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Abstract. The goal of the Internet of Things (IoT) is to transform any thing around
us, such as a trash can or a street light, into a smart thing. A smart thing has the
ability of sensing, processing, communicating and/or actuating. In order to achieve the
goal of a smart IoT application, such as minimizing waste transportation costs or reducing
energy consumption, the smart things in the application scenario must cooperate with each
other without a centralized control. Inspired by known approaches to design swarm of
cooperative and autonomous robots, we modeled our smart things based on the embodied
cognition concept. FEach smart thing is a physical agent with a body composed of a
microcontroller, sensors and actuators, and a brain that is represented by an artificial
neural network. This type of agent is commonly called an embodied agent. The behavior
of these embodied agents is autonomously configured through an evolutionary algorithm
that is triggered according to the application performance. To illustrate, we have designed
three homogeneous prototypes for Smart Street Lights based on an evolved network. This
application has shown that the proposed approach results in a feasible way of modeling
decentralized smart things with self-developed and cooperative capabilities.

Keywords: embodied cognition, evolved network, smart things, internet of things, self-
developed systems, cooperative systems, emergent communication system

Resumo. A Internet das Coisas (sigla “loT"de “Internet of Things"em inglés) visa trans-
formar qualquer coisa do nosso dia-a-dia, a exemplo de lixeiras e postes publicos, em coisas
inteligentes (“smart things"). Um “smart thing"tem a habilidade de coletar e processar
dados do ambiente, comunicar e/ou agir. De forma a alcancar o objetivo geral de uma
aplicacao em IoT, a exemplo de minimizar os custos com a coleta de lixo ou reduzir o
consumo de energia, os “smart things"no cenario de aplicacdo devem cooperar uns com
os outros sem que haja um ponto central para coordernar essas interagoes. Inspirado
em abordagens existentes para modelar grupos de robés auténomos e cooperativos, os
“smart things"foram modelados com base no conceito de cognigao incorporada (“embodied
cognition"). Cada “smart thing"é um agente fisico com um corpo composto por um mi-
crocontrolador, sensores e atuadores, e por um “cérebro"que é representado por uma rede
neural artificial. Este tipo de agente é comumente chamado de agente incorporado (“em-
bodied agent"). O comportamento desses agentes é automaticamente configurado através



de um algoritmo evolutivo, que é ativado de acordo com a performance da aplicacao. Para
ilustrar o uso do modelo, trés prototipos de postes publicos inteligentes foram desenvolvi-
dos fazendo uso de uma rede neural evoluida. Como resultado, essa aplicagdo mostrou que
fazendo uso dessa abordagem , é possivel modelar um conjunto decentralizado de “smart
things"com habilidades de autodesenvolvimento e de cooperacao.

Palavras-chave: cognigao incorporada, rede neural evoluida, coisas inteligentes, internet
das coisas, sistemas autodesenvolvidos, sistemas cooperativos, sistema de comunicagao
emergente
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1 Introduction

A few years ago, Kephart and Chess (2003) [1] called the global goal to connect trillions of
computing devices to the Internet the nightmare of ubiquitous computing. The reason for
that is that to reach this global goal requires a lot of skilled Information Technology (IT)
professionals to create millions of lines of code, and install, configure, tune, and maintain
these devices. According to Kephart (2005) |2|, in some years, IT environments will be
impossible to be administered, even by the most skilled I'T professionals.

Predicting the emergence of this problem, in 2001 the IBM company suggested the cre-
ation of autonomic computing [3]. IBM recognized that the only viable solution to resolve
this problem was to endow systems and the components that comprise them with the abi-
lity to manage themselves in accordance with high-level objectives specified by humans [2].
Therefore, IBM proposed systems with self-developed capabilities. The company empha-
sized the need of automating IT key tasks, such as coding, configuring, and maintaining
systems, based on the progress observed in the automation of manual tasks in agriculture.

Other IT companies agreed with IBM and then generated their own manifests, such
as Hewlett-Packard [4] and Microsoft [5|. However, the IT Industry interest in the deve-
lopment of self-management devices is not yet very evident. As a result, not only has the
goal of the Internet of Things (IoT) to connect billions of devices to the Internet not been
reached, but also we have been experiencing the problems previously listed by Kephart
and Chess (2003) [1].

The truth is that companies and researchers are so busy competing to define the official
protocol and architecture for the Internet of Things, that very little research has been
done to provide a sophisticated control to manage all these billions of things. As a result,
there is a lack of software to support the development of a huge number of different IoT
applications.

In this context, we have been investigating how to create applications based on the
Internet of Things with self-developed capabilities. To this end, our approach consists in:

e Developing Smart Things:

— Things that are autonomous and able to cooperate and execute complex beha-
vior without the need for centralized control to manage their interaction.

— Things that are able to have behavior assigned at design-time and/or at run-
time.

e Providing mechanisms to allow things to self-adapt and to improve their own beha-
vior;

To reach these objectives, we previously developed a generic software basis for IoT,
which is called the “Framework for Internet of Things" (FIoT) [6]. The framework approach
was used to develop the common requirements among IoT applications and implement a
reusable architecture |7]. We developed FIoT according to the following directions:

1. To create autonomous things and a distributed control, we modeled the framework
based on a multi-agent approach [8]. According to Cetnarowicz et. al (1996) [§], the
active agent was invented as a basic element from which distributed and decentralized
systems could be built. In our approach, we considered the use of embodied agents,



which is typically used to model and control autonomous physical objects that are
situated in actual environments [9].

2. To control the things, we chose a control architecture based on artificial neural
networks [10]. A neural network is a well known approach to dynamically pro-
vide responses and automatically create a mapping of input-output relations [10]. In
addition, it is commonly used as an internal controller of embodied agents [11,[12].

3. To make things self-adaptive, we proposed the use of the IBM control-loop [13]| com-
bined with various Machine Learning (ML) techniques, notably supervised learning
and evolutionary algorithms [14].

As the development of smart things is part of a broader context, a set of related aspects
will be left out of the scope of this work. Thus, the following approaches are not directly
addressed by this work: security, ontology, protocols and scalability.

The goal of this paper is to show how FIoT can be used to prototype physical smart
things based on embodied cognition. Previously, we modeled and simulated smart traffic
lights in [6], which were tested in a simulated car traffic application. However, we only
provided simulated smart things. Therefore, we did not show how to transfer the evolved
controller to physical smart things. For instance, we created a simpler experiment, but we
will show all the steps of engineering smart things using evolved neural networks. We will
present the steps of modeling and evolving a neural network in a simulated environment,
and the step of transferring this evolved network to physical devices.

We present this experiment in Section [d It presents the experimental setup, results,
and evaluation. The remainder of this paper is organized as follows. Section [2| presents the
related work. Section [3] describes the background for the proposed approach. The paper
ends with conclusive remarks in Section Bl

2 Related Work

There are some research results in the literature about smart things, which use a kind of
self-developed approach [15-18|. Baresi et al. [16], for example, provide a simulation for a
smart green house scenario. In their simulation, flowers are distributed in different rooms
based on specific characteristics. If a flower is sick, it will be allocated to another room or
its room’s configuration will change. For this purpose, the authors use adaptive techniques
to perform discovery, self-configuration, and communication among heterogeneous things.
However, most of this research presents only simulated smart things and does not show
how to transfer their approaches from a simulated smart thing to a physical one. In [18§],
one of the few papers that designed a prototype for a smart thing, the authors state that
new algorithms need to be integrated to their approach for the development of cooperative
smart things. They developed smart street lights that are not able to interact with each
other. Thus, each smart street light makes decisions independently.

There are also some commercial applications based on smart things [19-21]. But they
do not seem to provide things with a self-developed capability. For example, in Home-
Kit’s [19] approach, the user needs to control and specify the behavior of each one of the
smart devices, instead of things having the ability of acting by themselves and learning
to adapt. Very recently, IBM proposed the use of the embodied cognition concept in its



future products [22,23| in order to create devices featuring dynamic learning and reasoning
about how to act. Their proposed solution is to embed Watson - an IBM platform that
uses machine learning techniques, especially neural networks - into smart things.

Besides the software industry starting to discuss the use of embodied cognition to
model physical devices, this approach has been used in robotic literature for many years
[9,[11,124-26]. Our goal has been to adapt this approach and show that it is also feasible
to model applications based on the Internet of Things that require smart things with
self-developed and cooperative capabilities.

3 Background

3.1 Embodied Agents

Embodied agents have a body and are physically situated, that is, they are physical agents
interacting not only among themselves but also with the physical environment. They can
communicate among themselves and also with human users. Robots, wireless devices and
ubiquitous computing are examples of embodied agents [9].

Figure [1| depicts an embodied agent according to the description presented by the
Laboratory of Artificial Life and Robotics [27] [28] about embodied agents. They define
embodied agents as agents that have a body and are controlled by artificial neural networks
[10]. These agents use learning techniques, such as an evolutionary algorithm, to adapt to
execute a specific task.

Embodied

percepts

LU

Figura 1: Embodied agent model.

3.2 Evolving Embodied Agents

The authors in [29] describe the process for evolving embodied agents using an evolutionary
algorithm, such as genetic algorithm. Accordingly, we provided a simplified flowchart of
this process in Figure |2 The interested reader may consult more extensive papers [30-32]
or our dissertation [33| (chap. ii, sec. iii).

Normally, the use of an evolutionary algorithm in a multi-agent system provides the
emergence of features that were not defined at design-time, such as a communication sys-
tem. While in traditional agent-based approaches the desired behaviors are accomplished
intuitively by the designer, in evolutionary ones these are often the result of an adaptation



process that usually involves a larger number of interactions between the agents and the
environment [29].

Generate a pool of candidate
representations to encode the
embodied agent’s neural network

[

Select each candidateand
encode the neural network

Allow the fittest candidatesto
reproduce by generating copies Each embodied agent (physical
of their genotypes with the or simulated) is then let free
addition of changes introduced to act (move, manipulate)
by mutations

1

Automatically evaluate the
performance of embodied agents on
various tasks and calculatesthe fitness
of each candidate

Select the fittest candidates (i.e. neural
network configurationsthat provided
agents with the best performances

Select the best candidateto
encode the neural network.
Then, agents are ready to act in
the real world

The exhibited
performance
by agents is
satisfactory?

Figura 2: Flowchart: Evolving embodied agents.

The process of evolving an embodied agent’s neural network can occur on-line or off-
line [34]. The on-line training uses physical devices during the evolutionary process. In
such case, an untrained neural network is loaded into a physical agent. Then, the evolution
of this neural network occurs based on the evaluation of how this real device behaves in a
specific scenario. The off-line training evolves the neural controller in a simulated agent [34],
and then transfers the evolved neural network to a physical agent.

The major disadvantage of executing on-line evolution is the time of execution, since
evaluating physical devices may require much time. In addition, the training process
based on evolution can produce bad configurations for the neural network, which could
generate serious problems in particular scenarios. Otherwise, the on-line training insures
that evolved controllers function well in real devices.

3.3 FIoT: A Framework for the Internet of Things

The Framework for the Internet of Things (FIoT) [6] is an agent-based software framework
that we implemented [6] to generate application controllers for smart things through lear-
ning algorithms. The framework does not cover the development of environment simulators,
but only the development of smart things’ controllers.

If a researcher develops an application using FIoT, his application will contain a Java
software already equipped with modules for detecting smart things in an environment,
assigning a controller to a particular thing, creating software agents, collecting data from
devices and supporting the communication structure among agents and devices.



Some features are variable and may be selected /developed according to the application
type, as follows: (i) a control module such as a neural network or finite state machine; (2)
an adaptive technique to train the controller; and (iii) an evaluation process to evaluate the
behavior of smart things that are making decisions based on the controller. For example,
Table [I] summarizes how the “Street Light Control” application will adhere to the proposed
framework, while extending the FIoT flexible points.

Tabela 1: FloT’s Flexible Points
FloT Framework Street Light Control Application

Controller Three Layer Neural Network

Collective Fitness Evaluation: Test a pool of
candidates to represent the network parameters.
Making Evaluation For each candidate, it evaluates the collection
of Smart Street Lights, comparing fitness
among candidates

Evolutionary Algorithm: Generate a pool of

Controller Adaptati .
ontrofier Adaptation |- ndidates to represent the network parameters

4 Application Scenario: Smart Street Lights

In order to evaluate our proposed approach to create self-developed and cooperative smart
things, we developed a smart street light application. The overall goal of this application is
to reduce the energy consumption and maintain the maximum visual comfort in illuminated
areas. For this purpose, we provided each street light with ambient brightness and motion
sensors, and an actuator to control its light intensity. In addition, we also provided street
lights with wireless communicators. Therefore, they are able to cooperate with each other
in order to establish the most evaluable routes to the passers-by and to achieve the goal of
minimizing energy consumption.

We used an evolutionary algorithm to support the design of this system’s features
automatically. By using a genetic algorithm, we expect that a policy for controlling the
street lights, with a simple communication system among them, will emerge from this
experiment. Therefore, no system feature such as the effect of ambient brightness on light
status changes was specified at design-time.

As we discussed, the training process can occur in a simulated or in a physical en-
vironment. However, many devices could be damaged if we were to use real equipment.
Therefore, to execute the training algorithm, we decided to simulate how smart street lights
behave in a fictitious neighborhood. After the training process, we transferred the evolved
neural network to physical devices and observed how they behaved in a real scenario.

4.1 Simulating the environment

In this subsection, we describe a simulated neighborhood scenario, where Figure |3 depicts
the elements that are part of the application namely, street lights, people, nodes and edges.
We modeled our scenario as a graph, in which a node represents a street light position and
an edge represents the smallest distance between two street lights.
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Figura 3: Simulated Neighborhood.

The graph representing the street light network consists of 18 nodes and 34 edges.
Each node represents a street light. In the graph, the yellow, gray, black and red triangles
represent the street light status (ON/DIM/OFF/Broken Lamp). Each edge is two-way
and links two nodes. In addition, each edge has a light intensity parameter that is the sum
of the environmental light and the brightness from the street lights in its nodes. Our goal
is to simulate different lighting in different neighborhood areas.

People walk along different paths starting at random departure points. Their role is to
complete their routes, reaching a destination point. A person can only move if his current
and next positions are not completely dark. In addition, we also supposed that people
walk slowly if the place is partially devoid of light. For simulation purposes, we chose four
nodes as departure points (yellow nodes) and two as destinations (red nodes). We started
with ten people in this experiment. We also configured that 20% of the street lights lamps
would go dark during the simulation.

4.2 Smart Street Light

Each street light in the simulation has a micro-controller that is used to detect the appro-
ximation of a person, interact with the closest street light, and control its lights. A street
light can change the status of its light to ON, OFF or DIM. Smart street lights have to
execute three tasks: data collection, decision- making and action enforcement. The first
task consists of receiving data related to people flow, ambient brightness, data from the
neighboring street lights and current light status. To make decisions, smart street lights



use a three-layer feedforward neural network with a feedback loop [10]. Feedback occurs
because one or more of the neural network’s outputs influence the next neural network’s
inputs.

4.3 Creating the Neural Network Controller

We used the FIoT (see Section to instantiate the three-layer neural network controller
for our smart street lights (see Figures 4| and .

®  ® simplesLightController
<Type>: lightNeuralNetwork
<Input>: 4
previousListeningDecision
lightSensor

motionSensor
wirelessReceiver

<0Qutput>: 3
wirelessTransmitter
listeningDecision
lightDecision

<NHiddens>: 2

<NWeight>: 14

<end>

Figura 4: Configuration file to create a neural network controller using FIoT.

[ FloT

|| Thr... d Load Agents Configuration | Sele... d Set Method Configuration Start

lightNeuralNetwork
previousListeningDecision

Aa'relessTransmitter

jsteningDecision

M

i‘htDecision

jrelessReceiver

Figura 5: The Neural Network Controller for Smart Street Lights: zeroed weights (FIoT’s
Application View).



The input layer includes four units that encode the activation level of sensors and
the previous output value of listeningDecision. The output layer contains three output
units: (i) listeningDecision, that enables the smart lamp to receive signals from neighboring
street lights in the next cycle; (ii) wirelessTransmitter, a signal value to be transmitted to
neighboring street lights; and (iii) lightDecision, that switches the light’s OFF/DIM/ON
functions.

The middle layer of the neural network has two neurons connecting the input and
output layers. These neurons provide an association between sensors and actuators, which
represent the system policies that can change based on the neural network configuration.

4.4 Training the Neural Network

The weights in the neural network used by the smart street lamps vary during the training
process, as the system applies a genetic algorithm to find a better solution. Figure[f]depicts
the simulation parameters that were used by the evolutionary algorithm. We selected these
parameters values (i.e number of generation and tests, population size, mutation rate, etc.)
according to known experiments of evolutionary neural networks that we found in the

literature [11}[35] (see Figure [2] - Section [3.2).

[ ) @ | geneticConfiguration...
<numberOfGeneration>:200
<number0fTests>:20
<num0fBestToBeSelected>:20
<num0fChildren>:4
<numberOfPopulation=>:100
<elitismSaveFitness>:1
<maxNumGenes>: 14
<valueMax0fGene>: 2
<rateMutation>:20
<fitness>:1

Figura 6: Configuration file to evolve the neural network via genetic algorithm using FIoT.

During the training process, the algorithm evaluates the weight possibilities based on
the energy consumption, the number of people that finished their routes after the simulation
ends, and the total time spent by people to move during their trip. Therefore, each weights
set trial is evaluated after the simulation ends based on the following equations:

(completedPeople x 100)

People = 1
preopte total People (1)
B (total Energy x 100)
pEnergy = (11><(timeSimulationXtota,lSma'rtLights)) (2)
10
totalTimeTrip x 100
oTrip = (totalTimeTrip ) 3)

((W) X total People)

fitness = (1.0 x pPeople) — (0.6 x pTrip) — (0.4 x pEnergy) (4)
in which pPeople is the percentage of the number of people that completed their routes

as of the end of the simulation out of the total number of people in the simulation; pEnergy
is the percentage of energy that was consumed by street lights out of the maximum energy



value that could be consumed during the simulation. We also considered the use of the
wireless transmitter to calculate energy consumption; p7'rip is the percentage of the total
duration time of people’s trips out of the maximum time value that their trip could spend;
and fitness is the fitness of each representation candidate that encodes the neural network.
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Figura 7: Simulation results - Most-Fit from each generation.
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Normally, the performance of the most-fit individual is better than the others. Figure
m illustrates the best individual from each generation (i.e. the candidate with the highest
fitness value). As shown, the best individuals from the generations have tend to minimize
energy consumption and find an equilibrium between energy consumption and the trip
time. We selected the best individual from the last generation to investigate its solution,
as shown in the subsection below .

4.4.1 Evaluation of the Best Candidate

After the end of the evolutionary process, the algorithm selects the set of weights with the
highest fitness (equation . Figure [8| depicts the evolved neural network configured with
the best set of weights found during the evolution.

One disadvantage of using neural networks combined with evolutionary algorithms is
to understand and explain the behaviors that were automatically assigned by the smart
things. Therefore, we executed the simulated street lights using the evolved network in
order to generate logs and extract the rules that are implicit in patterns of the generated
input-output mapping. For example, Figure [0] depicts some logs that were generated by
using the runtime monitoring platform proposed by Nascimento et al. and that we

analyzed to understand why and when street lights decided to communicate and switch
the lights ON.



After analyzing logs, we could realize the rules that were created by the evolved neural
network in order to understand why and when street lights decided to communicate and
switch the lights ON. The code below exemplifies some of these rules:

([0 =10ANL =05A1,=00AI3 :0.0) =
(Outo =0.0AOuty = 1.0A Outy = 0.0)

(Io=10ANI; =05A1I,=1.0A13=0.0) =

(Outy = 0.0 A Outy = 1.0 A Outy = 0.5)

(lo=00AI; =0.0NI3=0.0A1I3=0.0) =

(Outg = 0.5 A Outy = 0.0 A Outy = 0.0)

(lo=10ANL1 =0.0ANI=0.0A1I3=0.5) =

(Outy = 0.0 A Out; = 1.0 A Outy = 0.5)

in which the variables are:
Iy = previousListeningDecision, Iy = lightSensor,
Iy, = motionSensor, I3 = wireless Receiver, (9)
Op = wirelessTransmitter, O1 = listeningDecision,

09 = lightDecision

Based on the generated rules and the system execution, we could observe that only the
street lights with broken lamps emit “0.5"by its wireless transmitter (rule . In addition,
we also observed that a street light that is not broken switches its lamp ON if it detects a
person’s approximation (rule @ or receives “0.5"from wireless receiver (rule ) .

Discussion

Imagine if we had to codify into the physical smart lights all of these rules that could be
operated by this evolved neural network. Using the evolved neural network, we saved lines
of code and programming time. The code size is an important parameter in this kind of
project, since it is normally composed of devices with many resource constraints.

We provided street lights with the possibility of disabling the feature of receiving signals
from neighboring street lights. In an initial instance, we did not consider broken lamps.
Therefore, as the action of communication increases energy consumption, the street lights
decided to disable this feature. However, when we added broken lamps to the scenario,
during the evolutionary process, the solution of enabling a communication system among
street lights provided better results. Therefore, as shown in the rules generated by the
evolved neural network, a smart street light takes lightSensor, motionSensor and wireles-
sReceived inputs into account to make decisions. Thus, the best solution does not ignore
any of these parameters.

One advantage of engineering physical devices based on embodied cognition is that the
found solution normally is sufficiently generic. To estimate how generic is the approach,
we simulated another neighborhood with a different number of street lights and a different
configuration map, then we applied this best solution to this new scenario. The results
showed that the evolved street lights’ behavior do not vary based on the number of street
lights, and the lighting application continues functioning well even if we disable some street
lights in the scenario.

10
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Figura 9: Log Analysis: Why and when evolved street lights switch the lights ON or emit
the signal “0.5"7

11

Figura 8: The Evolved Neural Network to be used as a controller for real Street Lights
(FIoT’s Application View).
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lights setOutpu. : nodel2 Transmitter: 0 O Listening: 1 0 Light: 0 5
lights readinpu. : nodel3 PrevListen: 1 0 Light: 0 5 Motion: 0 0 Wireless: 0 5
lights setOutpu. : node13 Transmitter: 0 O Listening: 1 0 Light: 0 5
. lights . readlnpu... : nodel4 PrevListen: 1 0 Light: 0 5 Motion: 0 0 Wireless: 0 0
. lights . setOutpu... : node14 Transmitter: 0 O Listening: 1 0 Light: 0 0
lights readinpu. : nodel5 PrevListen: 0 0 Light: 0 0 Motion: 1 0 Wireless: 0 0
lightCo... lights ... INFO str... setOutpu... 5.46333... Node: nodel5 Transmitter: 0 O Listening: 0 O Light: 0 0



4.5 Prototyping the Smart Street Light Device

As depicted in Figure [I0} the prototype of the Smart Street Light is composed of an
Arduino and the following sensors and actuators: (i) HC-SR501 (a device that detects
moving objects, particularly people. The detection distance is slightly shorter - maximum
of 7 meters); LM393 light sensor (a device to detect the ambient brightness and light
intensity ); nRF24L01 (a wireless module to allow one device to communicate with another);
and (iii) LEDS (the representation of a lamp).

Figura 10: Prototyping the Smart Street Light.

We put two LEDs in this circuit. Our goal is to simulate light intensity. Therefore, if
a smart street light decides to set its light intensity to the maximum, both LEDs will be
on. If the light intensity is medium, one LED will be on and the other LED will be off.

4.6 Transferring the evolved neural network to physical devices

After the neural network has been evolved, we codified it into the Arduino. We show below
the code in C++ language that operates as a neural network inside the Arduino:

double fSigmoide(double x){
double output =1 / (1 + exp(x));
return output;

}

double calculateHiddenUnitOutput(double w[4]){

double H = previousListeningDecisionxw[0] +

lightSensor *w|1]+motionSensorxw|2]+wirelessReceiversw|3];
double HOutput = fSigmoide(H);

return HOutput;

}
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double calculateOutputDecisions(double w[2], double h0, double h1){
double outputSum = h0*w[0] + hlsw[1];

double output = fSigmoide(outputSum);

return output;

}

As we described in section [4.2] each smart street light has to execute three tasks.
Accordingly, we present below the main parts of the C++ code that the Arduino executes
to attend to the tasks of collecting data, making decisions and enforcing actions:

e Collecting data:

void getInputs(){

lightSensor = readLightSensor();
motionSensor = readMotionSensor();
previousListeningDecision = listeningDecision ;
if (listeningDecision ==1){

receivedSignal = receiveWirelessDatal();

}

else

receivedSignal = 0;

}

e Making Decision (calculating output decisions based on the evolved neural network
functions):

double weightsHO[4] = 1.2, -0.8, 1.6, -0.5;
double weightsH1[4] = 1.6, -0.8, 1.5, -0.3;
double HO = calculateHiddenUnitOutput(weightsHO);
double H1 = calculateHiddenUnitOutput(weightsH1);

double weightsTransmitterOutput[2] = -0.6, -0.2 ;
double transmitterOutput = calculateOutputDecisions(weightsTransmitterOutput, HO, H1);

double weightslisteningDecision [2] = -0.9, -0.7;
double listeningDecisionOutput = calculateOutputDecisions(weightslisteningDecision, HO, H1);

double weightslightDecision [2] = 1.7, -0.4;

double lightDecisionOutput = calculateOutputDecisions(weightslight Decision, HO, H1);
if (lightDecisionOutput >threshold2){

lightDecision = 1.0;

}

else{

if (lightDecisionOutput >threshold1){

lightDecision = 0.5;

}

else lightDecision = 0.0;

}
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e Enforcing action:

void setOutputs(){
sendWirelessData(transmitterSignal);

writeLed(lightDecision);

void writeLed(double value){
if (value == 1){
digitalWrite (ledPin, HIGH);
digitalWrite (led2Pin, HIGH);

else if (value == 0.5){
digitalWrite (ledPin, HIGH);
digitalWrite (led2Pin, LOW);

else{

digitalWrite (ledPin, LOW);
digitalWrite (led2Pin, LOW);
}

}

4.7 Testing Physical Smart Street Lights in a Real Scenario

In a controlled real scenario, we put three prototypes of the smart street lights using the
evolved neural network into operation. We distributed them in the scenario as shown in

Figure

Smart Street Light Prototype

. Smart Street Light Prototype
with broken lamp

o A

Person

Figura 11: Real Scenario where we tested a network of three smart street lights prototypes.

To compare the behavior of physical smart street lights to the simulated ones, we also
collected logs from the Arduinos. As we could observe, the behavior of the physical smart
street lights was similar to the simulated ones: it switches lamps ON if it receives a signal
from the closest street light or detects the approximation of a person. The major difference
occurred because we used LEDs, instead of real lamps. Therefore, the brightness of LEDs
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did not interfere on the light sensor as did a real lamp H

5 Conclusion and Future Work

We believe these preliminary results are promising. We proposed the use of the embodied
cognition concept to model smart things. To illustrate, we modeled and implemented smart
street lights. Each smart street light had sensors and actuators to interact to the environ-
ment, and used an artificial neural network as a internal controller. In addition, we used a
genetic algorithm to allow smart street lights to self-develop their own behaviors through a
non-supervised training. As a result, a group of initially non-communicating smart street
lights developed a simple communication system. By communicating, the group of street
lights seems to cooperate in order to achieve collective targets. For example, to maintain
the maximum visual comfort in illuminated areas, the street lights used communication to
reduce the impact of broken lamps.

After evolving the neural controller, we designed three homogeneous prototypes of the
smart street light and transferred the evolved controller into their microcontrollers. We
put them in a real scenario and compared them to the simulated street lights. Previously,
we described, in [6], a more complex application, but we only had provided a simulated
scenario. In this work, we showed that is possible to automatically create and train a smart
thing’s controllers using FIoT and to use it to control physical smart things.

As an ongoing work, we need to improve the real scenario, testing the use of the
evolved network to control real street lights in a real neighborhood. In addition, we need
to develop more realistic scenarios, taking several other environmental parameters into
account. Furthermore, since we had shown that the use of an evolved neural network
results in saving code lines, we also need to test this experiment using microcontrollers
with fewer resources, such as battery and memory. Another challenge from creating more
realistic scenarios is to model heterogeneous experiments, training different smart things in
the same scenario. For example, the application of smart waste collecting will require two
types of smart things: smart trash cans and smart waste collection vehicles. Therefore,
these different types of smart things will need to cooperate with each other in order to
achieve the goal of minimizing waste transportation costs and promoting environmental
sustainability.

Our next goal is to allow the system to initiate a new learning process after the evol-
ved network has been already transferred to the physical smart things. Therefore, we will
change the neural network’s parameters at run-time and allow the real smart things to
adapt their behavior in the face of changing environmental demands. For this purpose,
we need to use a simulator for wireless devices that allow our training system to commu-
nicate with and for programming microcontrollers at runtime, such as Terra [38|, which
is a system for programming wireless sensor network applications. Therefore, our system
will evaluate physical smart things’ behaviors at runtime, execute adaptation in a more
realistic simulated environment via a learning algorithm, and then automatically transfer
the trained controller to the physical smart things.

LAl files that were generated during the development of this work, such as genetic algorithm files, log
program and arduino code, are available at
http://www.inf.puc-rio.br/~ nnascimento/streetlight.html
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