

PUC�

ISSN 0103-9741

Monografias em Ciência da Computação
n° 02/16

An Architecture to Mitigate Buffer Overflow
Attacks, using Multi-agent System Concepts

Marcio Ricardo Rosemberg

Francisco José Plácido da Cunha

Carlos José Pereira de Lucena

Daniel Schwabe

Marcus Poggi

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

 ii

Monografias em Ciência da Computação, No. 02/16 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena June, 2016

An Architecture to Mitigate Buffer Overflow Attacks,
using Multi-agent System Concepts*

Marcio Ricardo Rosemberg 1 Francisco José Plácido da Cunha1 Carlos José
Pereira de Lucena1 Daniel Schwabe1 Marcus Poggi1

1Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro
(PUC-RIO)

{mrosemberg, fcunha, lucena, dschwabe, poggi} @inf.puc-rio.br

Abstract: Most times, services or daemons are written in C and, therefore, are subject-
ed to Buffer Overflow Attacks and other exploits that the C language is vulnerable.
When such services perform authentication, and are successfully exploited, the attack-
er may gain access to user credentials, session keys and even the Private Key of a digi-
tal certificate. In this work, we propose an architecture for modeling and implementa-
tion of services and client applications, using Multi-Agent Systems concepts to miti-
gate the damage an attacker could inflict on a system. Our approach also improves the
resilience to Denial of Service Attacks, since an intelligent agent can learn from past
experiences and be pro-active in the defense of a system under attack.

Keywords: Agents, Security, MAS, Buffer Overflow, Heartbleed

Resumo: Na maioria das vezes, serviços ou daemons são escritos em C e, portanto, es-
tão sujeitos a ataques de Buffer Overflow e outras vulnerabilidades que a linguagem C
é susceptível. Quando tais serviços envolvem autenticação e são explorados com êxito,
o atacante pode obter acesso a credenciais de usuário, as chaves de sessão e até mesmo
a chave privada de um certificado digital. Neste trabalho, propomos uma arquitetura
para modelagem e implementação de serviços e aplicações de cliente, usando conceitos
de sistemas multiagentes para atenuar o dano que um invasor poderia causar em um
sistema. Nossa abordagem também melhora a capacidade de resiliência a ataques de
negação de serviço, visto que um agente inteligente pode aprender com as experiências
passadas e ser proativo na defesa de um sistema sob ataque.

Palavras-chave: Agentes, Segurança, SMA, Buffer Overflow, Heartbleed

* This work has been sponsored by the Ministério de Ciência e Tecnologia da Presidência da República

Federativa do Brasil and the CNPQ.

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

Table of Contents

1 Introduction 1�

2 Background 2�
2.1 The Buffer Overflow Attack 2�

2.1.1 Protecting Against Buffer Overflow Attacks 3�
2.1.2 The Heartbleed Attack 4�

2.2 Multi-Agent Systems (MAS) 5�
2.2.1 Reactive Agents 5�
2.2.2 Cognitive or Intelligent Agent 6�
2.2.3 Trust and Reputation 7�
2.2.4 Developing Multi-Agents Systems 7�

2.3 Cryptography Basics 8�
2.3.1 Algorithms and Keys 9�
2.3.2 Symmetric Algorithms 9�
2.3.3 Asymmetric Algorithms 9�
2.3.4 Digital Signatures 10�

3 The Proposed Solution 11�
3.1 The Insecure Platform 11�

3.1.1 The Interface Agent (IA) 11�
3.2 The Secure Platform 12�

3.2.1 The Private Key Operations Agent (POA) 12�
3.2.2 The Crypto Agent 13�
3.2.3 The Service Provider Agent (SPA) 13�

4 Implementation 14�

5 Related Work 15�

6 Conclusions and Future Works 15�

References 16�

 1

1 Introduction

Servers run services or daemons to receive requests from clients and return results.
However, before disclosing sensitive information, services use authentication proto-
cols, such as the Transport Layer Security (TLS) [1], to authenticate both the client and
the server, establishing a secure communications channel during the process[2].

Many Authentication Protocols use asymmetric cryptography to authenticate each
endpoint and a negotiated symmetric session key to ensure confidentiality, after the
authentication phase. The most important asset of the authentication protocols relying
on asymmetric cryptography is the Private Key. If the Private Key is misused or stolen,
the authentication is compromised, meaning that any person or entity can impersonate
the true owner of the Private Key[3]. Likewise, if session keys are compromised, an at-
tacker could eavesdrop or even steal the session. The perpetrator may cause consider-
able damage to the system and leave the blame on the attacked user.

Most times, services or daemons are written in C or C++ and, therefore, are subject-
ed to Buffer Overflow Attacks[4] and other exploits that the C language is suitable.

One type of attack that exploited buffer overflows and have caused major damages
is the Heartbleed Attack[5]. This attack is capable of stealing user accounts, passwords,
session keys and even private keys[6]. One of the reasons Heartbleed achieved such
success is because the services that used the affected versions of Open-SSL[I] were de-
signed to run in a single process, storing in main memory the session keys, cached user
credentials and the Private Key of the digital certificate.

By distributing a single service into an architecture composed of two agent plat-
forms, we can mitigate the damage a Buffer Overflow Attack or an attack such as
Heartbleed could impose on an exploited system. Each agent platform runs under an
isolated process. However, only one of the platforms (the insecure platform) is ex-
posed to the Internet or any other network. The other platform (the secure platform),
which stores private keys, user credentials and session keys in memory, is not exposed.

A Multi-agent System (MAS) is an excellent paradigm to model an implement secu-
rity oriented software. MAS is composed of agents. “An agent is a computer system
that is situated in some environment, and that is capable of autonomous action in this
environment in order to meet its design objectives” [7].

According to Wooldridge[7], any system service or daemon could be viewed as an
agent. Services run continuously, reacts to the changes in the environment and pro-
cesses information without user intervention (autonomy).

Having agents doing specific and isolated functions increases security. By defini-
tion, agents do not know the entire system [7][22]. Such feature is very well tuned with
the concept that information should be disclosed on a need to know basis [8].

Using MAS concepts, we propose an architecture to implement system services or
client applications, particularly the ones that need to access sensitive information and,
as a result, require authentication and confidentiality. Our approach focuses on two
agent platforms running in two different processes. The insecure platform would be

I http://www.openssl.org

 2

exposed to the insecure network via TCP/IP sockets, while the secure platform would
run on another process with no direct interfaces.

2 Background

2.1 The Buffer Overflow Attack

Buffer overflows occur when more bytes are written into a memory area (buffer) than
the initially allocated size. If an attacker gains control of what is written into this
memory area, he can perpetrate buffer overflow attacks [9].

Services or daemons such as http open sockets and receive requests to be processed
and returned to the originating client. The goal of the Buffer Overflow Attack is to dis-
rupt the stack pointer (ESP) of the CPU [10]. By injecting code instead of a well formed
message, the service will pass the received message as a string to a function to be pro-
cessed. The memory space in which temporary data is stored is the stack. The stack
grows and shrinks dynamically during the process execution. If the received string is
greater the allocated size of the buffer, the stack grows in order to hold the amount of
data it received. The stack grows from higher memory addresses to lower memory ad-
dresses. If such grow reaches the memory area where the returning address to the
main program is held, when the functions terminates its processing it will return con-
trol to another address. In a successful attack, the process will execute the code injected
by the attacker [11].

Figure 1 - A Buffer Overflow Attack [II]

Buffer overflow attacks are the main cause for most of the cyber-attacks such as
server breaking in and malware insertions [12]. They are the responsible for the vast
majority, if not all, the worms [13] and the most commonly reported source of software
vulnerabilities [10].

Kundu and Bertino (2011) [9] and Strackx et al. (2009) [12] demonstrated how simple
coding can be so vulnerable to Buffer Overflow Attacks.

II Source: https://under-linux.org/content.php?r=5132

 3

Buffers can be allocated on the stack, the heap or in the data segment in C. For ar-
rays that are declared in a function body, the necessary space is reserved in the stack.
Buffers that are allocated dynamically are put on the heap, usually via the malloc func-
tion, while global or static arrays are allocated in the data segment. The array is ma-
nipulated by means of a pointer to the first byte. Bytes within the buffer can be ad-
dressed by adding the desired index to this base pointer [12].

Figure 2 - A simple C function vulnerable to the Buffer Overflow Attack

Form the code in Figure 2 we may observe that at run-time no information about
the array size is available. As a result, the compiler will generate a code that will allow
copies beyond the bounds of the array. Therefore, the generated code will write data to
the adjacent memory area, stopping only and a \0 character is found indicating a null
terminated string [12].

The only way to prevent Buffer Overflow Attacks is by adding security features on
C functions or the entire C language such as automatic memory management, strong
typing, and overflow checks [15]. However, such security features would also introduce
a significant overhead in the programs generated with the listed security features.

In order to mitigate Buffer Overflow Attacks and malware propagation, various
products and services are available but none are effective against poor programed
software like the Heartbleed bug[5].

2.1.1 Protecting Against Buffer Overflow Attacks

There are two main methods of detecting or preventing buffer overflow attacks,
whichever are either over network or on the host machine [11].

• Network Based Intrusion Detection and Prevention Systems (NIDS)

• Host Based Protection Mechanisms

NIDS are based on deep packet inspection. Both the header as well as the payload
of the packets are checked with predefined signatures to identify whether it contains
malicious data or not [14]. Several commercial products, for instance Symantec End-
point Protection[III], have incorporated NIDS as part as their anti-virus anti-malware
suite. However, as any anti-virus, it can only detect threats present in its knowledge
base, even if it uses heuristics to detect unknown threats. New developed attacks may
not be detected by the scanning mechanism.

The most widely used Host Based Protection Mechanisms are Data Execution Pre-
vention (DEP) and Address Space Randomization (ASLR) [15]. DEP prohibits memory
pages from being both writable and executable, thereby preventing an adversary from
injecting and directly executing code. ASLR randomizes code reuse where an attacker

III http://www.symantec.com/endpoint-protection/

 4

will try to use existing functions in the c-library of a system (return-to-libc), which are
known to be vulnerable, instead of injecting their own code, and, as a consequence,
circumvent DEP. Currently, ASLR implementations randomize the base (start) address
of segments such as the stack, heap, libraries, and the executable itself between con-
secutive runs of the application. The primary objective is to force attackers to guess the
location of the functions and instruction sequences needed to successfully launch a
code reuse attack. ASLR is known to be vulnerable to brute-force attacks [16] and to
memory disclosure attacks [17].

All of the authors referenced in this section agree that Buffer Overflow Attacks are
the result of poor constructed software, which employ unsafe string handling func-
tions or inadequate array bounds checking.

2.1.2 The Heartbleed Attack

The Heartbleed Attack is considered the most serious vulnerability revealed. Bruce
Schneier (2014) [5] considered the bug “catastrophic” and on the scale of 1 to 10,
Heartbleed is 11. More than half a million servers were affected, including Schneier’s
own web site.

The initial attack is the exact opposite of the Buffer Overflow Attack. Instead of
writing more bytes than the buffer could handle, the attacker would send a string of
ten bytes, for instance, but will pass 64K as the string length. Because the size of the
string and the reported string length were not programmatically checked and
matched (the core of the bug), the response was a 64K long string. The original 10
bytes plus all of the remaining bytes of the adjacent memory area.

The attack was designed to exploit the heartbeat extension of TLS. It is a keep-alive
feature in which one end of the connection sends a payload of arbitrary data to the
other end, which sends back an exact copy of that data to prove that the other end re-
ceived the original message and everything is fine [18].

The exploit was possible because there were no bounds check prior of a call to the
memcpy C function, which is vulnerable to Buffer Overflow Attacks.

“An attacker can trick OpenSSL into allocating a 64KB buffer, copy more bytes than
is necessary into the buffer, send that buffer back, and thus leak the contents of the vic-
tim's memory, 64KB at a time” [19].

The attacker can repeat the exploit numerous times, each time bringing different
memory portions of the Server. The server’s responses could include user credentials
(account names and passwords or passwords hashes), session keys and the Private
Key of the server’s digital certificate.

Against Heartbleed, none of the Buffer Overflow protections would work, simply
because the heartbeat message was a legitimate one, only with the message length pa-
rameter altered. Also, the message is sent encrypted with the session key, making it
more difficult for an IDS/IPS software to scan for malware.

 5

Figure 3 - The Heartbleed Attack [IV]

2.2 Multi-Agent Systems (MAS)

Multiagent systems (MAS) are societies in which autonomous entities (agents), hetero-
geneous and individually designed, work according to objectives that may be common
or different [20]. Agent technologies are well recognized as way of representing and
reasoning about complex real world problems in the field of information and commu-
nication technologies [21]. An agent is a process or a thread that runs continuously, re-
acts to changes in the environment and has autonomy to achieve its designed goals.
There are two main types of agents: Reactive Agents and Intelligent Agents [22].

2.2.1 Reactive Agents

Figure 4 - Reactive Agent

Reactive Agents are computer systems that are capable of autonomous action in some
environment in order to meet their design objectives. An agent will typically sense its
environment (by physical sensors in the case of agents situated in part of the real
world, or by software sensors in the case of software agents), and will have available a
repertoire of actions that can be executed to modify the environment, which may ap-
pear to respond non-deterministically to the execution of these actions [22].

IV http://regmedia.co.uk/2014/04/09/openssl_haertbleed_diagram.png

 6

2.2.2 Cognitive or Intelligent Agent

An intelligent agent is one that is capable of “flexible” autonomous action in order
to meet its design objectives[22], where flexibility means three things:

• Reactivity: intelligent agents are able to perceive their environment, and re-
spond in a timely fashion to changes that occur in it in order to satisfy their
design objectives

• Pro-activeness: intelligent agents are able to exhibit goal-directed behavior
by taking the initiative in order to satisfy their design objectives

• Social ability: intelligent agents are capable of interacting with other agents
(and possibly humans) in order to satisfy their design objectives.

One of the widely known architectures for designing and implementing cognitive
agents is the belief-desire-intention (BDI) architecture, following a model initially pro-
posed by Bratman [23], which consists of beliefs, desires and intentions as mental atti-
tudes that deliberate human action. Rao & Georgeff [24] adopted this model and trans-
formed it into in a formal theory and an execution model for BDI agents, serving as a
basis for the implementation of several BDI agent platforms. However, two limitations
of the BDI model are well known [25]: i) Its lack of learning competences; and ii) Its lack
of explicit multi-agent systems (MAS) aspects of behavior. The limitations of the BDI
model are the subject of what is now known as MAS learning [26] [27], roughly charac-
terized as the intersection of Machine Learning (ML) and MAS.

Although the agents in a MAS can be programmed with behaviors designed in ad-
vance, it is often necessary that they learn new behaviors, such that the performance of
the agent or of the whole MAS gradually improves [28],[26].

In order to be pro-active, an agent must have a learning module [29]. This module
saves its experiences in a Knowledge Base for future reference. For example: an agent
may decide to block an IP address if it deduces that such address is the source of an
attack. After some time, it may decide to unblock the previously blocked address.
However, if the address is believed to be the source of other attacks, the agent may de-
cide to block the address for a longer time and, possibly, to send a message to the IP
owner, reporting the attack and ask for verification and correction of the alleged mis-
used address.

Because of the social ability of intelligent agents, they express behaviors according
to their goals and their design strategies to achieve their goals. They may express co-
operative behavior, meaning they help other agents to achieve their goals or they may
express selfish behavior, meaning they do not cooperate with other agents.

In order to express social behavior, each agent should incorporate a learning mod-
ule to learn and explore the environment. In addition, due to interaction among the
agents in a multi-agent system, they should have some sort of communication between
them to behave as group [30]. The advantage of multi-agent learning is that the perfor-
mance of the agent or of the completely multi-agent system gradually improves [31].
For example, Russel and Norvig [43] have conceptually structured generic learning
agent architecture as depicted below.

 7

Figure 5 - Cognitive or Intelligent Agent

2.2.3 Trust and Reputation

Trust and reputation concepts are widely used in various fields of computer science,
such as evaluation systems, P2P networks, grid computing, game theory, e-commerce,
semantic web, software engineering, web services, and recommendation systems [32].
Trust is defined as subjective probability with which agents assess that other agents
will perform a particular action, while Reputation is defined as a subjective probability
with which agents assess that other agents will provide trustful testimonies [33].

Because agents have autonomy to achieve their design goals, they may even lie
(present false information) if it is in their interests to achieve their goals. By doing so,
they lose reputation. When an agent’s reputation level lowers bellow a certain point,
other agents will decide not to trust such an agent anymore.

Because the MAS definition of trust conflicts with the definition of trust in the secu-
rity domain, one must be very careful to adopt the concepts of Trust and Reputation
for agents when designing a system for the security domain.

In our proposal, we decided not to use agent Trust and Reputation concepts.

2.2.4 Developing Multi-Agents Systems

Since agents need to find other agents and establish communications with them,
standards have to be specified and followed. FIPA [V] provides the standards for build-
ing frameworks to be used for MAS development. FIPA specified an abstract architec-
ture, leaving implementation details and internal architectures to platform developers
[34].

Figure 6 - FIPA reference model of an agent platform

V The Foundation for Intelligent Physical Agents. http://www.fipa.org

 8

The Agent Management System (AMS) is a mandatory module that exerts supervi-
sory control over access to and use of the platform; it is responsible for maintaining a
directory of resident agents (white pages) and for handling their life cycle.

The Directory Facilitator (DF) is the optional module that passes on yellow page
services to the agent platform.

The Message Transport System (MTS) is another mandatory module, which pro-
vides communications between agents. An Agent communicate with other agents by
message exchange. The specifications also define the Agent Communication Language
(ACL) [34].

2.3 Cryptography Basics

The word Cryptography comes from the Greek words kryptós (hidden) and gráphein
(to write) [35]. Cryptography is used to protect sensitive or secret data in a way that un-
authorized people or computerized systems are unable to understand or make use of
the data. In Computer Science, Cryptography works in 3 steps [36]:

Encryption: the process to cipher the original message. The message could be plain
text, an image, a stream of bits, voice data or any form binary data. The Ciphered mes-
sage C is obtained by applying the function E on the original message M.

C = E(M)

• Transmission of the ciphered message

• Decryption: the process to decipher the ciphered message back to the original

message. The original message M is obtaining by applying the function D on
the ciphered message C

M = D(C)

Figure 7 - Encryption and decryption

Cryptography performs major roles in information security. It helps to enforce Con-
fidentiality, Integrity, Authenticity and Non-Repudiation.

The Mechanics of Cryptography involves a sender (Alice), a receiver (Bob) and
sometimes a trusted third party (Trent) [37]. There are cryptographic algorithms that
involve more parties.

 9

2.3.1 Algorithms and Keys

Since Encryption and Decryption are functions, they are based on an algorithm. If the
security is based on the algorithm, then the algorithm must be kept secret at all costs. If
it leaks, everybody that uses the algorithm needs to change it. The solution to this
problem is the use of public but strong cryptographic algorithms that use one or more
keys to encrypt and decrypt messages. If the keys are compromised, the parties in-
volved just need to change the keys, maintaining the algorithm. When an algorithm
uses keys, the encryption and decryption functions are expressed C=EK(M) and
M=DK(C), respectively, such that DK(EK(M))=M holds [38]. Security is based in the size
and complexity of the key (the longer and the more complex the better) and the com-
plexity of the algorithm (usually, the more complex the better). Complexity of the algo-
rithm increases the difficulty to write another algorithm capable of decrypting the ci-
phered message or capable of deducing the encryption key. Complexity of the key in-
creases the difficulty to guess the key in a brute force attack.

2.3.2 Symmetric Algorithms

Algorithms that use the same key to encrypt and decrypt messages are called sym-
metric algorithms. Alice and Bob must agree on a single encryption and decryption
key which would be used by both [39].

The problem with symmetric algorithms is how Alice and Bob negotiate a session
key (a symmetric key used in one communications session) in an insecure channel. Un-
less they agree to meet in person and negotiate the key, there is always the possibility
that an eavesdropper listens to the key negotiation and renders the encryption process
useless. On the other hand, an active attacker can do much worst. An active attacker
can negotiate a session key with Alice and another with Bob. Then, he can decrypt Al-
ice’s message, forge another message and send it to Bob. Bob thinks he received an au-
thentic message from Alice and Alice doesn’t know Bob received a false message.

Figure 8 - Symmetric encryption and decryption

2.3.3 Asymmetric Algorithms

Algorithms that use different encryption and decryption keys such that even in pos-
session of one of the keys one cannot calculate the second in a reasonable amount of
time are called asymmetric algorithms. One of the keys is the Public Key that can be
widely distributed. The other key is the Private Key known only by its owner. Messag-
es encrypted with the Public Key can only be decrypted by the Private Key.

The most widely used asymmetric algorithms are the RSA, El-Gamal and Elliptic
Curves [40].

 10

Figure 9 - Asymmetric Algorithms

2.3.4 Digital Signatures

A digital signature is an algorithm designed to validate the authenticity of a digital
message. A valid digital signature gives the recipient reason to believe the message the
have not been modified while in transit, enforcing Integrity. If the digital signature is
bound to an unique person or organization the recipient has reason to believe the mes-
sage was created by a known sender, such that the sender cannot deny having sent the
message, enforcing both non-repudiation and authentication. One way hash algo-
rithms is a good way to provide integrity. If Alice sends a message to Bob with a SHA-
128 hash[41] attached to the message and the message is tampered while in transit Bob
will calculate the SHA-128 hash of the received message and it will not match the
SHA-128 hash supplied by Alice. However, a one-way hash algorithm does not en-
force non-repudiation or authentication.

Alice enforces authenticity by generating a hash of the message and encryption of
the hash with her Private Key, digitally signing the message. Alice provides authenti-
cation and non-repudiation, because the digital signature can only be verified by Bob
with Alice’s Public Key and a new hash computed of the received message. If the veri-
fication process fails, either the message lost integrity during transmission or it was
tampered by an attacker. However, if the verification processes succeeds, the message
is authentic and non-repudiation may be assured [42].

Figure 10 - Digital Signature generation

Figure 11 - Digital Signature verification

 11

3 The Proposed Solution

We propose an architecture composed of two FIPA compliant agent platforms. The
agent platform exposed to the insecure network is the Insecure Platform. The agent
platform not exposed to the insecure network is the Secure Platform.

Each agent platform must run in an independent process. Inter-process Communi-
cations (IPC) between the platforms must be done using either named pipes or mes-
sage queue. Message queue should be the preferred method because it increases mod-
ularity, scalability and, most importantly, security [43].

Figure 12 - The Proposed Architecture

3.1 The Insecure Platform

The insecure platform handles all network traffic, transfers most cryptographic opera-
tions to the secure platform and must run in a separate process and memory space.

In order to mitigate any damage caused by attacks, the insecure platform must not
store session keys, private keys or user credentials.

Even though most services or daemons run on root or system accounts, the process
in which the insecure platform runs should not be executed with such high privileges.

The Directory Facilitator exists to help interaction among other agents, such as
agents performing the role of plugins.

3.1.1 The Interface Agent (IA)

The IA is an intelligent agent responsible for providing a transparent security layer for
a service running in a server or a client application.

The IA should have the autonomy to discard non protocol compliant requests and
block IP addresses that the IA interprets as sources of attacks for short or long periods
at its discretion. For instance, the more an IP address is used to attack the system, the

 12

longer it will be blocked. As a result, the Interface Agent will play the role of a NIDS
(2.1.1 .

The IA should have a Knowledge Base to log attacks attempts and use those attacks
as a reference for learning and for identification of future attacks.

The IA is the only point where services or applications can initiate communications
and exchange information with the authentication system.

The IA does not have access to private keys, the session keys, or user credentials.
Hence, a successful attack at the insecure platform and a dump of the entire memory
of the process to a remote attacker would not reveal any sensitive information.

The IA will route encrypted data as well as unencrypted service requests to the
Crypto Agent in the secure platform, after it is satisfied that the request is not an at-
tempt to attack the system.

The IA may handle digital signature verifications, which only require the use of the
Public Key of a digital certificate. Likewise, the IA handles certificate chains valida-
tions.

More than one Interface Agent may exist in the insecure platform, in order to han-
dle large amounts of service requests. Nevertheless, they express selfish behavior.
They are not to cooperate with any other Interface Agent, although they are required
to honor other agents requests (agents performing the role of plugins), if they are not
busy, and treat those requests as if they were requests from outside the platform.

The roles performed by the IA agents make the entire system more resilient to De-
nial of Service Attacks, since they have the autonomy to discard packets arriving from
addresses they believe to be harmful packets to the system.

3.2 The Secure Platform

The secure platform handles the session keys, private keys, user credentials and is re-
sponsible to execute service requests. If necessary, it may run under a root or system
account. It must also run as an independent process.

No foreign or visiting agents may exist in the secure platform. As a result, the Direc-
tory Facilitator module is not required.

3.2.1 The Private Key Operations Agent (POA)

The POA is a reactive agent whose only design goal is to respond to the Crypto Agent
messages. It only performs the following specific functions with the Private Key:

• Asymmetric decryption with the Private Key

• Signing with the Private Key (digital signature generation)

• Generation of the Public and Private Key pair, when required by an applica-
tion

The POA must have the autonomy to decide whether or not to honor requests. For ex-
ample: if it receives a hash to sign with the Private Key, but the received hash is com-
posed of a string filled with spaces, it should not honor the request and return an error
message. Likewise, if it understands the message to use the Private Key is for crypta-

 13

nalysis purposes or Private Key guessing, it should not return a digital signature but
an error message instead.

In order to enhance security, the POA thread must be the only one with the Private
Key stored in memory.

The purpose of a specific agent to deal with the Private Key is to diminish the pos-
sibility of Private Key theft or misuse. Also, the mathematical operations done with an
asymmetric Private Key are at least one hundred times slower than an operation done
with symmetric keys[44]. Having a dedicated agent to deal with Private Key opera-
tions, frees the Crypto Agent to perform other duties.

3.2.2 The Crypto Agent

The Crypto Agent is a reactive agent, who manages communications between the
Interface Agents and the Service Provider Agents, even if the request comes unen-
crypted. There is not direct communications between an Interface Agent and a Service
Provider Agent.

The Crypto Agent handles all symmetric session keys. If a session key has not been
established yet, and a creation of a session key is necessary, the Crypto Agent will
forward the request to the POA. The message returned by the POA will be the either
the session key itself or part of the session key.

If the request comes after a secure session has been established, the Crypto Agent
will decrypt the request, using the proper session key and authenticate the requester if
required by the application. After the successful authentication, the Crypto Agent will
forward the request to be processed by a Service Provider Agent. The returned results
will be encrypted with the session key and returned to the IA, which will then forward
the results to the client application.

The Crypto Agent also has the role of a dispatch center. It has a directory with the
current status of each Service Provider Agent. It assigns requests to the first available
Service Provider Agent. If all Service Provider Agents are busy, it may queue pending
requests or return a too busy message to the IA. Developers are free to specify how
many Service Provider Agents their solution will have and how their applications will
deal with exhausted resources.

3.2.3 The Service Provider Agent (SPA)

The Service Provider Agent is a reactive agent responsible to process the requests and
return the results to the Crypto Agent. As soon as it receives the request, it will send a
message to the Crypto Agent, informing its status changed from “READY” to “BUSY”.

The SPA will use the authenticated user account or a specific visitors account to
process to request. Is the access is denied, because the account does not have the neces-
sary privileges, the SPA will inform the Crypto Agent that the user has insufficient
privileges and that its status is now “READY”, meaning it is available to process other
requests.

If the user is authorized, the SPA will process the request the way it was designed
to do. When the request is processed, the SPA will return the results to the Crypto
Agent and inform the Crypto Agent that its status is now “READY”.

 14

4 Implementation

To demonstrate the feasibility of the proposed architecture, we implemented a proto-
type with two processes: the first emulates the Interface Agent of the insecure plat-
form. The second emulates part of the Crypto Agent and Private Key Operations
Agent of the secure platform. Each platform was modeled as an independent executa-
ble. The prototype was implemented with Microsoft Visual FoxPro 9.0 SP2. Communi-
cations between platforms is achieved by named pipes[45]. RSA[46] Asymmetric cryp-
tographic functions are provided by Chilkat[VI] commercial libraries. The FoxPro lan-
guage has the DISPLAY MEMORY [TO FILE] command, which dumps every variable,
array and object defined into a text file. This mimics the Heartbleed Attack or a Buffer
Overflow Attack that executes a memory dump into a remote location. An edit box
and three command buttons emulates requests handled by the Interface Agent, while
decryption with the Private Key, digital signature and key pair generation emulates
the Private Key Operations Agent.

The secure platform do not allow short strings to be decrypted with the Private Key
or a digital signature of a hash containing a single character duplicated several times to
be digitally signed.

Figure 13 - Digital Signature and Asymmetric Decryption

Figure 13 displays two operations: first the digital signature of the emulated hash
010203040506070809AABBCCDDEEFAFB and, second, an asymmetric decryption op-
eration. The plain text “The quick brown fox jumps over the lazy dog” was encrypted
with the Public Key before it was sent to the secure platform for decryption.

By clicking in the “Simulate HeartBleed Attack” button, we invoke a method which
executes the command DISPLAY MEMORY TO FILE memorydump.txt and a instanti-

VI http://www.chilkat.com

 15

ates a form object that opens the generated file, emulating a remote view of the defined
variables of the insecure platform.

Figure 14 - Memory Dump Remotely Visualized

Even dumping the entire memory from the insecure platform, the Private Key was
not revealed. Only the Public Key (PUK) was shown.

5 Related Work

Torrellas and Sheremetov (2003) [47], proposed an architecture for agent security and
authentication. In their proposal, they used a CryptoAgent, responsible for encryption
and decryption operations. They argued that the advantage of such modular design
was that other components (even mobile agents) could use the functionality offered by
CryptoAgent and that the platform could be made unaware of any additions or chang-
es to cryptographic functions offered by this agent. Our proposal also takes in consid-
eration the transparency of cryptographic methods offered by the Private Key Opera-
tions Agent, but our primary concern is the protection of sensitive data, particularly
the Private Key, from other unauthorized agents or programs.

Likewise, Shakshuki et al. (2004) [48] proposed a Multi-Agent System to act as a
middleware between users and the network. The middleware was specified to provide
authentication, local and foreign authorization and service providing, where agents
would be allocated to process the users’ requests.

Shi et al. (2006) [49] proposed InfoShield: a security architecture designed to protect
in memory information usage. InfoShield was designed to ensure that sensitive data
are used only as needed by application semantics, therefore preventing misuse of in-
formation, by embedding specialized verification and tracking instructions inside the
applications.

Lee at al. (2016) [50] proposed a two phases solution for computing environments for
IoT (Internet of Things) services. The solution contains a secure compiler to identify
and prevent weaknesses in the input program source code in C/C++, while the Secure
Virtual Machine, monitors and handle Buffer Overflow Attacks and Exception Han-
dlers.

6 Conclusions and Future Works

In this paper, we proposed an architecture capable of mitigating Buffer Overflow At-
tacks using Multi-Agent Systems concepts. We showed that, even if the insecure plat-

 16

form is successfully exploited, sensitive data such as user credentials, session keys and,
most importantly, the Private Key are not revealed. Because agents do not have a full
perspective of the entire system, they are a very good approach to build applications
and services in which security is paramount, since, from the security point of view,
information is disclosed on a need to know basis. Agents also improve the resilience of
the architecture to Denial of Service Attacks since agents can be dynamically created as
needed or terminated by the Agent Management System, if they are not fulfilling their
roles correctly. Also the Interface Agents are intelligent and capable of detecting at-
tacks and block the originating addresses.

It would also be very difficult for an attacker to inject code while preserving the Agent
Communications Language. Any ACL incompliant message would be immediately
discarded by the Message Transport System, and the originating agent penalized. If an
exploited agent insists on sending incompliant ACL messages it will eventually be
terminated by the Agent Management System.

In the future, we hope to use this platform to model and implement authentication
services and protocols.

A separate study must be done in order to assess performance issues, since it is likely
the proposed architecture would run slower than a single service or daemon.

References

[1] IETF. RFC5246. The Transport Layer Security (TLS) Protocol version 1.2
Accessed on: 12/10/2013
Available at: http://tools.ietf.org/html/rfc5246

[2] Das, M. L., & Samdaria, N. (2014). On the security of SSL/TLS-enabled applications. Ap-
plied Computing and Informatics, 10(1-2), 68–81. http://doi.org/10.1016/j.aci.2014.02.001

[3] Xiao, P. et al. (2014). An access authentication protocol for trusted handoff in wireless
mesh networks. Computer Standards and Interfaces, 36(3), 480–488.
http://doi.org/10.1016/j.csi.2013.08.016

[4] Hsu, F; Guo, F; Chiueh, T. Scalable Network-based Buffer Overflow Attack Detection
Accessed on: 12/01/2014
Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4579534

[5] Heartbleed
SCHNEIER, Bruce. Heratbleed
Accessed on: 04/10/2014
Available at: https://www.schneier.com/blog/archives/2014/04/heartbleed.html

[6] Mansfield-Devine, S. (2014). Hacking on an industrial scale, Network Security, Volume 2014,
Issue 9, September 2014, Pages 12-16, ISSN 1353-4858, http://dx.doi.org/10.1016/S1353-
4858(14)70092-3.

[7] WOOLDRIDGE, M. An Introduction do Multiagents Systems. John Wiley & Sons, LTD.
2002 pp-15-17

[8] SINGH, J et al. (2011). Disclosure control in multi-domain publish/subscribe systems
Accessed on 12/02/2014

 17

Available at:
http://dl.acm.org/ft_gateway.cfm?id=2002283&ftid=993809&coll=DL&dl=ACM&CFID=60475
0411&CFTOKEN=20268464

[9] Ashish KUNDU, A; BERTINO, E. (2011). A New Class of Buffer Overflow Attacks
Accessed on: 05/28/2015
Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=05961725

[10] FOSTER, J et al. (2005). Buffer Overflow Attacks: Detect, Exploit, Prevent
Syngress Publishing, Inc

[11] DAY, D at. Al. (2010). Detecting Return-to-libc Buffer Overflow Attacks Using Network
Intrusion Detection Systems Fourth International Conference on Digital Society
Accessed on: 05/28/2015
Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=05432802

[12] STRACKX, R et al. (2009). Breaking the memory secrecy assumption
Accessed on: 05/28/2015
Available at: http://dl.acm.org/ft_gateway.cfm?id=1519145

[13] LIANG ,Z; SEKAR, A. (2005) Fast and automated generation of attack signatures a
basis for building self-protecting servers. ACM/IEEE, 2005. Proceedings of the 12th ACM confer-
ence on Computer and communications security. pp. 213-222.

[14] RATHOD, P et al. (2014) A survey on Finite Automata Based Pattern Matching Tech-
niques for Network Intrusion Detection System (NIDS)
Accesed on: 06/17/2015
Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7002456

[15] SADEGHI, A et al. (2015) Securing Legacy Software against Real-World Code-Reuse Ex-
ploits: Utopia, Alchemy, or Possible Future?
Accessed on: 06/16/2015
Available at: http://dl.acm.org/ft_gateway.cfm?id=2737090

[16] SHACHAM, H et al. (2004) On the effectiveness of address-space randomization
Accessed on: 06/17/2015
Available at: http://dl.acm.org/ft_gateway.cfm?id=1030124

[17] SERBA, F. (2012) The info leak era on software exploitation
Accessed on: 06/17/2015
Available at: https://media.blackhat.com/bh-us-
12/Briefings/Serna/BH_US_12_Serna_Leak_Era_Slides.pdf

[18] IETF. RFC6520. Transport Layer Security (TLS) and Datagram Transport Layer Security
(DTLS) Heartbeat Extension
Accessed on: 06/01/2014
Available at: http://tools.ietf.org/html/rfc6520

[19] WILLIAMS, C. (2014). Anatomy of OpenSSL's Heartbleed: Just four bytes trigger horror
bug
Accessed on 06/01/2014
Available at: http://www.theregister.co.uk/2014/04/09/heartbleed_explained/

[20] López, Fabiola López; Social Power and Norms. PhD. Dissertation University of Southamp-
ton, 2003.
Accessed on : 05/26/2016

 18

Available at: http://www.cs.buap.mx/~fabiola/phdthesis.pdf

[21] Luck, M, et. al.; Agent technology roadmap: Overview and consultation report, 2005
Accessed on : 05/26/2016
Available at: http://www.agentlink.org/roadmap/roadmapreport.pdf

[22] Gerhard Weiss. Multiagent Systems: a modern approach to distributed artificial intelli-
gence. Massachusetts Institute of Technology, 2001. 619p

[23] Bratman, M.E; Intention, Plans, and Practical Reason. Harvard University Press, Cam-
bridge, MA (1987)

[24] Rao, A.S., Georgeff, M.P; BDI-agents: from theory to practice. In: Proceedings of the First
Intl. Conference on Multiagent Systems. San Francisco (1995)

[25] Georgeff, M.P. et.al.; The Belief-Desire-Intention Model of Agency. In: Müller, J., Singh
M.P., and Rao, A.S. (eds.): Proceedings of the 5th International Workshop on Intelligent Agents
V : Agent Theories, Architectures, and Languages (ATAL- 98). Lecture Notes in Artificial Intel-
ligence, Vol. 1555, pages 1–10. Springer Verlag, Hedelgerg, Germany (1999)

[26] Sen, S., Weiss, G; “Learning in multiagent systems” in Multiagent Systems: A Modern Ap-
proach to Distributed Artificial Intelligence, G. Weiss, Ed. Cambridge, MA: MIT Press, 1999, ch.
6, pp. 259–298.

[27] Weiss, G., Sen, S; Adaptation and Learning in Multiagent Systems. Lecture Notes in Artifi-
cial Intelligence, Vol. 1042. Springer-Verlag, Berlin Heidelberg New York (1996)

[28] Stone, P., Veloso, M; Multiagent Systems: A Survey from a Machine Learning Perspective.
Autonomous Robotics, 8(3):345-383 (2000)

[29] Khalil, K. M., et al. "MLIMAS: A Framework for Machine Learning in Interactive Multi-
Agent Systems" Procedia Computer Science 65 (2015): 827-835.

[30] Martinez-Gil, F, et. al. ; Emergent Collective Behaviors in a Multi-agent Reinforcement
Learning Pedestrian Simulation: A Case Study. In Proceedings of Workshop on Multi-Agent
Systems and Agent-Based Simulation (2014), 228-238

[31] Russell S., Norvig, P; Artificial Intelligence: A modern Approach, 2nd Ed. (2003) New Jer-
sey: Prentice Hall

[32] Artz, D; Gil, Y; A survey of trust in computer science and the Semantic Web. Journal of
Web Semantics: Science, Services and Agents on the World Wide Web (2007)

[33] Silva, V et al. (2007). Governing Multi-Agent Systems
Accessed on : 12/01/2014
Available at: http://link.springer.com/content/pdf/10.1007%2FBF03192407.pdf

[34] The Foundation for Intelligent Physical Agents. FIPA ACL Message Structure Specification
Accessed on: 11/28/2014
Available at: http://www.fipa.org/specs/fipa00061/SC00061G.pdf

[35] ASKDEFINE. Etymology of the word cryptography
Accessed on 06/18/2013.
Available at http://cryptography.askdefine.com/

 19

[36] RUSSEL, Deborah; GANGEMI, G. T. Sr. Computer Security Basics. O’Reilly & Associates,
1991. p. 169-171

[37] SCHNEIER, Bruce. Applied Cryptography 2nd edition. John Wiley & Sons, 1996. p. 33

[38] SCHNEIER, Bruce. Applied Cryptography 2nd edition. John Wiley & Sons, 1996. p. 15-16

[39] STALLINGS, William. Cryptography and Network Security Principles and Practice Fifth
Edition. New York: Prentice-Hall, 2011. p. 33-35

[40] DAHAB, R.; LÓPEZ-HERNÁNDEZ, J.C; Técnicas criptográficas modernas: algoritmos e
protocolos. Instituto de Computação – UNICAMP 2007 p.32-37

[41] National Institute of Standards and Technology (NIST). (2012). Secure Hash Standard (SHS)
(FIPS PUB 180-4).
Accessed on: 07/04/2014
Available at: http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

[42] SUBRAMANYA, S.R.; YI Byung K. (2006) Digital signatures. IEEE March/April 2006
Accessed on 11/06/2013
Available at
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=1649003&queryText%3DS.R.+
SUBRAMANYA+AND+BYUNG+K.+YI

[43] PARK, B-K et al. (2013). XpeedQ: A Reliable and Efficient Application Level Message
Queue
Accessed on: 06/18/2015
Available at: http://dl.acm.org/ft_gateway.cfm?id=2513276

[44] ROSEMBERG, M.R. (2014). SRAP - A new Authentication Protocol for Semantic Web Ap-
plications. MsC. Thesis. 2014. Pontifícia Universidade Católica do Rio de Janeiro, Dep. of In-
formatics, Rio de Janeiro. 72p Retrieved from
http://www.dbd.puc-rio.br/pergamum/tesesabertas/1221733_2014_completo.pdf

[45] MSDN. Pipe Reference.
Accessed on 11/12/14
Available at:
http://msdn.microsoft.com/en-us/library/windows/desktop/aa365784%28v=vs.85%29.aspx

[46] Patidar, R; Bhartiya, R. (2013). Modified RSA Cryptosystem Based on Offline Storage and
Prime Number
Accessed on: 06/23/2015
Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6724176

[47] TORRELLAS, G; SHEREMETOV, L. (2003). An Authentication Protocol for Agent Platform
Security Manager.
Accessed on: 09/11/14
Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1247764

[48] SHAKSHUKI, E et al. (2004). Multi-agent System for Security Service.
Accessed on: 09/11/14
Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1283928

[49] SHI, W et al. (2006). InfoShield: A Security Architecture for Protecting Information Usage
in Memory.

 20

Accessed on: 05/28/2015
Available at: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=01598131

[50] Lee, Y. et al. (2016). Design and implementation of the secure compiler and virtual ma-
chine for developing secure IoT services. Future Generation Computer Systems.
http://doi.org/10.1016/j.future.2016.03.014

