
PUC	

ISSN 0103-9741

Monografias em Ciência da Computação
n° 04/2016

A Publish-Subscribe based approach for
Testing Multi-Agent Systems

Nathalia Moraes do Nascimento

Carlos Juliano Moura Viana
Arndt von Staa

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 04/2016 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Dezembro, 2016

A Publish-Subscribe based approach for

Testing Multi-Agent Systems

Nathalia Moraes do Nascimento, Carlos Juliano Moura Viana,
Arndt von Staa, Carlos José Pereira de Lucena

nnascimento@inf.puc-rio.br, cviana@inf.puc-rio.br,
arndt@inf.puc-rio.br, lucena@inf.puc-rio.br

Abstract. Multi-agent systems (MASs) have been applied to several application domains,
such as e-commerce, unmanned vehicles, and many others. In addition, a set of different
techniques has been integrated into multi-agent applications. However, few of these ap-
plications have been commercially deployed and few of these techniques have been fully
exploited by industrial applications. One reason is the lack of procedures guaranteeing
that multi-agent systems would behave as desired. Most of the existing test approaches
only test agents as single individuals and do not provide ways of inspecting the behavior
of an agent as part of a group, and the behavior of the whole group of agents. Accord-
ingly, we modeled and developed a publish-subscribe-based architecture to facilitate the
implementation of systems to test MASs at the agent and group levels. To illustrate and
evaluate the use of the proposed architecture, we developed an MAS-based application
and performed functional and performance ad-hoc tests.

Keywords: integration test, group test, agent test, system test, multi-agent system, test
architecture, publish-subscribe, RabbitMQ

Resumo. Sistemas Multiagentes (SMAs) vêm sendo utilizados em diferentes domı́nios, a
exemplo de comércio eletrônico e véıculo não tripulado. Além disso, diferentes técnicas vêm
sendo integradas à aplicações multiagentes. Entretanto, poucas dessas aplicações foram
comercialmente implantadas e poucas técnicas foram, de fato, exploradas por aplicações
industriais. Um dos motivos é a falta de processos que possam garantir que sistemas mul-
tiagentes funcionem de acordo com o esperado. A maioria das abordagens existentes para
testes apenas testam agentes como indiv́ıduos independentes, e não provêem formas de
inspecionar o comportamento de um agente como parte de um grupo ou o comportamento
de todo o sistema multiagente. Dentro deste cenário, este trabalho propõe o uso de uma
arquitetura baseada na tecnologia publish-subscribe para facilitar o desenvolvimento de
sistemas que permitam testar não só indiv́ıduos, como também, grupos de agentes. Com
o intuito de ilustrar e avaliar o uso da arquitetura proposta para testar SMAs, foram
realizados testes funcionais e de desempenho em uma aplicação multiagente.

Palavras-chave: teste de integração, teste de grupo, teste de agente, teste de sistema,
sistema multiagente, arquitetura de teste, publish-subscribe, RabbitMQ

Responsável por publicações:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

Contents

1 Introduction 1

2 TEST APPROACH: METHODS AND BACKGROUND 2
2.1 Failure Diagnosis with Logs Containing

Meta-Information Annotations . 2
2.2 RabbitMQ: Publish-Subscribe Platform . 3

3 APPLICATION SCENARIO 3
3.1 Sellers and Clients . 4

3.1.1 Sequence Diagrams . 5

4 TEST APPROACH: THE SOLUTION ARCHITECTURE 6

5 TESTS AND RESULTS 9
5.1 Agent and Integration Tests . 9

5.1.1 Test Results . 13
5.2 System Testings . 13

6 Conclusions and Open Challenges 15
6.1 Testing Non-Deterministic Applications . 15
6.2 Automated Testing Systems . 15
6.3 Predictive Analysis . 16
6.4 Deploying Agents in a Distributed Environment 16

iii

1 Introduction

Multi-agent systems have been applied to a wide range of application types, including
e-commerce, human-computer interfaces, network control, air traffic control and diagnosis
[27] [36]. However, few of them have been commercially deployed [36]. According to
Pěchouček and Mař́ık [36], one reason is the lack of procedures guaranteeing that the
distributed systems would behave as desired. In addition, agent-based systems involve
different characteristics, such as autonomy, asynchronous and social features, which makes
these systems more difficult to understand. Thus, more elaborate methods of verification
and testing of multi-agent operations should be provided [36].

Testing is the activity of evaluating software by observing its execution [2]. To perform
this activity, it is necessary to create a test set, which is a set of test cases. For each test
case, the tester specifies specific conditions to execute a system or component. Thus, he
must raise the input values that are necessary to execute this system under test and the
expected result. After executing a test case, the tester will evaluate the system, taking note
of the observed or recorded results and compare them against specifications or expected
results [29].

According to Nguyen et al. (2009) [32] and Moreno et al. (2009) [28], a full testing
process of a multi-agent system consists of five levels: unit, agent, integration (or group),
system (or society) and acceptance. In this paper, our goal is to address three of these
testing levels: agent, integration and system. Agent test tests the capability of a specific
agent to fulfill its goal and to sense and affect the environment. Integration test tests the
interaction of agents and the interaction of agents with the environment, ensuring that
a group of agents and environmental resources work correctly together [32] [22]. System
test tests the quality properties that the intended system must reach, such as performance
[32].

In the last years, several approaches have been proposed to test multi-agent systems
at the unit and single agent levels [30] [7] [9] [35] [11] [31] [25] [1] [10] [26]. Otherwise,
there are very few studies that address the issue of testing a MAS at group [30] [5] [18] [33]
[37] [40] [20] and/or system levels [34]. In addition, to perform group tests, all approaches
have focused on capturing and visualizing messages exchanged among agents. They do
not provide ways of also tracking the behaviors of two or more agents in the same view
and finding a correlation between their behaviors. For example, Serrano et al. (2012)
[40], which is one of the most recent papers published about testing MASs at the group
level, uses ACLAnalyser [5], a tool for debugging MAS through the analysis of ACL [15]
messages. Thus, by using these current test approaches, if an agent exhibits unexpected
behavior (failure), a developer has to inspect this failed agent or messages exchanged
between agents to find the fault that caused that failure. However, if an agent fails, its
failure may be related to a previous and an unexpected behavior of another agent in the
environment.

In the general context of distributed systems, Araújo and Staa (2014) [12] also faced
the problem of testing a group of asynchronous components. They realized that most
approaches to detect error and diagnose a failure in distributed systems rely on distributed
log files over various machines, which makes the comprehension of the interaction among
the machines more difficult. Thus, Araújo and Staa (2014) [12] proposed the use of a
central architecture to receive, store and inspect timestamp-based logs from distributed
machines, enabling a developer to further diagnose failures in a single machine and in

1

the whole system during the software development cycle. However, the authors discuss
some limitations in their approach, such as the query response time that grows as the
database size grows, which impacts the inspection interface usage, and the use of an
inefficient solution for creating discarding rules. Therefore, it is necessary to improve their
architecture by integrating it with techniques to automatically classify the logs and discard
the irrelevant ones.

In this paper, we present an architecture that was implemented1 to make feasible the
implementation of agent, integration and system test activities within the MAS software
development process. Our approach is based on the architecture to test distributed systems
proposed by Araújo and Staa [12]. Nonetheless, MASs involve some characteristics that
are not addressed by non-agent-based systems, such as autonomy and social behaviors.
Thus, our goal is to adapt the architecture proposed by Araújo and Staa [12] to create
one for testing MASs. In addition, our architecture makes use of a publish-subscribe [19]
technology in order to solve the problems of data volume and discarding rules described
by Araújo and Staa [12]. Through a publish-subscribe based approach, it is also possible
to develop decoupled and different tests that select logs that are useful for their purposes
and ignore the irrelevant ones.

To illustrate and evaluate the use of the proposed architecture for testing MASs, we
developed and tested a simple MAS-based application2. This experiment is presented
in section 3. The remainder of this paper is organized as follows. Section 2 presents
the background. Section 4 introduces the test architecture. Section 5 evaluates the test
architecture, presenting the experimental results and evaluation. The paper ends with
conclusive remarks in Section 6.

2 TEST APPROACH: METHODS AND BACKGROUND

As we discussed before, our goal is to adapt the architecture proposed by Araújo and Staa
[12] to create one for testing MASs at different levels. To solve the problems of data volume
and discarding rules presented in their architecture, we decided to use a publish-subscribe
technology, instead of a database technology. Thus, subsection 2.2 presents RabbitMQ,
which is a messaging broker.

As shown in subsection 2.1, Araújo and Staa [12] represent logs as tags that are key-
value pairs. According to these authors, the most difficult step to use their test approach
is how to identify the set of properties that must be represented as tags. Therefore, we
decided to provide UML design artifacts in section 3 to derive test properties [6] and create
tags. As multi-agent systems perform asynchronous behaviors, we used sequence diagrams
to provide an overview of agents’ interactions and behaviors.

2.1 Failure Diagnosis with Logs Containing
Meta-Information Annotations

Araújo and Staa [12] investigated common approaches for testing distributed systems.
According to these authors, there are several approaches that perform diagnosis based on

1The source of the test system is available at
https://nathyecomp@bitbucket.org/nathyecomp/testingmasapps.git

2The source of the MAS application system is available at
https://nathyecomp@bitbucket.org/nathyecomp/masapplications.git

2

log collection. Nonetheless, they have some limitations, such as the need of (i) organizing
logs in a centralized architecture and in an adequate time order, (ii) providing visualization
tools to assist manual inspection, and (iii) increasing the log details in order to enable
the tool to also diagnose the application’s logic. Therefore, they presented a diagnosing
mechanism based on logs of events annotated with contextual information, allowing a
specialized visualization tool to filter them according to the maintainer’s needs.

In their approach, each logged event records a set of properties, represented as tags. A
tag is a key-value pair where the value is optional. Every event must contain a basic set
of tags which are: 1) timestamp: used to sort all events into a single timeline; 2)message:
a description of the event; 3)request id : used to identify the type of event; 4) device: used
to identify the device that originated the event; 5) module: the module that triggered the
notification; and 6)line: the line of code where the notification command was inserted.

2.2 RabbitMQ: Publish-Subscribe Platform

RabbitMQ [38] is an intermediary for messaging, which generates asynchronous, decou-
pling applications by separating sending and receiving data through a client and scalable
server architecture. It can be easily integrated into an application to operate as a common
platform to send and receive messages, maintaining messages in a safe place to live until
received. RabbitMQ is a multi-platform that may be deployed in Java, C, Python, and
many other programming languages. It can also be deployed in a cloud infrastructure.

By using RabbitMQ, it is possible to build a logging system based on publish-subscribe
architecture. The publisher is able to distribute log messages to many receivers, while the
consumers have the possibility of selectively receiving the logs. Publisher and consumers
communicate through queues. Each queue has a particular routing key that is a list of
words, delimited by dots. There can be as many words in the routing key as you like,
up to the limit of 255 bytes. These words can be anything, but usually they specify
some features connected to the message. If the developer specify that a log message
must meet the pattern “(month).(day).(deviceId).(typeLog)”, valid routing keys would be
“november.11.device01.error” and “november. 15.device01.info” [38].

Therefore, a message sent with a particular routing key will be delivered to all the
queues that are bound with a matching binding key. However there are two important
special cases for binding keys [38]:

* (star) can substitute for exactly one word.
(hash) can substitute for zero or more words.
By using queues, the publisher generates a set of information without the need of

knowing which applications will consume them. In addition, more than one application
can consume the same data, but giving them different treatments. To understand more
about the characteristics of RabbitMQ that we used in our approach, see https://www.

rabbitmq.com/tutorials/tutorial-five-java.html (Accessed in 11/2016).

3 APPLICATION SCENARIO

In order to evaluate our proposed approach to test multi-agent systems, we developed a
simple multi-agent application. This application is based on a scenario commonly used in
the MAS literature [8] [39] [3] - a simple marketplace to buy and sell books on-line. We

3

https://www.rabbitmq.com/tutorials/tutorial-five-java.html
https://www.rabbitmq.com/tutorials/tutorial-five-java.html

believe this experiment will assist one to understand our approach and facilitate further
comparisons and analysis. We developed this application by using the JAVA Agent Devel-
opment Framework (JADE) that is a Java software framework implemented to facilitate
the development of multi-agent systems [42]. According to Pěchouček and Mař́ık [36],
JADE is a leading open-source agent development environment on the market and some
of the existing MAS applications and prototype systems use it. In addition, JADE imple-
ments the Foundation for Intelligent Physical Agents (FIPA) specifications that represent
a collection of standards for the development of agent-based systems [15].

3.1 Sellers and Clients

This application implements a simple marketplace where users create autonomous agents
to sell and buy books for them, as described in the JADE Guide [3]. Therefore, this
scenario contains two kinds of agents: Seller and Client. As part of the JADE platform,
there is also a Directory Facilitator Agent (DF) that provides a Yellow Pages service by
means of which an agent can find other agents providing the services he requires [3]. This
illustrative scenario is depicted in Figure 1.

SELLER-Agent1

SELLER-Agent2

SELLER-Agent3

CLIENT-Agent1

CLIENT-Agent2

DF-Agent

Yellow	 Page

User1

User2

MAILBOX

Figure 1: Scenario1: Overview of the general system architecture.

When a user creates a new selling agent, this agent registers itself in the Yellow Page
by offering the service of book-seller. A selling agent manages a book catalog for a book
store. Each user increments its own catalog at runtime by adding new books for sale. To
add a book for sale, the user informs the name of the book and the price that he would like
to receive for the book. A client agent is responsible for seeking and buying the book that
a buyer user is looking for. Once created, the client agent is released into the marketplace,
where it investigates which selling agents have the desired book and it buys the book from

4

the seller that has the best price.
We also added a mailbox to the application. Our goal is to simulate interactions be-

tween agents that are different from message communication. In such case, this interaction
is performed by sharing a common resource among agents, that is, the mailbox. After sell-
ing the book, the seller agent sends a virtual copy of the book to the mailbox, while the
client agent verifies if the book has delivered. If the client agent buys a book and it does
not find the book in the mailbox after a time, the client agent will fail.

3.1.1 Sequence Diagrams

As shown in Figures 3 and 2, sending and receiving messages are activities represented
as events in the sequence diagrams. For example, a SellerAgent (Figure 2) waits for two
message types: “askPrice” and “buy.” If it receives the first message type and finds the
book in its catalogue, it will send a new message to the client to inform the price of the
book. If it receives the “buy” message, the seller removes the book from its catalogue and
sends it to the mailbox.

Figure 2: SellerAgent’s interactions.

5

Figure 3: ClientAgent’s interactions.

4 TEST APPROACH: THE SOLUTION ARCHITECTURE

We developed a publish-subscribe based architecture as a foundation for generating differ-
ent kinds of test applications for MASs. Our goal is to provide mechanisms that capture
and process logs generated by agents automatically. As depicted in Figure 4, our architec-
ture consists of three layers: MAS Application (L1), Publish-Subscribe Communication
(L2), and Test Applications (L3). The Publish-Subscribe Communication layer uses the
RabbitMQ platform for delivering logs from agents (publishers) to be consumed by test
applications (subscribers).

Each agent publishes logs with annotations that are composed of the following tags:

• agentType: the type of the agent (e.g CLIENT,

SELLER, VEHICLE). In JADE, it refers to the name of the container where this
agent lives;

• agentName: the name provided for the agent by the system developer/user (e.g
client01, client02, seller01);

6

• action: the event that caused the log generation (e.g connectToSystem, searchBook-
InCatalogue,

beDestroyed);

• typeLog : types of logs (e.g error, info, warning);

• className, methodName, codeLine: necessary information to identify the part of
the code that generated the event;

• resource: the main resource that has been manipulated or requested by an agent
during an event execution (e.g book1, book3, memory). It may be used to investigate
all events that are related to a specific resource;

• timestamp: time that the log was created. Used to sort all events into a single
timeline [12];

• message: a description of the event.

TEST
APPLICATIONS

(SUBSCRIBER	LAYER)

PUBLISH –
SUBSCRIBE

COMMUNICATION

MAS	
APPLICATION

(PUBLISHER	LAYER)
Agent1 Agent2 Agent3

Environment

SERVER

Queues

Subscriber	
App	01–
Agent1	
Testing

Subscriber	
App	02–

Integration	
Testing

Subscriber	
App	03–
System	
Testing

Log	Structure:
agentType.
agentName.
action.
typeLog.
className.
methodName.
codeLine.
resource.
timestamp.
message.

Figure 4: A Publish-Subscribe-based architecture to test MASs.

Thus, a log message must meet the pattern “(agentType).(agentName).(action).(typeLog).
(className).(methodName).(codeLine).(resource).(timestamp).(message).” Each appli-

cation will have a set of values that each tag may assume, excepting the message tag that
is an open field.

7

As depicted in Figure 5, all agents in the MAS application layer are also a TestableAgent
type. As a Testable agent extends the JADE agent, it complies FIPA specifications. A
Testable agent uses the RabbitMQ properties to send logs with annotations as messages.
The Testable agents will only publish logs if the variable testMode is true. These logs
can be published from any part of the agent’s code. Via the TestableAgent class and
JADE properties, some tags have their values attributed autonomously, such as agent-
Type, agentName and timestamp.

Figure 5: Simplified class diagram for creating testable MASs.

The RabbitMQ autonomously deliver log messages to queues according to their tags’
values. Thus, each test application defines a binding key in order to subscribe itself to
consume messages from a specific queue. For example, a test application that monitors
only error logs from SELLER agents must have the binding key “SELLER.*.*.error.#.”
Therefore, this application will consume any log with the tuples (agentType,SELLER) and
(typeLog,error). It is also possible to create applications that use multiple bindings. For
example, if a performance test relates the number of agents in the system to the time that
a DF agent spends to retrieve requisitions from CLIENT agents, this application will have
to consume logs with different action values. First, this performance test needs to calculate
the number of SELLER and CLIENT agents in execution. Thus, it needs to consume logs
with the tuples (action,connectToSystem) and (action,beDestroyed). To calculate the time
between requisition of CLIENT agents and retrieval from the DF agent, this test also has
to consume the tuples (action,searchBook) and (action,receiveListFromDF) and extract
timestamp information.

Test applications do not interfere on the execution of each other. As shown in Figure 6,
each test class extends the class RabbitMQConsumer that starts an independent process
to consume messages from a specific queue. We used the Template Method Pattern [16]
to model the consumeMessage method. Thus, to consume and process particular log

8

messages, a test class must overwrite and customize the methods getListBindingKey()
and processData().

Figure 6: Simplified class diagram for creating applications for testing a MAS application
at agent, integration and system levels.

5 TESTS AND RESULTS

By using our proposed architecture, we executed several functional ad-hoc tests at agent
and integration levels. In addition, we also performed system tests, by evaluating perfor-
mance characteristics of a MAS application. Thus, this section presents part of the test
plan that we created and performed for testing the application presented in section 3.

5.1 Agent and Integration Tests

Table 1 presents functional tests at agent and integration (group) levels that we performed
to test the book-sale application. More functional tests could be performed, but this list
would be so extensive. We executed various test cases, taking eight parameters into ac-
count: (i) level (i.e. agent or group); (ii) function (i.e create CLIENT agent, add book,
and any other function that was identified in sequence diagrams); (iii) procedure (e.g a
general description of the test); (iv) previous condition; (v) input (i.e a resource, a com-
ponent); (vi) actions (i.e actions to be performed during test execution); (vii) expected
value (e.g the result that will be produced when executing the test if the program satisfies

9

its intended behavior [28]); and (viii) validation method (e.g strategies that a tester per-
forms to evaluate the system, comparing the program execution against expected results).
The execution of each test case produced several logs with meta-information annotations,
which were consumed by test applications. Then, we used only these logs information as
a validation method, as shown in table 1.

The function “buy book” is an example of behavior that would be difficult to inspect
if the developer does not have a way of finding a correlation among agents’ behaviors. If
a client buys a book and does not receive it after a time, this agent will fail. Therefore, to
analyze logs and understand what caused that failure, the developer must have the logs
from the client and the seller sorted into a single timeline.

Figure 7: Logs generated by Seller1 during the execution of the test case 7 in table 1.

Figure 8: Logs generated by Seller2 during the execution of the test case 7 in table 1.

Figure 9: Logs generated by Client1 during the execution of the test case 7 in table 1.

In order to force test failure, we created a test case at the integration level by using a
mutation based procedure. Adding program mutants is a common testing technique [24].
The goal of mutation test is to force certain classes to act incorrectly during the execution

10

Table 1: Functional tests at agent and integration (group) levels.

Level Func. Procedure
Previous
Condition

Input Actions
Expected
Value

Validation Method
(Logs sorted into
a timeline)

User creates
a new agent

DF is
running

1.Type:
SELLER
2. Name:
seller1

1.User inits new
agent and 2.DF
registers agent
in Yellow Page

seller1 agent
is registered as
book-seller

1)SELLER.seller1.
connectToSystem.info.#
2)SELLER.seller1.
registerService.info.#

create
Selling
Agent

User tries to
create an
agent with
the same
name

seller1 is
already
running

1.Type:
SELLER
2.Name:
seller1

1.User inits
new agent

Error:
System refuses
to create new
agent

1)SELLER.seller1.
connectToSystem.
error.#

add
Book

User adds
a new book
to seller1

seller1 is
already
running

1.Book’s
name:
book1
2.Book’s
price:10

1.User adds new
book and
2.seller1
inserts book
in its catalogue

book1 is in
seller1’s
catalogue

1)SELLER.seller1.
addBook.info.*.*.*.*.
.’name:book1
and price:10’

User
searches
book1

agent
client1
is already
running

1.Book’s
name:
book1

1.User searches
book1 and
2.client1 asks
DF the list of
book-sellers

DF returns
the list of
book-seller
agents

1)CLIENT.client1.
searchBook.info.#
2)CLIENT.client1.
receiveListFromDF.
info.#

search
Book

client1 waits
DF’s answer,
but DF is
dead

client1 has
asked DF
the book-
sellers list

1.agent
client1

1.client1 waits
DF’s answer and
2.DF dies

Error:
client1 also
dies

1)CLIENT.client1.
searchBook.info.#
2)CLIENT.client1.
receiveListFromDF.
error.#Agent

client1
asks seller1
to buy book1

seller1 has
the book1

1.client1
2.seller1
3.book1

1.client1 asks
book1 to seller1

client1
receives book1
after 2 seconds

1)CLIENT.client1.
askBuy.info.#
2)CLIENT.client1.
receivedBook.info.#

client1
has asked
sellerM to buy
book1, but
sellerM
is dead now

sellerM has
the book1

1.client1
2.mutant
agent:
sellerM
3.book1

1.client1 asks
book1 to sellerM
2.sellerM receives
the request
3. sellerM dies

Error:
client1 does not
receive book1
after two
seconds

1)CLIENT.client1.
askBuy.info.#
2)SELLER.sellerM.
receivedBuy.#
3)CLIENT.client1.
receivedSaleConf.#
4)SELLER.sellerM.
isDestroyed.#
5)CLIENT.client1.
receivedBook.error.#

client1 and
client2 have
asked seller1
to buy book1

seller1
has the
book1

1.client1
2.client2
3.seller1
4.book1

1.client1 asks
book1 to seller1
2.client2 asks
book1 to seller1
3.seller1 sells
book1 to client1

Warning:
client2 receives
message of
unavailable
book

1)CLIENT.client1.
askBuy.info.#
2)CLIENT.client2.
askBuy.info.#
3)SELLER.seller1.
receivedBuy.#
4)SELLER.seller1.
removedBook.#
5)SELLER.seller1.
sellBook.#
5)SELLER.seller1.
receivedBuy.#
6)SELLER.seller1.
refuseSell.#
7)CLIENT.client1.
receivedBook.#
8)CLIENT.client2.
receivedBook.warning.#

Group
buy
Book

client1 asks
seller1 to
buy book2,
but it refuses
the sale

seller1
has the
book2, but
it does not
have price

1.client1
2.seller1
3.book2

1.client1 asks
book2 to seller1
2.seller1 receives
the request
3.seller1 refuses
sale

Warning:
seller1 does not
sell an existing
book and
client1
receives msg
of unavailable
book

1)CLIENT.client1.
askBuy.info.#
2)SELLER.seller1.
receivedBuy.#
3)SELLER.seller1.
refuseSell.#
4)SELLER.client1.
receivedBook.warning.#

11

of the program over some tests in order to verify if the test application is able to identify
faults [23]. Thus, we added a Seller agent mutant that dies after accepting a book sale.
Therefore, a client agent that buys a book from the seller mutant will not find this book
in the mailbox. Figures 7-9 depict the logs that were generated by agents while the test
case that uses a Seller agent mutant (test case 7) was executing.

As shown in log messages, Client 1 received a sale confirmation from Seller 2, but he
did not receive the book. This situation generated an error. As each agent is running
separately, to identify and understand what caused this error, the tester would have to
inspect the log file from each one of the agents. This work could be so difficult if the
number of agents or the number of log messages was higher. Thus, by using our proposed
solution, we can automatically select those logs from different agents that are probably to
be essential for a specific test case and show them in a single interface.

In order to specify which characteristics need to be monitored from logs during the
execution of a test cases set, the developer must establish a list of binding keys and override
the method getListBindingKey() from the RabbitMQConsumer class. The list of binding
keys will determine which test cases can be covered by the test application. For example,
to cover the test cases “create Selling Agent” (line 1), “add Book” (line 3) and “buy Book”
(line 7), which are listed in Table 1, it is necessary to establish binding keys that will make
the test application able to receive all logs that are described in the “Validation Method”
column from the line 1, 3 or 7.

The code below shows the method getListBindingKey() that was used by a test appli-
cation to cover these three test cases. If the developer wants this test application covering
more test cases, he needs to add more binding keys to allow the test application to con-
sume different logs. For example, to cover test cases of the functionality “search Book”,
the developer must add a new binding key that contains the “receiveListFromDF” action.

@Override
public String [] getListBindingKey() {
BindingKey bd = new BindingKey();
String [] listKey = new String[11];
listKey [0] = bd.createBindingKey(LogValue.Action.isDestroyed);
listKey [1] = bd.createBindingKey(LogValue.Action.connectToSystem);
listKey [2] = bd.createBindingKey(LogValue.AgentType.CLIENT, LogValue.Action.searchBook);
listKey [3] = bd.createBindingKey(LogValue.AgentType.CLIENT, LogValue.Action.selectBestPrice);
listKey [4] = bd.createBindingKey(LogValue.AgentType.CLIENT, LogValue.Action.askBuy);
listKey [5] = bd.createBindingKey(LogValue.AgentType.CLIENT, LogValue.Action.receivedSaleConfirmation);
listKey [6] = bd.createBindingKey(LogValue.AgentType.CLIENT, LogValue.Action.receivedBook);
listKey [7] = bd.createBindingKey(LogValue.AgentType.SELLER, LogValue.Action.registerService);
listKey [8] = bd.createBindingKey(LogValue.AgentType.SELLER, LogValue.Action.addBook);
listKey [9] = bd.createBindingKey(LogValue.AgentType.SELLER, LogValue.Action.receivedBuy);
listKey [10] = bd.createBindingKey(LogValue.AgentType.SELLER, LogValue.Action.removeBook);
return listKey;
}

As a result, the interface depicted in Figure 10 shows all logs that were selected accord-
ing to this binding key list. As shown, not all logs depicted in Figures 7-9 were presented
in this interface, but only the relevant logs to validate the test cases 1, 3 and 7. In ad-
dition, all logs are organized in a single timeline. Therefore, to affirm that the expected
value for the execution of each one of these test cases is satisfied, it will be necessary
to verify if logs are appearing in this interface as described in the “Validation Method”
column from Table 1. For example, to validate the test case 1, it is necessary to verify if
its expected value was reached, which is “seller1 agent is registered as book-seller.” Ac-
cording to Table 1, to validate it, we need to find the following logs: “1) SELLER.seller1.
connectToSystem.info.#” and 2)“SELLER.seller1.registerService.info.#.”

In general, Figure 10 illustrates the main interface of agent and integration test ap-

12

plications. By using this interface, it is possible to inspect logs that were consumed by
a test application and verify if these logs match the logs listed in the validation method
column. As shown in application view, the client agent failed after buying a book from a
seller agent mutant, which also satisfies the test specification set in Table 1 for the “buy
book” function.

Figure 10: Application View - Agent and Integration tests. Fault detection in test case 7
execution.

5.1.1 Test Results

As shown in Table 1, we executed some functional tests at agent and group levels. By using
an interface (Figure 10), we were able to validate these test cases by comparing the logs
observed in this main interface against the logs listed in the “Validation Method” column.
In addition, we also conducted some tests by inserting software failures and verifying if
our test software could be useful for detecting faults. As shown in Figure 10, we were able
to identify an error and track the behaviors that were executed by agents before this error.

5.2 System Testings

There are different tests that can be performed to evaluate quality properties of a system,
such as fault tolerance and performance. In this paper, we covered only performance tests.
Figure 11 depicts some load tests that were executed in order to give out the response
time of the most important operation: buy a book. To perform these tests, the MAS and
test applications were running at the following operating environment:

• MacBook Pro (Retina, 13-inch, Early 2015)

• Processor 2.7 GHz Intel Core i5

• Memory 8 GB 1867 MHz DDR3

Our goal is to verify the maximum number of selling agents that the book sale applica-
tion supports. In addition, we aim to answer the following question: If a customer specifies
the response time limit of book sale, which will be the limit of seller agents that can be
registered in the system? For this purpose, we created an application that implements

13

Figure 11: Application View - Performance test.

the getListBindingKey method to consume messages from a client agent and to verify the
number of agents that are connected to the system, as follows:

@Override
public String [] getListBindingKey() {
BindingKey bd = new BindingKey();
String [] listKey = new String[4];
listKey [0] = bd.createBindingKey(LogSystem.Action.connectToSystem, LogSystem.TypeLog.INFO);
listKey [1] = bd.createBindingKey(LogSystem.Action.isDestroyed);
listKey [2] = bd.createBindingKey(LogSystem.AgentType.CLIENT, LogSystem.TypeLog.INFO);
listKey [3] = bd.createBindingKey(LogSystem.Action.selectBestPrice, LogSystem.TypeLog.WARNING);
return listKey;
}

While running this test application, we executed MAS applications in sequence with
different numbers of selling agents, as shown in Figure 11. All applications have only one
client agent, which is looking for the book1. In addition, only the selling agent that was
the last one to start has the book1.

According to the results shown in Figure 11, we can affirm that if a customer specifies
that 540 milliseconds is the limit time for a client receives a sale confirmation after starts to
search a registered book, this system cannot allow more than 50 selling agents to register.

We also observed that when the application has more than 100 selling agents, it starts
to be very unstable. The reason is the limit of agents that can be indexed by the DF-
Service.search [41] from JADE. Thus, the DF agent randomly selects the selling agents to
receive the book-search request from the client agent. However, it is possible to change
this limit. According to our operating environment, we got to change this limit to 500
agents. We executed a MAS application with a number of selling agents higher than the
limit of 500 agents, as shown in Figure 11. For instance, the client agent went into a loop
state, which took the test to be aborted. Therefore, we can conclude that if the system

14

operates at this same environment, the maximum number of selling agents will be 500.

6 Conclusions and Open Challenges

We believe these preliminary results are promising. We presented a decoupled architecture
that allows a developer to execute tests simultaneously and independently while running
a MAS. In addition, we provided evidence of the usability of our proposal, using it to
test a known MAS application. We showed that it is possible to develop different tests
for a multi-agent system at different levels by using logs containing meta-information
annotations and a publish-subscribe technology.

6.1 Testing Non-Deterministic Applications

However, MASs usually are much more complex than the experiment that was used in
this work. Current approaches modeled by using a MAS may involve non-deterministic
characteristics that were not addressed by this paper, such as learning [14], self-adaptation
and self-organization (SASO) [13]. In fact, there is a gap in the literature regarding the
test of systems with these features. There are few approaches to inspect the emergence
process in a self-organizing MAS system [17] [4], and all of them do MAS design based only
on simulation techniques. One reason is the difficulty of specifying expected results for
non-deterministic applications, especially in actual environments. Nonetheless, we believe
our approach opens the way for more experiments in testing Multi-Agent Systems, since
it provides ways for testing a MAS at different levels. For example, as a self-organizing
MAS system enables the emergence of social features based on the behavior of individual
agents, to test this kind of system it is necessary to perform tests at single and group
levels. Therefore, another goal is to evaluate the use of this publish-subscribe architecture
to test more complex MAS applications, such as self-organizing and self-adaptive systems.

Nascimento and Lucena (2016) [13] presented a framework to create self-organized and
self-adaptive agent-based applications. They evaluate their architecture by deriving two
instances from their framework (a simulated and a realistic one). However, since they do
not provide test beds in small, medium and large scales, it is not possible to verify the
quality of the applications generated by using their framework. Our next contribution is
to generate a SASO application by using their framework and show that these kinds of
applications can be tested by using our test approach.

6.2 Automated Testing Systems

We aim to improve our architecture to allow the tester to also interact with the applica-
tion. For this purpose, each layer to be publisher and subscriber needs to be modeled. For
example, the MAS application would receive messages from the performance test appli-
cation in order to initiate new agents and execute other actions. Thus, the performance
test app may execute and evaluate the system autonomously. We can further consider
relating the TestableAgent class with a singleton class [16] that contains a set of variables
to be set by test applications. For example, the boolean variable “testMode” in the class
TestableAgent, which enables the system to publish logs, should be placed in this com-
mon class. Thus, test applications could manage this variable in order to begin or pause

15

tests. As all agents extend the TestableAgent in our architecture, all agents will access
this common class and will be accessed by test applications.

6.3 Predictive Analysis

For each application, there is a set of predetermined values that can be used in tags.
Thus, we can codify and normalize these values to use them as inputs of a temporal neural
network [21], which is a known structure of predictive analysis. By consuming temporal
logs, a test application may use a temporal neural network to process log information in
order to predict errors.

6.4 Deploying Agents in a Distributed Environment

For instance, all agents are running on a single machine and the proposed approach as-
sumes that there is a central clock so that the timestamp in each message can be used
to sort events and measure throughput. If the tester needs to evaluate the MAS applica-
tion in a distributed environment, he must adapt the RabbitMQ class to use the Remote
Procedure Call (RPC) function, which is a technology supported by RabbitMQ to build
a scalable RPC server [38]. Thus, he can create a common publisher that publishes logs
from agents localized on different machines. However, new challenges will arise. In the
general case of distributed agents, possibly running on machines in different continents, a
synchronization mechanism is required, especially for performance test.

Acknowledgments

This work has been supported by the Laboratory of Software Engineering (LES) at PUC-
Rio. Our thanks to CNPq, CAPES, FAPERJ and PUC-Rio for their support through
scholarships and fellowships.

References

[1] Y. Abushark, J. Thangarajah, T. Miller, J. Harland, and M. Winikoff. Early detec-
tion of design faults relative to requirement specifications in agent-based models. In
Proceedings of the 2015 International Conference on Autonomous Agents and Mul-
tiagent Systems, pages 1071–1079. International Foundation for Autonomous Agents
and Multiagent Systems, 2015.

[2] P. Ammann and J. Offutt. Introduction to software testing. Cambridge University
Press, 2008.

[3] F. Bellifemine, G. Caire, T. Trucco, G. Rimassa, and R. Mungenast. Jade adminis-
trator’s guide. TILab (February 2006), 2003.

[4] C. Bernon, M.-P. Gleizes, and G. Picard. Enhancing self-organising emergent systems
design with simulation. In International Workshop on Engineering Societies in the
Agents World, pages 284–299. Springer, 2006.

16

[5] J. Bot́ıa, A. Lopez-Acosta, and A. Skarmeta. Aclanalyser: A tool for debugging
multi-agent systems. 2004.

[6] L. Briand and Y. Labiche. A uml-based approach to system testing. In International
Conference on the Unified Modeling Language, pages 194–208. Springer, 2001.

[7] G. Caire, M. Cossentino, A. Negri, A. Poggi, and P. Turci. Multi-agent systems
implementation and testing. na, 2004.

[8] A. Chavez and P. Maes. Kasbah: An agent marketplace for buying and selling goods.
In Proceedings of the first international conference on the practical application of
intelligent agents and multi-agent technology, volume 31, page 40. London, UK, 1996.

[9] R. Coelho, E. Cirilo, U. Kulesza, A. von Staa, A. Rashid, and C. Lucena. Jat: A
test automation framework for multi-agent systems. In 2007 IEEE International
Conference on Software Maintenance, pages 425–434. IEEE, 2007.

[10] F. Cunha, A. D. da Costa, M. Viana, and C. J. P. de Lucena. Jat4bdi: An aspect-
based approach for testing bdi agents. In Web Intelligence and Intelligent Agent Tech-
nology (WI-IAT), 2015 IEEE/WIC/ACM International Conference on, volume 2,
pages 186–189. IEEE, 2015.

[11] A. D. da Costa, C. Nunes, V. T. da Silva, B. Fonseca, and C. J. de Lucena. Jaaf+ t:
a framework to implement self-adaptive agents that apply self-test. In Proceedings of
the 2010 ACM Symposium on Applied Computing, pages 928–935. ACM, 2010.

[12] T. P. de Araújo and A. von Staa. Supporting failure diagnosis with logs containing
meta-information annotations. Technical Reports in Computer Science. ISSN 0103-
9741, 14:21, 2014.

[13] N. M. do Nascimento and C. J. P. de Lucena. Fiot: An agent-based framework for self-
adaptive and self-organizing applications based on the internet of things. Information
Sciences, 2016.

[14] N. M. do Nascimento, C. Jos, P. de Lucena, and H. Fuks. Modeling quantified things
using a multi-agent system. In 2015 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology (WI-IAT), volume 1, pages 26–32.
IEEE, 2015.

[15] FIPA. The foundation for intelligent physical agents. http://www.fipa.org/, 10 2016.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Abstraction
and reuse of object-oriented design. In European Conference on Object-Oriented Pro-
gramming, pages 406–431. Springer, 1993.

[17] L. Gardelli, M. Viroli, and A. Omicini. On the role of simulation in the engineering
of self-organising systems: Detecting abnormal behaviour in mas. 2005.

[18] J. J. Gomez-Sanz, J. Bot́ıa, E. Serrano, and J. Pavón. Testing and debugging of mas
interactions with ingenias. In International Workshop on Agent-Oriented Software
Engineering, pages 199–212. Springer, 2008.

17

[19] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi. Meghdoot: content-based
publish/subscribe over p2p networks. In Proceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware, pages 254–273. Springer-Verlag New York,
Inc., 2004.

[20] C. Gutiérrez, I. Garćıa-Magariño, E. Serrano, and J. A. Bot́ıa. Robust design of
multi-agent system interactions: A testing approach based on pattern matching. En-
gineering Applications of Artificial Intelligence, 26(9):2093–2104, 2013.

[21] S. Haykin. Neural Networks: A Comprehensive Foundation. Macmillan, 1994.

[22] Z. Houhamdi. Multi-agent system testing: A survey. International Journal of Ad-
vanced Computer, 2011.

[23] W. E. Howden. Weak mutation testing and completeness of test sets. IEEE Trans-
actions on Software Engineering, (4):371–379, 1982.

[24] Y. Jia and M. Harman. An analysis and survey of the development of mutation
testing. IEEE transactions on software engineering, 37(5):649–678, 2011.

[25] V. J. Koeman and K. V. Hindriks. Designing a source-level debugger for cognitive
agent programs. In International Conference on Principles and Practice of Multi-
Agent Systems, pages 335–350. Springer, 2015.

[26] V. J. Koeman, K. V. Hindriks, and C. M. Jonker. Automating failure detection in
cognitive agent programs. In Proceedings of the 2016 International Conference on Au-
tonomous Agents & Multiagent Systems, pages 1237–1246. International Foundation
for Autonomous Agents and Multiagent Systems, 2016.

[27] C. Lucena. Software engineering for multi-agent systems II: research issues and prac-
tical applications, volume 2. Springer Science & Business Media, 2004.

[28] M. Moreno, J. Pavón, and A. Rosete. Testing in agent oriented methodologies. In In-
ternational Work-Conference on Artificial Neural Networks, pages 138–145. Springer,
2009.

[29] G. J. Myers, C. Sandler, and T. Badgett. The art of software testing. John Wiley &
Sons, 2011.

[30] D. T. Ndumu, H. S. Nwana, L. C. Lee, and J. C. Collis. Visualising and debugging
distributed multi-agent systems. In Proceedings of the third annual conference on
Autonomous Agents, pages 326–333. ACM, 1999.

[31] C. D. Nguyen, S. Miles, A. Perini, P. Tonella, M. Harman, and M. Luck. Evolutionary
testing of autonomous software agents. Autonomous Agents and Multi-Agent Systems,
25(2):260–283, 2012.

[32] C. D. Nguyen, A. Perini, C. Bernon, J. Pavón, and J. Thangarajah. Testing in multi-
agent systems. In International Workshop on Agent-Oriented Software Engineering,
pages 180–190. Springer, 2009.

18

[33] C. D. Nguyen, A. Perini, and P. Tonella. Ontology-based test generation for multia-
gent systems. In Proceedings of the 7th international joint conference on Autonomous
agents and multiagent systems-Volume 3, pages 1315–1320. International Foundation
for Autonomous Agents and Multiagent Systems, 2008.

[34] C. D. Nguyen, A. Perini, and P. Tonella. Goal-oriented testing for mass. International
Journal of Agent-Oriented Software Engineering, 4(1):79–109, 2009.

[35] D. C. Nguyen, A. Perini, and P. Tonella. A goal-oriented software testing method-
ology. In International Workshop on Agent-Oriented Software Engineering, pages
58–72. Springer, 2007.

[36] M. Pěchouček and V. Mař́ık. Industrial deployment of multi-agent technologies:
review and selected case studies. Autonomous Agents and Multi-Agent Systems,
17(3):397–431, 2008.

[37] W. Peng, W. Krueger, A. Grushin, P. Carlos, V. Manikonda, and M. Santos. Graph-
based methods for the analysis of large-scale multiagent systems. In Proceedings of
The 8th International Conference on Autonomous Agents and Multiagent Systems-
Volume 1, pages 545–552. International Foundation for Autonomous Agents and Mul-
tiagent Systems, 2009.

[38] RabbitMQ. Rabbitmq. Available in https://www.rabbitmq.com/, 10 2016.

[39] J. Sabater and C. Sierra. Reputation and social network analysis in multi-agent
systems. In Proceedings of the first international joint conference on Autonomous
agents and multiagent systems: part 1, pages 475–482. ACM, 2002.

[40] E. Serrano, A. Muñoz, and J. Botia. An approach to debug interactions in multi-agent
system software tests. Information Sciences, 205:38–57, 2012.

[41] Telecom. Class dfservice. Available in http://jade.tilab.com/doc/api/jade/domain/DFService.html,
11 2016.

[42] Telecom. Java agent development framework. Available in http://jade.tilab.com/, 10
2016.

19

