

PUC	

ISSN 0103-9741

Monografias em Ciência da Computação
n° MCC05/2017

Implementing an Argumentation-based Decision
BDI Agent: a Case Study for Participatory

Managment of Protected Areas

Pedro Elkind Velmovitsky
Jean Pierre Briot

Marx Viana
Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. MCC05/2017 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena March, 2017

Implementing na Argumentation-based Decision BDI
Agent: a Case Study for Participatory Managment of

Protected Areas
Pedro Elkind Velmovitsky, Jean Pierre Briot1
Marx Viana, Carlos José Pereira de Lucena

1Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d’Informatique de Paris 6
(LIP6), France

{pvelmovitsky, mleles, lucena}@inf.puc-rio.br, jean-pierre.briot@lip6.fr

Abstract. This paper describes the implementation of an argumentation system used
for participatory management of environmental protected areas, more precisely to mo-
del the decision of a park manager artificial agent. This implementation is based on a
BDI agent architecture, namely the Jason/AgentSpeak framework/language. After in-
troducing the principles of BDI architecture and of argumentation systems, we will de-
tail how we model arguments within the BDI (Belief-Desire-Intention) architecture.
Then, we present the argumentation-based model of deliberation and decision by the
park manager agent as a case study. We show how our argument-based approach al-
lows to model various cognitive profiles of park managers (more conservationist or
more sensitive to social issues), through different knowledge bases. We show examples
of decisions produced by the park manager agent and examples of traces of arguments
used during deliberation, which could be a base for explaining decisions. Before con-
cluding, we point out future directions, such as using argumentation as a basis for ne-
gotiation between various agents.

Keywords: Agent architecture; BDI architecture; Argumentation; Decision; Participa-
tory management.

Resumo. Este artigo descreve a implementação de um sistema de argumentação usado
para gestão participatória de áreas ambientalmente protegidas, mais precisamente para
modelar a decisão de um agente artificial representando o gestor de um parque. Essa
implementação é baseada em uma arquitetura de agente BDI, nomeadamente o Jas-
on/AgentSpeak framework/linguagem. Depois de introduzir princípios da arquitetura
BDI e de sistemas de argumentação, iremos detalhar como modelar argumentos dentro
da arquitetura BDI (Belief-Desire-Intention/Crença-Desejo-Intenção). Então, apresentare-
mos o modelo baseado em argumentação de deliberação e decisão do agente gestor do
parque como um estudo de caso. Mostramos como nossa abordagem baseada em ar-
gumentação permite a modelagem de vários perfis cognitivos de gestores de parque
(mais conservador ou mais sensível em relação com questões sociais), através de dife-
rentes bases de conhecimento. Mostramos exemplos de decisões produzidas pelo agen-
te gestor do parque e exemplos de traços de argumentos usados durante deliberação, e
que podem servir de base para explicar decisões. Antes de concluir, apontamos dire-
ções futuras, como usar argumentação como base para negociação entre vários agentes.

Palavras-chave: Arquitetura de agente; Arquitetura BDI; Argumentação; Decisão; Ges-
tão Participatória.

 ii

In charge of publications
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br

 iii

Table of Contents

1 Introduction 1

2 Related Work 2

3 BDI and Jason 2
3.1 The BDI model 2
3.2 Jason Platform 3

4 Argumentation in BDI 3

5 Manager Agent in SimParc 5
5.1 SimParc and the Park Manager Role 5
5.2 Park Manager’s BDI Architecture 6

6 Implementation of the Manager Agent in Jason 7

7 Results 8

8 Conclusion and Future Work 9
References 10

 1

1 Introduction
The general context of this work is an ongoing research project about exploring compu-
ter support for participatory management of protected areas (for biodiversity conserva-
tion and social inclusion). Therefore, we have designed a serious game (more precisely
a distributed role-playing game), inspired by real management councils of national
parks in Brazil (BRIOT, et al.). The applicative objective is to train people about partici-
patory management of protected areas. More precisely, the idea is for players to explo-
re negotiation strategies in order to address conflicting views. In this game, human pla-
yers play various roles (representing members of a park management council, i.e.,
stakeholders, such as environmentalist, tourism operator, traditional population repre-
sentative, etc.), discuss, negotiate and take decisions about environment management. In
practice, these decisions are about the type (level) of conservation for each sub-part of
the park. Example among predefined types, from more restricted conservation to more
flexible kind, are: Intangible (full conservation), Extensive (flexible indirect use of resou-
rces), Historic-Cultural (possibility of limited tourism), Conflicting (shared identification
of major conflicting opinions among council members). A special role is the park mana-
ger, who acts as an arbitrator in the game, making a final decision about the types of
conservation for each part of the park and also being able to justify (or, at least, explai-
ning) its decision to players.

This research project (BRIOT, et al.) explores the use of various advanced computer
techniques as a support for assistance to the players. For instance, we introduce expert
artificial agents helping players to analyze the viability of the consequences of their
proposals, considering the eco-socio-system dynamics (in terms of biodiversity, economy,
or/and social progress), and to compare them, as a support for objective comparison
and negotiation (WEI, ALVAREZ and MARTIN, 2013). Another type of approach ex-
plored is using argumentation systems, as a support for decision and for negotiation, and
last but not the least, for explanation. It could be used to model the decision of the park
manager (or other kind/roles of artificial players), with an internal deliberation
between arguments (BRIOT, et al.), as well as to support automated negotiation
between players (artificial or human), as for instance as in (ADAMATTI, SICHMAN
and COELHO, 2009). Using artificial players is useful to permit reproducible experi-
ments with controllable levels of participation, as well as to compensate the absence of
some human players.

In this paper, we will describe the modeling and implementation of an artificial
agent playing the role of the park manager, based on an argumentation system (based
on (RAHWAN and AMGOUD, 2006)), and modeled and implemented in a BDI agent
architecture. BDI sounds for Belief-Desire-Intention and is one of the main cognitive ar-
chitecture for agents and multi-agent systems (WOOLRIDGE, JENNINGS and KINNY,
1999). More precisely, we are using the Jason framework, an implementation of the
AgentSpeak agent programming language, based on the BDI architecture (BORDINI,
HUBNER and WOOLRIDGE, 2007).. Said another way, we are representing arguments
and their management in AgentSpeak. The first version of the implementation has alre-
ady been completed and tested. We will report on our experience as well as pointing
out future directions.

The reminder of this paper is organized as follows: Section II discusses related
work, while section III focuses on the background for BDI and for the Jason platform.
Section IV presents the use of argumentation theory in BDI and Section V presents a
case study for a BDI agent using argumentation. Section VI describes an implementa-

 2

tion of the conflict resolution mechanism and Section VII shows its results. Finally, Sec-
tion VIII presents our conclusions and future work.

2 Related Work
JogoMan-ViP (ADAMATTI, SICHMAN and COELHO, 2009) is a distributed role-
playing game similar in spirit to our SimParc project, as its domain is about participa-
tory management of hydric resources. It has introduced artificial players, also imple-
mented through AgentSpeak/BDI on top of the Jason framework. This pioneering work
has been an important influence. That said, the model of decision of artificial players is
relatively simplified and with a predefined and fixed protocol for negotiation (to facili-
tate the interface between artificial players and human players). Our objective in using
argumentation as the basis for decision, explanation and negotiation is even more am-
bitious.

Simulación by (GUYOT and HONIDEN, 2006) experimented with the use of artifici-
al agents as assistants of human players, as an innovative and proactive type of interfa-
ce. Assistant agents can make suggestions to human players, based on the model of a
good strategy for the game combined with a learning mechanism. This work has also
been an inspiration for our project. But we want to explore various models of the game,
including predictive models (to estimate viability and resilience) and inner deliberation
and justification models (by using argumentation).

Regarding argumentation systems, the theoretical framework by Rahwan and Am-
goud (RAHWAN and AMGOUD, 2006) is interesting and a major source of inspira-
tion, in that it is one of the first to use argumentation not only for epistemic reasoning
(i.e., to create or modify knowledge) but also to practical reasoning (i.e., for reasoning
about what to do and also how to do it).

(KAKAS and MORAITIS, 2003) is an implementation of an argumentation system
based in Prolog. (PANISSON, et al., 2014) is a preliminary integration of an argumenta-
tion system into a BDI (AgentSpeak/Jason architecture), with similar objective to ours,
but focusing on the implementation of defeasible logic (logical rules that can be refu-
ted).

3 BDI and Jason

3.1 The BDI model

There are many ways to model the behavior of agents such as the BDI (Belief-Desire-
Intention) model. To talk about this model, according to (BORDINI, HUBNER and
WOOLRIDGE, 2007)., we need to address the idea that we can talk about computer
programs as if they had a “mental state”. Thus, when we talk about a beli-
ef−desire−intention system, we are talking about computer programs with computati-
onal analogues of beliefs, desires and intentions. These are described below:

Beliefs: are information the agent has about the environment. This information,

however, is something the agent believes in but it may not be necessarily true. As an
example, an agent may perceive from its environment the fact that it is raining. Howe-
ver, the rain may stop before the next reasoning cycle of the agent – in this case, his be-
lief is outdated and incorrect.

 3

Desires: are the possible states of affairs that the agent might like to accomplish.
That does not mean, however, that the agent will act upon it – it is a potential influen-
cer of the agent’s actions.

Intentions: are the state of affairs that the agent has decided to act upon. In other

words, intentions can be considered as a selected option between the potential set of op-
tions/desires that the agent has decided to pursue.

These are the key data structures of the BDI model. The decision-making approach
used by the agent, therefore, is practical reasoning: the agent weighs conflicting infor-
mation for and against the available options, according to its beliefs and desires. The
result of this deliberation is the adoption of intentions, which in turn will lead the
agent to execute actions.

3.2 Jason Platform
Jason is a Java-based interpreter for the AgentSpeak language (BORDINI, HUBNER and
WOOLRIDGE, 2007)., providing a platform for the implementation and development
of agents. This language is based on the BDI architecture systems (WOOLRIDGE,
JENNINGS and KINNY, 1999) and allows programmers to customize the agent’s beli-
efs, desires and intentions following logic sentences. As such, the agent architecture
will have a belief base, which is changed and updated when the agent perceives infor-
mation from its environment: new information may come to light, creating new beliefs,
or old information may be found to be wrong or out of date, removing old beliefs. The
agents also have goals that express the wishes the agent wants to accomplish. For ins-
tance, !buy(car) means that the agent has the goal of buying a car.

Furthermore, AgentSpeak provides a way to program and customize plans for the
agents. These plans represent courses of action that the agents will take in order to
achieve its goals. The overall syntax for a plan is:

triggering_event: context <- body.

Triggering events: represent changes which the agent will act upon – for instance, a
change in its belief base or a change in its goals.

Context of a plan: is used to check the current situation so as to determine whether a
particular plan among various alternative ones is likely to succeed in handling the event
(e.g. achieving a goal), given the latest information the agent has about its environment
(BORDINI, HUBNER and WOOLRIDGE, 2007)..

The body of a plan: is the course of action the agent will take in order to handle the
event that triggered the plan.

4 Argumentation in BDI
There have been several theories which look at formalizing the reasoning of autono-
mous agents based on mental attitudes, such as beliefs, desires and intentions (BDI).
One of the main characteristics of this type of reasoning is the resolution of conflicts,
since the goals and attitudes available to the agent may not always be compatible. In
addition, the information that the agent has may not always be consistent, or it may be
true at one moment but incorrect on the next (RAHWAN and AMGOUD, 2006).

Argumentation is a promising approach to deal with such considerations. It is a
mono-agent as well as a multi-agent process, in which an agent may decide alone, or
adhere to the opinion of another agent, depending on the strength and validity of ar-

 4

guments. Furthermore, agents reserve the right to revisit their opinions in light of new
information.

The classical logic proves inadequate to model such behaviors — for example, to ve-
rify the property of monotony (SORDONI, et al., 2010):

If Φ, ∆ and Γ denote sets of formulas in a formal reasoning system with the deduction :-, then
the property of the monotony is stated in the following way:

If Φ :- Γ and Φ Ì ∆ then ∆ :- Γ

The addition of new formulas at Φ can never call into question the truth value of Γ.
This is called a closed world.

The interest in non-monotonic logic appears when we try to capture the notion of
everyday reasoning, where definite conclusions are obtained from incomplete informa-
tion, which can be proven wrong or false and can be possibly correlated to the appea-
rance of counterexamples. This is called an open world and non-monotonous reasoning:
the addition of new formulas at Φ can call into question the truth of Γ.

However, this logical approach is limited to epistemic reasoning and does not modu-
late practical reasoning, limiting its use in agent architectures. So, a new approach has
been developed to deal with non-monotonous reasoning, the argument.

As opposed to a proof, an argument may be invalidated. Moreover, by comparing
arguments it is possible to manage inconsistencies in the agent’s belief base.

In order to formalize the notion of an argument, we refer to concepts used by
Rawhan and Amgoud in their work (RAHWAN and AMGOUD, 2006), and in turn, by
our SimParc project (SORDONI, et al., 2010):

Let Λ be a logical language and Σ a knowledge base. The classical deduction is denoted by :-
and the logical equivalence-≡. Then, an argument is a pair ⟨H, h⟩, H Í Σ such that:

• H is consistent;

• H :- h;

• H is minimal, that is, there is no subset of H which verifies 1 and 2.

From this definition, the authors define the attack relations between arguments:

Let A (Σ) denote the set of arguments that can be constructed from Σ. Let ⟨H1, h1⟩ and ⟨H2,
h2⟩ two arguments belonging to A(Σ):

• ⟨H1, h1⟩ refute ⟨H2, h2⟩ iff h1 ≡ ¬h2;

• ⟨H1, h1⟩ block ⟨H2, h2⟩ iff $h Î H2, h ≡ ¬h1.

To represent players in the game, with their respective roles, the SimParc project uti-
lizes the concepts above to model their agents. So, let us note D as the set of desires, B
the set of beliefs and A the set of actions. Let’s suppose, for example, that:

 B = {road, tourism_flow, beach} and

 A = {extensive_use, intangible_use}.

Each agent, then, will have the following rules and bases:

• The rules to generate desires (later on, named desires rules) RDi have the form: φ -:
β1, ..., βm, φ1, ..., φn, βi Î B and φi Î D. If the agent has beliefs β1, ..., βm and desires
φ1, ..., φn then desire φ is satisfied. These rules belong to the base BD = {(RDi, wi)},
where RDi represents a rule of desire and wi represents the intensity (weight) of
the conclusion desire φ. An example is:

 5

+road : tourism_flow & beach <-+raise_tourism(3), where (3) means that Intensity
(raise_tourism) = 3.

• The decision rules RAj have the form φ -: α, where αÎ A and φ Î D. If the agent
takes the decision of performing action α, then desire φ is satisfied. These rules
belong to the base BA = {(RAj, uj}, where RAj represents a rule of desire and uj
represents the utility of the action α according to the desire φ. An example is:

+extensive_use(0.75) -> +raise_tourism(0.75), with Utilityraise_tourism (exten-
sive_use) = 0.75.

The + sign in the beginning of each rule in the examples means, in AgentSpeak, that
the plans will be executed when the agent gains the respective belief.

There are also two more types of rules and associated knowledge bases: the epistem-
ic rules, that generate new beliefs from older beliefs, and the viability rules, that deter-
mine the viability of actions according to the existing beliefs. In the simplified scenario
presented here, we purposely consider that there are no additional beliefs to be inferred
by the environment, and that all the actions defined are viable, so we omitted these
rules. For more information on these rules, see (SORDONI, et al., 2010).

It is important to note that, for an agent to decide which action to choose, he must
compare the gain of each action. These gains are defined as:

gain φ (α) = intensity(φ) ∗ u φ (α).

If an action is related to more than one desire, φ1, ..., φn, than a gain vector of length n
will be created with its values corresponding to each gain φi (α). An aggregation func-
tion is used to transform the vector into a mathematical value, so that the gains of each
action may be compared (see more details in (SORDONI, et al., 2010)).

5 Manager Agent in SimParc

5.1 SimParc and the Park Manager Role
The SimParc project focuses on participatory management of protected areas. More spe-
cifically, the protected areas modelled in the game are Brazilian national parks. The law
defines the existence of a management council, only consultative in the case of national
parks, to include social representation (stakeholders). The game models the negotiation
process between the stakeholders, such as the park manager, representatives of local
communities, NGOs, tourism operators, among others.

In the game, each stakeholder is played by a human with the goal of deciding how to
best utilize the landscape units in the park. For instance, NGOs probably want more
conservation of the areas, while tourism operators want more flexibility (e.g., for tour-
ism visitation). They discuss and negotiate in order to try to achieve a common ground.

Each landscape unit represents a specific area of the park, with its own set of charac-
teristics such as forests, roads, beaches and waterfalls.

As stated above, according to legislation about Brazilian natural parks, the only re-
sponsible to make final decisions concerning the use of landscape units is the park man-
ager. But he will take into account the different opinions and interests of the stakehold-
ers. Therefore, the focus of this work and paper is on the park manager role and the way
to automate it into an artificial agent.

 6

5.2 Park Manager’s BDI Architecture
Following the system outlined in Section III, the park manager’s BDI architecture can
be modelled with the respective knowledge bases. For example, suppose that a lands-
cape unit has only two available actions extensive_use and intangible_use, and the agent
has the following beliefs about the unit: {“road”, ”waterfall”, ”forest”, ”beach”, ”tourism_
flow”,”forest_fire”}. Then, desires rules (RD base) are modeled as shown in Table I.

For instance, RD1 will add the desire raise_tourism with intensity 3, if the agent beli-
eves the environment has a tourism_flow and a beach (the context). Table II shows the
decision rules (RA base).

Name Rule
RD1 +road : tourism_flow & beach <-+raise_tourism(3)
RD2 +waterfall : true <- +~raise_tourism(2)
RD3 +forest : true <- + protect_forest(3)
RD4 +forest_fire: true <- +prevent_fire(3)

RD5 +beach : ~protect_forest(A) <-
+protect_forest_argument(C)

Table 1. Desire rules (RD Base)

Table III shows the Plans, that are executed when the actions extensive_use and intan-

gible_use become available. The raise_tourism desire related to extensive_use has utility
0.75, the protect_forest and prevent_fire desires related to intangible_use have utilities 1.0
and 0.5, respectively.

Name Rule

RA1 +extensive_use(0.75) : true <- !raise_tourism_ extensive_ use
(0.75)

RA2
+intangible_use(1.0) : true <- !protect_forest_intangible_use
(1.0);!prevent_fire_intangible_use(1.0/2);!protect_forest_prevent
_fire_intangible_use(1.0)

Table 2. Decision rules (RA Base)

It is important to note that the values of intensity and utility are modelled by the pro-
grammer, according to the manager’s “personality”. If this particular park manager is
more socioconservationist, he may prefer a more extensive use of the landscape unit and
therefore the utility from the desire raise_tourism may be bigger. The same applies if the
park manager is more preservationist and therefore prefers a more intangible use of the
landscape unit.

With the rules and parameters mentioned above, it is important to note first that
there are two attack relations between explanatory arguments:

• Refute attack between RD1 and RD2: since RD1’s conclusion is raise_tourism, and
RD2’s conclusion is ~raise_tourism, a refute attack relation is constituted. The in-

 7

tensity of the desire in RD1 is bigger than the intensity of the desire in RD2, thus
the raise_tourism desire continues on the agent’s base.

• Block attack between RD3 and RD5: since RD3’s conclusion protect_forest is present
in the body of RD5, a block attack relation is constituted. The intensity of the de-
sire in RD5 is bigger than the intensity of the desire in RD3, thus the desire pro-
tect_forest is removed from the agent’s base.

With the protect_forest desire removed, its gain is 0. So, the extensive_use action has a
gain 3*0.5 = 1.5 for the raise_tourism desire. The intangible_use action has a gain 3*0.75 =
2.25 for the prevent_fire desire. Since 2.25 is bigger than 1.5, the extensive_use action is
selected.

Name Plan

P1 +!raise_tourism_extensive_use(T): raise_tourism(A) <- .print (" extensive_use action
added from desire raise_tourism, with utility ",D, " and total gain ", D*T)

P2 +!raise_tourism_extensive_use(T) : not raise_tourism(A) <- .print ("extensive_use
action added from desire raise_tourism, with utility ",D, " and total gain ", 0)

P3
+protect_forest_argument(C) : protect_forest(A) & C>A <- .print ("protect_forest
negation added with intensity ",C, " and desire protect_forest with intensity ", A, "
removed");-protect_forest(A)

P4 +protect_forest_argument(C) : protect_forest(A) & C<A <- .print ("protect_forest
negation added with intensity ",C, " and desire protect_forest has bigger force ", A)

P5
+~raise_tourism(A): raise_tourism(B) & A>B <- .print("raise_tourism negation
added with intensity ", A, " and desire raise_tourism with intensity ",B, "
removed");-raise_tourism(B)

P6
+~raise_tourism(A): raise_tourism(B) & A<B <- .print("raise_tourism negation
added with intensity ", A, " and desire raise_tourism with intensity ",B, " has bigger
force")

P7
+!protect_forest_prevent_fire_intangible_use(A) : not protect_ forest(E) &
prevent_fire(D) & raise_tourism(C) & extensive_use (B) & C*B<=(D*A/2) <-
.print("intangible_use action executed with total gain: ",(D*A/2),", because ",
(D*A/2), " is bigger than ", C*B)

P8
+!protect_forest_prevent_fire_intangible_use(A) : not protect_ forest(E) &
prevent_fire(D) & raise_tourism(C) & extensive_use (B) & C*B>(D*A/2) <-
.print("extensive_use action executed with total gain: ",C*B,", because ", C*B , " is
bigger than ", (D*A/2))

Table 3. Plans

6 Implementation of the Manager Agent in Jason
The park manager agent BDI architecture mentioned in section IV.B, with its respective
RD and RA bases, has been implemented utilizing the Jason plug-in for Eclipse. Then, an
implementation of the mechanism to compare arguments in order to eliminate conflicts
has been modeled in this architecture.

 8

For instance,!raise_tourism_extensive_use(T) is used to check if the raise_tourism desire
was added from the RD in P1 and P2: since the agent has a rule that adds the
raise_tourism desire, P1 will be executed. If the agent’s belief base did not include a road,
for instance, then the raise_tourism desire would not be added from RD1, and the agent
would not believe that this desire is feasible – that is what the not raise_tourism(A) clause
means. In this case, P2 would be executed.

The goals !protect_forest_intangible_use(T) and !prevent_ fire_intangible_use(T) are used
in a similar fashion, and are not described here.

It is important to note the difference between the not l and the ~l operators in
AgentSpeak: in the latter, the agent believes l is false, while in the former the agent does
not believe l is true – which is not the same as believing l is false; the agent may be simp-
ly ignorant about l. Also, the---operator, used in P3 and P5, is used to remove the desire
from the agent’s base (BORDINI, HUBNER and WOOLRIDGE, 2007).

The protect_forest_argument(C) goal is used to check if a block attack relation exists in
P3 and P4: in P3, if the intensity of the negation of the protect_forest desire, denoted by C, is
bigger than the intensity of the desire itself, denoted by A, then the protect_forest desire
is removed. In P4, if C is smaller than A, then the desire is not removed. In this imple-
mentation, C has been set to 4 and A to 3, so P3 applies and the desire is removed.

The refute attack relation, on the other hand, is tested in P5 and P6. In P5, if the inten-
sity of the negation of the raise_tourism desire, denoted by A, is bigger than the intensity
of the desire itself, denoted by B, then the raise_tourism desire is removed. In P6, if A is
smaller than B, then the desire is not removed. In this implementation, A has been set to
2 and B to 3. So, P6 applies and the desire is not removed.

Lastly, the plan !protect_forest_prevent_fire_intangible_ use(T) is used to consolidate all
results. Since this goal is part of the body of the plan of the intangible_use action, its con-
text needs to test if the desires protect_forest, prevent_fire and raise_tourism are available
and if the action extensive_use is available. Then, it checks the gains of each action ac-
cordingly and selects an action to perform. For instance, P7 and P8 test if the desire pro-
tect_forest is present in the belief base and if the other desires are still feasible, if the ex-
tensive_use action is still available and if the gains of the intangible_use action are bigger
than the gains of the extensive_use action.

Similar clauses, omitted here, have been added for all possible combinations in the
context, so that the agent will always know how to calculate the gains and choose an
action.

7 Results
The results of the implementation in Jason, as logged by the agent (through the .print
command), are:

• extensive_use action added from desire raise_tourism, with utility 0.75 and total
gain 2.25;

• raise_tourism negation added with intensity 2 and desire raise_tourism with inten-
sity 3 has bigger force;

• protect_forest negation added with intensity 4 and desire protect_forest with inten-
sity 3 removed;

• intangible_use action added from desire prevent_fire with utility 0.5 and total gain
1.5;

• extensive_use action executed with total gain 2.25, because 2.25 is bigger than 1.5;

 9

Thus, the resulting decision by the park manager is extensive_use.

Suppose that we want to change the profile of the park manager from socioconserva-
tionist to preservationist, using the protect_forest desire as a parameter. Then, the intensity
of ~protect_forest will be slightly adjusted from 4 to 2, causing the desire protect_forest to
not be removed in the attack relation. The total utility of the intangible_use action will be
3*0.5 (prevent_fire desire) + 3*1.0 (protect_forest desire) = 4.5, surpassing the utility of the
extensive_use action. The result, as traced by the agent, would be as following:

• extensive_use action added from desire raise_ tourism, with utility 0.75 and total
gain 2.25;

• raise_tourism negation added with intensity 2 and desire raise_tourism with inten-
sity 3 has bigger force;

• protect_forest negation added with intensity 2 and desire protect_forest has bigger
force 3;

• intangible_use action added from desire protect_forest with utility 1 and total gain
3;

• intangible_use action added from desire prevent_fire with utility 0.5 and total gain
1.5;

• intangible_use action executed with total gain 4.5, because 2.25 is bigger than 2.25;

In this second case, the decision is thus intangible_use. This example shows the flexi-
bility of the BDI model that makes use of the argumentation: it allows for the agent to
deliberate and decide based on its beliefs and feasible desires while at the same time
eliminating conflicts between them. In this case, the conflict between the protect_forest
desire and its negation is resolved by comparing their respective forces.

8 Conclusion and Future Work
In this paper, we have presented a prototype architecture of an artificial agent able to
make decisions by comparing arguments. The architecture is based on a BDI architec-
ture (namely, the Jason/AgentSpeak framework/language). We have modeled an argu-
mentation system through different knowledge base layers and the relation of attacks
between arguments, as a basis to select best viable arguments. We have tested our ar-
chitecture by modeling a park manager in a serious game for participatory management
of protected areas. The park manager artificial agent makes decisions about conserva-
tion types by examining and reasoning (comparing) facts and arguments about the pro-
tected area situation and concerns.

As a future work, already ongoing, we plan to completely automate the management
of attacks between arguments, in order to increase the agent’s autonomy and reasoning
capacity. In addition, being able to track the agent’s reasoning to choose an argument
over another enables the agent to provide the user feedback (online or offline, which
could be used for explanation) about what is happening in the system. Last, argumenta-
tion could also be used, not only for internal deliberation within a single agent, but also
for negotiation between agents by exchanging and evaluating arguments. This leads to
the prospects of artificial negotiating players.

 10

References

1. ADAMATTI, D. F.; SICHMAN, J. S.; COELHO, H. An analysis of the

insertion of virtual players in GMABS methodology using the Vip-Jogoman
prototype. Journal of Artificial Societies and Social Simulation, v. 12, n. 3,
p. 7, 2009.

2. BARRETEAU, O. et al. Our companion modelling approach. Journal of
Artificial Societies and Social Simulation, v. 6, n. 1, 2003.

3. BARRETEAU, O. et al. Role-playing games for opening the black box of
multi-agent systems: method and lessons of its application to Senegal River
Valley irrigated systems. 2001.

4. BORDINI, R. H.; HUBNER, J. F.; WOOLRIDGE, M. Programming multi-
agent systems in AgentSpeak using Jason. John Wiley & Sons, 2007.

5. BRIOT, J.-P. et al. Participatory Management of Protected Areas for Biodiver-
sity Conservation and Social Inclusion. In D. Adamatti (Ed), Multi-Agent
Based Simulations Applied to Biological and Environmental Systems, Ad-
vances in Computational Intelligence and Robotics (ACIR) Book Series.
IGI-Global, pp. 295–332.

6. DIGNUM, F. et al. Games and agents: Designing intelligent gameplay. Inter-
national Journal of Computer Games Technology, v. 2009, 2009.

7. GUYOT, P.; HONIDEN, S. Agent-Based Participatory Simulations: Merging
Multi-Agent Systems and Role-Playing Games. Journal of Artificial Societies
and Social Simulation, V. 9, N. 4, 2006.

8. HOCINE, N.; GOUAICH, A.. A survey of agent programming and adaptive
serious games. RR-11013, 2011, pp. 8. Disponível em http://hal-
lirmm.ccsd.cnrs.fr/lirmm-00577722

9. KAKAS, A.; MORAITIS, P. Argumentation based decision making for auton-
omous agents. In: PROCEEDINGS OF THE SECOND INTERNATIONAL
JOINT CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT
SYSTEMS - ACM, 2003. p. 883-890. [

10. LE PAGE, C. et al. Participatory agent-based simulation for renewable re-
source management: the role of the Cormas simulation platform to nurture a
community of practice. Journal of Artificial Societies and Social Simulation,
v. 15, n. 1, p. 10, 2012.

11. PANISSON, A. R. et al. An Approach for Argumentation-based Reasoning
Using Defeasible Logic in Multi-Agent Programming Languages. In: 11TH
INTERNATIONAL WORKSHOP ON ARGUMENTATION IN
MULTIAGENT SYSTEMS. 2014.

12. RAHWAN, I.; AMGOUD, L. An argumentation based approach for practical
reasoning. In: PROCEEDINGS OF THE FIFTH INTERNATIONAL JOINT
CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT
SYSTEMS. ACM, 2006. p. 347-354.

13. SORDONI, A. et al. Design of a participatory decision making agent architec-
ture based on argumentation and influence function – Application to a seri-
ous game about biodiversity conservation. RAIRO – An International Jour-
nal on Operations Research, p. 269–284. 2010.

 11

14. WEI, W.; ALVAREZ, I.; MARTIN, S. Sustainability Analysis: Viability Con-
cepts to Consider Transient and Asymptotical Dynamics in Socio-Ecological
Tourism-based Systems. Ecological Modelling, V. 251, P. 103-113, 2013.

15. WOOLRIDGE, M.; JENNINGS, N. R.; KINNY, D. A methodology for agent-
oriented analysis and design. In: PROCEEDINGS OF THE THIRD
INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AGENTS
99. 1999.

