100); 

 course_name_C varchar(100); 

 student_name_A varchar(100); 

begin 

 select r into found 

 from ref 

 where r = rn; 

 select course_name into course_name_C 

 from course 

 where course_name = C;  

 select student_name,course_name into student_name_A,course_name_B 

 from takes 

 where student_name = A and course_name = B;  

 select count(*) into found  

 from has_finished 

 where student_name = A and course_name = C;  

 if found > 0 then return; 

 end if; 

 select count(*) into found  

 from has_dropped 

 where student_name = A and course_name = C;  

 if found > 0 then return; 

 end if; 

 delete from takes 

 where student_name = A and course_name = B;  

 insert into has_dropped 



 23  

 

 

 values (A, B); 

 insert into takes 

 values (A, C, 'inc'); 

 ev := 'transfer(' || A || ',' || B || ',' || C || ')'; 

 ins_log(rn,ev); 

 commit; 

end transfer; 

/ 

 

create procedure cancel(rn number, A varchar2) is 

 found number; 

 ev varchar(100); 

begin 

 select r into found 

 from ref 

 where r = rn; 

 select count(*) into found  

 from takes 

 where course_name = A;  

 if found > 0 then return; 

 end if; 

 delete from course 

 where course_name = A;  

 ev := 'cancel(' || A || ')'; 

 ins_log(rn,ev); 

 commit; 

end cancel; 

/ 

 

create procedure change_cr(rn number, A varchar2, B number, C number) is 

 found number; 

 ev varchar(100); 

 course_name_A varchar(100); 

 credits_B number; 

begin 

 select r into found 

 from ref 

 where r = rn; 

 select course_name,credits into course_name_A,credits_B 

 from course 

 where course_name = A and credits = B;  

 update course 

 set credits=C 

 where course_name=A; 

 ev := 'change_cr(' || A || ',' || B || ',' || C || ')'; 

 ins_log(rn,ev); 

 commit; 

end change_cr; 

/ 

 

create procedure mark(rn number, s varchar2, c varchar2, g varchar2) is 

 found number; 

 ev varchar(100); 

 course_name_c varchar(100); 

 grade_inc varchar(100); 

 student_name_s varchar(100); 

begin 

 select r into found 

 from ref 



 24  

 

 

 where r = rn; 

 select student_name,course_name,grade into student_name_s,course_name_c,grade_inc 

 from takes 

 where student_name = s and course_name = c and grade = 'inc';  

 update takes 

 set grade=g 

 where student_name=s and course_name=c; 

 ev := 'mark(' || s || ',' || c || ',' || g || ')'; 

 ins_log(rn,ev); 

 commit; 

end mark; 

/ 

 

create procedure pass(rn number, A varchar2, B varchar2, C number, D in out number) is 

 found number; 

 ev varchar(100); 

 course_name_B varchar(100); 

 credits_E number; 

 credits_won_C number; 

 grade_pass varchar(100); 

 student_name_A varchar(100); 

begin 

 select r into found 

 from ref 

 where r = rn; 

 select student_name,course_name into student_name_A,course_name_B 

 from takes 

 where student_name = A and course_name = B;  

 select student_name,credits_won into student_name_A,credits_won_C 

 from student 

 where student_name = A and credits_won = C;  

 select student_name,course_name,grade into student_name_A,course_name_B,grade_pass 

 from takes 

 where student_name = A and course_name = B and grade = 'pass';  

 select course_name,credits into course_name_B,credits_E 

 from course 

 where course_name = B;  

 D:=C+credits_E; 

 delete from takes 

 where student_name = A and course_name = B;  

 insert into has_finished 

 values (A, B); 

 update student 

 set credits_won=D 

 where student_name=A; 

 ev := 'pass(' || A || ',' || B || ',' || C || ',' || D || ')'; 

 ins_log(rn,ev); 

 commit; 

end pass; 

/ 

 

create procedure create_program(rn number, A varchar2, B number) is 

 found number; 

 ev varchar(100); 

begin 

 select r into found 

 from ref 

 where r = rn; 

 select count(*) into found  



 25  

 

 

 from program 

 where program_name = A;  

 if found > 0 then return; 

 end if; 

 insert into program 

 values (A, B); 

 ev := 'create_program(' || A || ',' || B || ')'; 

 ins_log(rn,ev); 

 commit; 

end create_program; 

/ 

 

create procedure receive_degree(rn number, A varchar2, B varchar2) is 

 found number; 

 ev varchar(100); 

 credits_won_C number; 

 program_name_B varchar(100); 

 requirement_C number; 

 student_name_A varchar(100); 

begin 

 select r into found 

 from ref 

 where r = rn; 

 select program_name,requirement into program_name_B,requirement_C 

 from program 

 where program_name = B;  

 select student_name,credits_won into student_name_A,credits_won_C 

 from student 

 where student_name = A and credits_won = requirement_C;  

 select count(*) into found  

 from takes 

 where student_name = A;  

 if found > 0 then return; 

 end if; 

 insert into graduated_in 

 values (A, B); 

 ev := 'receive_degree(' || A || ',' || B || ')'; 

 ins_log(rn,ev); 

 commit; 

end receive_degree; 

/ 

 

create procedure ins_log(ref number, ev varchar2) is 

ts varchar(100); 

begin 

select to_char(localtimestamp,'YYYY/MM/DD/HH24/MI/SS/FF3') 

into ts 

from DUAL; 

insert into log 

values (ref,ts,ev); 

commit; 

end ins_log; 

/ 

 

 


