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Abstract. This research presents a multiagent system to be used for training machine 
learning models; more precisely, to automate the training process. It also presents tools 
to combine, compare and propose new models that might have a good performance, 
using the results from previous experiments. This approach integrates concepts from 
Multiagent Systems (MASs), Machine Learning (ML) and more specific supervised 
learning techniques. As proof of concept, we first present the training model in the IRIS 
dataset. Then, we show how our approach allows the training of different models by 
using software agents. Finally, we discuss how the system enhances the training pro-
cess, using the finished experiments as examples and demonstrate that the more the 
experiments are executed, the more accurate the proposed model becomes. Last but not 
least, for future work, we aim at: (i) using more accurate optimization techniques and 
(ii) extending the system to analyze the features of the dataset by using data science 
algorithms.  

Keywords: Multiagent Systems; Machine Learning; Supervised Learning; Self‑ train. 

Resumo. Esta pesquisa apresenta um Sistema Multiagente a ser utilizado para o trei-
namento de modelos de aprendizado de máquina. Mais precisamente, para automati-
zar o processo de treinamento. Também apresenta ferramentas para combinar, compa-
rar e propor novos modelos que possam ter um bom desempenho, usando os treina-
mentos anteriores. Esta abordagem integra conceitos de Sistemas Multiagentes (MASs), 
Aprendizado de Máquinas (ML) e técnicas de aprendizagem supervisionadas. Como 
prova de conceito, apresentamos o proceso de treinamento no conjunto de dados IRIS. 
Depois, mostramos como nossa abordagem permite o treinamento de diferentes mode-
los usando agentes de software. Finalmente, discutimos como o sistema melhora o pro-
cesso de treinamento através dos experimentos, demonstrando que quanto mais vezes 
executamos os experimentos, mais preciso se torna o modelo proposto. Por último, mas 
não menos importante, para trabalhos futuros, pretendemos: (i) usar técnicas de otimi-
zação mais precisas e (ii) estender o sistema para analisar as características do conjunto 
de dados usando algoritmos de selecçao de features. 

Palavras-chave: Sistemas Multiagentes, Aprendizado de Máquinas, Aprendizado Suu-
pervisionado, Auto-entrenamiento. 
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1  Introduction 
Computers have enormous processing capabilities, in addition to fast read and write 
operations, and the ability to manage resources efficiently. Together, the hardware and 
the software capabilities turn a computer into a very powerful piece of equipment, ca-
pable of solving problems that lie beyond human limits. The evolution in mathematics 
and computer science can be seen as a pyramid, where new strategies are based on ex-
isting strategies (Nonaka & Toyama, 2003). This means that it is possible to create a 
chain of dependencies from the simplest to the most complex ideas. Currently, the ex-
isting algorithms in supervised learning are very powerful and can be used to solve a 
problem accurately, but everything comes with a price — in this case, time (Lim, Loh, 
& Shih, n.d.).  

Machine Learning is a field of computer science surrounded by mystery and 
uncertainties due to the fact that machines do not really “learn,” according to its origi-
nal definition: “artificial generation of knowledge from experience” (Holzinger, 2016). 
Supervised Learning is a technique of machine learning (Kotsiantis, Zaharakis, & 
Pintelas, 2007). Generally, to solve a problem, it is common to follow a certain strategy 
that results in a solution; but in the case of supervised learning, we know the correct 
answer beforehand — it is about creating a strategy to infer a dataset of solved exam-
ples of the problem. There are many strategies that do this (decision trees, support vec-
tor machines, neural networks, etc.) and each one has its own process for training a 
mathematical model that can be evaluated later. The process to find an acceptable 
model can be extenuating, since each model has several parameters that are directly 
related to accuracy. In addition, the time required to compute results depends on the 
size of the dataset to be processed. An example is the huge volume of data available 
online (Ranganathan, 2011) and the effects of this phenomenon have direct repercus-
sions on both accuracy and computational time. 

Another detail in the training process is that the instances in the training dataset 
are examples and may not represent the reality. Therefore, even when the model cor-
rectly predicts these examples, there may have a very different and unexpected behav-
ior with new instances, but that is not necessarily garbage. Sometimes the model is bi-
ased by outliers and rare examples — in such cases, the model might not be able to 
classify new instances accurately. These models can be assembled into a committee of 
models to take advantage of the overfitting and the outliers detection. In short, the pro-
cess of training an accurate model, or ensemble, is slow and time‑ consuming. Fur-
thermore, it is based on the choices that were made during the process and the models 
selected to be trained. Therefore, we have a serious problem; we spend a lot of time 
training the models that will be used in our applications. 

This work aims at reducing the time spent by the user to train a successful 
model with a multiagent system to support the training process. The idea is to config-
ure some of the training and allow the system to handle the training results, the timing 
and the long wait for the end of the training and the start of a new one without human 
interference. Another contribution is that the system proposes new models that might 
have a good performance based on the models previously trained. This includes a new 
set of possibilities in the selection of the ways and strategies that will guide the optimi-
zations. The system allows the creation of a committee of models to predict and nego-
tiate a consensus among all the predictors in order to deliver a solution. In addition, 
the results of the system do not depend on a single trained model, but on a set of mod-
els that might be specialized at detecting specific characteristics. 
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This paper is organized as follows. Section 2 gives an overview of the concepts 
used in this research. Section 3 shows the related work. Section 4 presents the proposed 
solution. Section 5 describes the application domain. Finally, Section 6 shows the con-
clusion and future work. 

2  Background 
This section describes the main concepts related to agents and multiagent systems. First, 
we will discuss multiagent systems, agents and their properties. We will also discuss the 
relation between multiagent systems and machine learning. 

2.1  Multiagent Systems 
A multiagent system can be defined as an environment shared by autonomous entities 
that live, interact, receive information and can act in the environment (Khalil, Abdel-
Aziz, Nazmy, & Salem, 2015), (Lucena & Nunes, 2013). These agents are abstractions 
with the following properties (Wooldridge, 2009): (i) autonomy — it is the capability of 
taking their own actions within their environment; (ii) reactivity — it is the capability 
of response to the changes in the environment, which involves a notion of perception 
of the environment; (iii) social ability — it is the capability of interaction with other 
agents and possibly humans, and (iv) proactive ability — it is the capability to take ac-
tions towards the agent’s goals. 

The exploratory study in Section 5 demonstrated that the agents’ properties 
were useful in the simulation of the training process to optimize the parameters of a 
model based on the previously trained models and in proposing new models that 
might be more accurate. 

2.2  Multiagent Systems and Machine Learning 
The idea of joining these two areas seems very natural. In artificial intelligence, we 
consider that software agents are autonomous entities and are capable of making deci-
sions without human interference. On the other hand, learning is a crucial part of the 
autonomy: the more skilled the agent, the better decisions it will take (Alonso, 
D’inverno, Kudenko, Luck, & Noble, 2001). Indeed, in most dynamic domains it is ex-
tremely hard to predefine the agents’ actions, which mostly emerge with new behav-
iors in order to adapt themselves to the current situation. 

There are several aspects to take into account when dealing with machine learn-
ing in multi‑ agent systems. First, the coordination of agents — there must be some 
coordination mechanism for agents to engage and interact in some way. Note here that 
the coordination is supposed to happen at runtime, therefore, it has to be part of the 
agent’s internal activity cycle (Khalil et al., 2015). Second, dealing with cooperation can 
be a problem when agents need to team up to achieve some goals. Third, the noisy en-
vironment — specifically, how to deal with supervised learning when the result can be 
biased by the noise. Finally, together with the noisy environment comes the partial 
knowledge; to deal with it, agents use strategies and metaheuristics to guide the search 
as in (Nouri, Driss, & Ghédira, 2015). 

Some approaches use a machine learning model in the agents’ activities cycle to 
take actions (Khalil et al., 2015). Other approaches use a multiagent system — known 
as multiagent learning (MAL) — to learn (Shoham, Powers, & Grenager, 2007), (Stone, 
2007). In the latter approaches the integration of the agents’ capabilities and the learn-



 

 3 

ing algorithms are combined to solve a problem from another domain. Nevertheless, 
our approach is a multiagent system applied to a machine learning domain. 

3  Related Work 
Many authors (Garner & others, 1995; Kraska et al., 2013; Kunft, Alexandrov, 
Katsifodimos, & Markl, 2016; Luo, 2016; Sparks et al., 2013) approach the idea of creat-
ing systems to support the data mining process. A common discussion among all au-
thors is about the target user and the environment — some systems are designed to be 
used by domain experts and others by data mining experts. Systems dedicated to non-
experts, normally focus on the analysis of the domain’s specific features while other 
systems propose educational environments for novices to learn and interact. On the 
other hand, systems designed to be used by data mining experts focus on performance, 
optimizations and coding capabilities. 

Within the context of non-experts, (Abadi et al., 2016) presents a simulation tool 
that aims at creating an initial intuition on neural networks with a very user friendly 
interface and it has proven to be a great choice for educational purposes. However, the 
datasets available for analysis are fixed and focused only on gaining some understand-
ing of the learning process.  

There are some commercial solutions, such as Google Prediction (Green & 
others, 2011) and Azure Machine Learning (Barnes, 2015). Both are on line services and 
provide support to the data mining process by means of an intuitive interface and a 
huge collection of ready to use algorithms. However, Azure is not free and Google 
Prediction’s dataset size is limited to 250 megabytes.  

WEKA (Garner & others, 1995; Hall et al., 2009) is a system that offers a collec-
tion of algorithms to explore real world datasets. It has three well defined categories of 
algorithms: (i) dataset processing, (ii) machine learning schemes, and (iii) output pro-
cessing. By combining all these tools together, WEKA has proved essential to the anal-
ysis process and as an introductory tool for educational environments. However, all 
these algorithms are presented as black boxes and do not focus on distributed ways to 
improve the data mining processes. 

There are some solutions that target data mining experts and focus on tools to 
improve the techniques. MLI (Sparks et al., 2013) presents an API to easily code ma-
chine learning algorithms, using their proposed operations for data loading and linear 
algebra to boost the performance; but it relies on the expertise of the programmers ra-
ther than the use of previously tested and well established implementations of the al-
gorithms. ML Base (Kraska et al., 2013) is another solution that provides a Domain 
Specific Language (DSL) with high level abstractions to simplify the process. It creates 
very elaborated plans — logical and physical — that come with several optimizations 
to gain performance and accuracy. The solution aims at solving a problem with a single 
model. However, the composition of models that create ensembles has been proven to 
outperform single models, and according to (Luo, 2016) many algorithms and large 
datasets can be slow and limited.  

The work (Kunft et al., 2016) presents LARA, a DSL to reduce problems created 
when the pre-processing and the algebra are done by using different programming 
paradigms. It includes optimizations that are normally loose in the mismatch of the 
paradigms. In addition, LARA compiles to an intermediate representation to enable 
optimizations and finally compiles to different languages. On the other hand, it is em-
bedded into Scala and it is focused on coding. Predict-ML (Luo, 2016) is a software that 
uses big clinical data to build predictive models automatically. It presents techniques 
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to automatically select algorithms, hyper parameters and temporal aggregations of the 
clinical data, but the innovations are focused on the clinical area and the system is still 
in the design phase. 

All these solutions focus on reducing usage complexity, tuning hyper parame-
ters and gaining some understanding of the data, but none of the previous approaches 
aims at creating a safe shared environment to enhance the interaction between the us-
ers and the system. By using the agent’s capabilities, users and agents can both solve 
the data mining process, complementing each other’s weaknesses.  

4  Proposed Solution 
This section describes the main elements required to understand the solution proposed 
in this paper. In addition, we will provide an overview of the architecture and discuss 
the different components, including the data model and the software agents. 

4.1  The Architecture 
The application is implemented using the software agents, as illustrated in Figure. 1. It 
contains a module for: (i) data storage (DB); (ii) data access (ORM); (iii) agents; (iv) op-
timizations (OPT), and (iv) API layer — which will bring the functionalities to the final 
user. 

 
Figure. 1. The architecture proposed. 

 

The users interact with the system via the API and it contains several classes to 
support the knowledge discovery process. The API is directly connected to the ORM. 
The ORM is in charge of all the operations that require data access. It allows the system 
to be independent from the physical data storage and it is also the only way to interact 
with the data. The data refers to the relevant concepts that appear in the domain and 
their relationships. All of them are physically saved in the DB module. Considering the 
user’s experience, the main flow of the application only involves the API, the ORM and 
DB modules. The software agents interact in this flow via ORM module and expertly 
use the main application flow the same way as normal users do. They retrieve, run and 
propose new experiments in a collaborative environment. By working together, the us-
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ers (as domain experts) and the agents (as machine learning experts) increase the num-
ber of experiments, searching for a better model to identify the desired patterns. The 
agents in charge of the optimizations trust most of the algorithmic analyses in the fifth 
and last module dedicated to the Optimizations. The TrainerAgent and the Optimiz-
erAgent are both hot-spots (Wooldridge & Jennings, 1998). Therefore, it is possible to 
add new models into the system by creating subclasses and implementing the particu-
lar details of the new model. 

By using the API, the users can evaluate the results, that is, they can check if the 
results meet the initial objective. This phase is crucial, because the models selected to 
be deployed will finally be in contact with non-controlled environments and real life 
mining examples. Nevertheless, if the users determine that the models are not ready to 
be used, they can define a new experiment or allow the agents to search for better 
models. At all times the users can monitor the results obtained, then, analyze, retrieve 
and compare several of the model’s parameters. 

4.2  Data Model 
Figure. 2 presents the data model of the concepts involved in the problem. We used the 
entity-relationship model (ERM) (Chen, 1976). The description of the entities is shown 
below: 

• Task: Aims at capturing the training process of a successful model for a ma-
chine learning problem, i.e., it is a collection of experiments. 

• Experiment: Defines an experiment, but this concept just contains the common 
aspects, such as running_time, train_accuracy, etc. 

 

 
Figure. 2. ERM Model. 

• Decision Tree: Defines a specific kind of experiment. In fact, it defines an exper-
iment to train a decision tree and contains aspects such as max_depth. 

• Support Vector Machine: Defines a support vector machine type of experiment 
and contains attributes such as kernel. 

• Neural Network: Defines a neural network type of experiment and contains at-
tributes such as model that specifies the structure of the network. 
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• Host: Defines a computer in the network, and basically selects the computer in 
which the model is going to be trained. 

• Dataset: Represents a generic data collection, used as the examples to train a 
model. 

• RData: Represents a particular type of dataset generated from a script executed 
in R (Gentleman, Ihaka, Bates, & others, 1997) and contains the environment variables 
at the save point. 

• CSV: Represents a standard data exchange format. Most of the time it is a col-
lection of comma-separated fields. 

4.3  Mapping the Data 
We include a layer to map the concepts to the API classes, in order to facilitate the data 
access and to abstract the project of the database read and write operations. Basically, it 
is the idea of an Object Relational Mapper (ORM). This new layer provides stability 
and independence for the following layers to use, allowing: (i) the change of the data 
provider without changing the core of the project, and (ii) the design of the logic with-
out specific read, write operations that might bind the solution to a particular data ac-
cess. 

4.4  Agents Model 
This section presents the agents model based on the architecture shown in Figure 1. 
These agents are able to execute the experiments stored in the data model. 

 
Figure. 3. Agents Model. 

Figure. 3 shows and details the agents based model proposed. In all the cases, 
the agent’s cyclic behavior was the best option for these software agents – for example, 
in the application domain presented in Section 5 the agents have a cyclic behavior with 
10 seconds between iterations. 
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4.4.1  Trainer Agent 
The TrainerAgent is responsible for training an experiment. In order to do so, it has to 
accomplish several subtasks. First of all, it needs to understand the type of experiment 
that the agent is going to execute. For each type of experiment, there are different pa-
rameters used to set up the training process. Based on these parameters the agent de-
termines the type of dataset that is going to be used and it loads the data. At this point, 
the strategy pattern (“Design Patterns by Gamma,” n.d.) was used to define which al-
gorithm should be chosen to train and validate the results. After the validation, the 
agent has to collect all the variables being measured and write the experiment back. 
Figure. 4 describes this process. 

 
Figure. 4. TrainerAgent Activities Diagram. 

A specific trainer was created to override the specificities of each model and to 
set up some initialization variables such as the type of experiment. 

To run an experiment, both the experiment and the datasets to be used in the 
training and testing must be previously defined. This process only runs the experi-
ments and collects the results. On the other hand, due to the characteristics of the 
agent’s cyclic behavior, if there are no experiments programed to run, the agent waits a 
few seconds and asks again. Therefore, once a new experiment is added to the data-
base, it will be automatically detected and executed at the right time. 

Another important detail is that the experiments are executed as if they were on 
a queue — one at a time in each host. But it is possible to program a set of experiments 
that the agents will automatically run until all the experiments have been executed. 

4.4.2  Optimizer Agent 
The OptimizerAgent is responsible for generating new models that might have 

good performance and accuracy based on the previously executed experiments of the 
same type. To complete this task, the agent starts by selecting a dataset, because the 
performance and the accuracy are directly related with the dataset used in the training 
process. Once the dataset is selected the agent retrieves the best experiments of a given 
type and, based on the parameters, it generates and saves a new model. Notice here 
that for each type of experiment the OptimizerAgent was extended in order to create 
specific agents which selected the correct algorithm in each case. Figure. 5 describes the 
workflow of the OptimizerAgent. 
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Figure. 5. Optimizer Agent Activities Diagram. 

Observe that the OptimizerAgent needs a different strategy to create the new 
model, depending on the type of the experiment. 

4.5  Optimizers 
Each machine learning strategy comes with a lot of tricks and techniques to im-

prove the performance of the model. Some of the techniques can include mathematical 
operations, such as transpose, reverse, etc., that can increase the dataset and have a di-
rect impact on the performance as a result. Other techniques aim at increasing the 
number of features in the dataset to facilitate the training process and obtain a better 
model. Some examples include multiplication of numeric fields or the use of trigono-
metrical functions. In addition, there is a group of techniques that filter the outliers to 
obtain a more general model. All these approaches work directly on the dataset, but 
our focus here is to work with the existing data and tune the model’s parameters. 

Each one of the techniques has its own unique parameters, so, it was necessary 
to create an optimizer for each one. Namely: SVMOptmizer, DTOptimizer and NNOp-
timizer. 

The SVMOptimizer takes advantage of the kernel trick (Scholkopf, 2001) and 
creates a new model based only on the best SVM experiment executed. If the best mod-
el memorizes the dataset, it then decreases the kernel to compact the data. On the other 
hand, if the model’s accuracy is low, then the agent increases the kernel to separate the 
data by adding new dimensions. 

The DTOptimizer uses a similar criterion to increase or decrease the max_depth 
of the decision tree while the NNOptimizer creates a new model by randomly combin-
ing the two best experiments executed. 

4.6  Details of the API 
Finally, we created an Application Programming Interface (API) that contains the new 
objects and functionalities required to set up an environment: create, train and validate 
the experiments; test the results, and use the best models for prediction. 



 

 9 

 
Figure. 6. API Class Diagram. 

Figure. 6 shows the API class diagram. The Task class defines a collection of ex-
periments of the same problem and refers to the same machine learning problem. Eve-
ry machine learning problem requires the analysis of data. The Dataset class represents 
a collection of data to be used and contains features such as the path in which it is 
stored. The data can be stored in different file formats. For this reason, each Dataset 
contains a DatasetType class to specify its type, such as RData, CSV, etc. An Experi-
ment class represents the training process of a model and contains general variables 
being measured, such as time. It also contains more specific features, depending on the 
particular model being trained. In order to specify the types of experiments allowed to 
run within the platform all the Experiments contain an ExperimentType class. The 
Predictor class defines an object to evaluate a model and the Committee class defines a 
collection of Predictors and contains a parameter to set the number of members. 

First, to use the API, we need to select a Task to work with and after that the 
experiments can be created, linked to the selected task. Each Experiment has a type de-
fined in ExperimentType and can have training, validation and testing datasets associ-
ated to it, respectively. Each Dataset has a type defined in DatasetType. Finally, to pre-
dict, based on previously trained models, there are two possible classes: (i)-Predictor, 
which selects the best trained model based on accuracy and uses it to predict, and (ii) 
Committee, which has a collection of predictors and returns a consensus among them. 

 

5  Application Domain 
The need to build platforms to assist both domain and data mining experts in creating 
a safe common environment to enhance the interaction between the users and the sys-
tem to train machine learning model is currently a critical problem, especially when the 
training process can iterate over several models and the new models depend on the 
results of the previously executed experiments.  

5.1  Overview 
The experiment is divided into two stages. First, we set up the environment and create 
the proper conditions to run the experiment — in this case, it was necessary to launch 
the agents’ platform, to configure the database access and to establish the initial exper-
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iment. Second, the agents start their work by training the first model and writing the 
results. The variables that were measured were the training and validation accuracy, as 
well as the start and end time. At this point, the OptimizerAgent analyzes the results of 
the finished experiments and proposes a new experiment using the same dataset. 

5.2  The Dataset 
The data used in this example was the IRIS dataset found in the UCI Machine Learning 
Repository (Bache & Lichman, 2013). It contains 150 instances of three classes of iris 
plants. The predictable attribute is the type of plant, based on four other attributes: se-
pal length, sepal width, petal length and petal width — all the measurements are in 
centimeters (cm). This dataset has no missing values and two of the three types of iris 
are not linearly separable. Table 1 shows a brief summary of the data. 

 

IRIS Sepal 
Length 

Sepal 
Width 

Petal 
Length 

Petal 
Width 

Min 4.3 2 1 0.1 

Median 5.8 3 4.35 1.3 

Mean 5.843 3.057 3.758 1.199 

Table 1. Summary of the IRIS Dataset 

5.3  Results 
It is possible to choose the desired start configurations and create new models at any 
point during the training process. In particular, we choose a support vector machine 
(Cortes & Vapnik, 1995) with the following parameters, as shown in Table 2: 

 
 

Parameter Value 

Kernel Poly-
nomial 

C 1.0 

Degree 1.0 

Coef0 0 

Gamma auto 

Probability False 

Shrinking 1 

Max Iterations ‑ 1 
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Decision Func-
tion 

odr 

Table 2. Initial experiment setup 

 

The training agents were essentially training the new models proposed, while 
the optimizer agents were trying to tune the parameters of the previously executed 
models and proposing new ones that might have a good accuracy. Table 3 shows the 
experiments proposed by the OptimizerAgent and Table 4 shows the variables meas-
ured. 

 

Id General 
Id 

Kernel C Degree Coef0 Gamma Probability Shrinking Max Iter-
ations 

Decision 
Function 

1 1 poly 1 1 0 Auto 0 1 ‑ 1 odr 

2 2 poly 1.5 1 0 Auto 0 1 ‑ 1 odr 

3 3 poly 1.5 2 0 Auto 0 1 ‑ 1 odr 

Table 3. Initial experiment setup 

 

Id Output Started Ended Time Validation 
Accuracy 

1 ./out/example1.svm 2017‑ 02‑ 27 
19:09:43 

2017‑ 02‑ 27 
19:09:43 

0.006163 0.96 

2 ./out/example2.svm 2017‑ 02‑ 27 
19:09:53 

2017‑ 02‑ 27 
19:09:53 

0.004834 0.96 

3 ./out/example3.svm 2017‑ 02‑ 27 
19:10:03 

2017‑ 02‑ 27 
19:10:03 

0.005739 0.97 

Table 4. Initial experiment setup 

 

The first row in table 3 shows the beginning of the second stage where only the 
first model had been proposed. Then, the TrainerAgent trained the model, resulting in 
an accuracy of 0.96 (first row in Table 4). The OptimizerAgent performed a query to 
retrieve the trained models and based on the best one, it modified the allowed error 
(parameter C in Table 3) from 1.0 to 1.5 and proposed the second model. The Trainer-
Agent realized that there was a model to train and then trained it, resulting in an accu-
racy of 0.96 as well. Once again, the OptimizerAgent modified the degree of the func-
tion to propose the third model (parameter degree in Table 3) based on the first and the 
second models. As a result, the TrainerAgent trained the new model and obtained a 
better accuracy of 0.97. 
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To obtain new models the OptimizerAgent balanced the allowed error and the 
degree of the polynomial function. It is possible to see in Table 4 that the last trained 
model performed better in the validation. Thus, in the next KDD phase the prediction 
algorithm will use the best models, based on their accuracy. 

6  Conclusion and Future work 
This paper proposes a MAS to set up a battery of experiments and tools to help in the 
training and prediction processes. We conclude that it is possible to take advantage of 
the characteristics of the software agents to train machine learning models, and also to 
make decisions about new models that might have good accuracy. The API presented 
in this paper is a tool to demonstrate that a multiagent learning approach is reasonable 
and decreases the models’ training time. 

The multiagent system inside the proposed solution is the core of the applica-
tion, because it requires autonomy to make decisions, proactivity to create new exper-
iments, and reactivity to deal with overfitting and low accuracy. By automating this 
process, the users only need to set up the initial battery of experiments, which reduces 
the time dedicated to train a successful model. 

For future work, we have two goals. First, Minimization Optimizers: The prop-
osition of new models based on the previously executed experiments is a challenging 
task, but a highly profitable tool. However, even if naive approaches may have good, 
or at least not the worst, results it would be interesting to use an optimization tech-
nique to solve the problem – we could ask what the parameters of the new proposed 
model are, for example. One possible answer to this question is to interpolate the func-
tion that receives all the parameters and returns the accuracy, and then, find the maxi-
mum value of the interpolated function. Second, Features Selection: Another interest-
ing problem is how to improve the performance of the training by first selecting the 
most important attributes. This could significantly impact the time spent to train a 
model. Other possible approaches to improve performance include the use of heuristics 
such as Principal Features Analysis (PFA) (Lu, Cohen, Zhou, & Tian, 2007) or methods, 
such as Sequential Forward Selection (SFS) (Doak, 1992) and Sequential Backward Se-
lection (SBS) (Doak, 1992). 

References 
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., … others. (2016). 
Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv 
Preprint arXiv:1603.04467. Retrieved from https://arxiv.org/abs/1603.04467 

Alonso, E., D’inverno, M., Kudenko, D., Luck, M., & Noble, J. (2001). Learning in multi-
agent systems. The Knowledge Engineering Review, 16(3), 277–284. 

Bache, K., & Lichman, M. (2013). UCI machine learning repository. 

Barnes, J. (2015). Azure machine learning: Microsoft azure essentials. 

Chen, P. P.-S. (1976). The Entity-relationship Model—Toward a Unified View of Data. 
ACM Trans. Database Syst., 1(1), 9–36. https://doi.org/10.1145/320434.320440 

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 
273–297. https://doi.org/10.1007/BF00994018 



 

 13 

Design Patterns by Gamma: Pearson India 9789332555402 Paperback - A - Z Books. 
(n.d.). Retrieved April 12, 2017, from https://www.abebooks.com/Design-Patterns-
Gamma-Pearson-India/17320714110/bd 

Doak, J. (1992). CSE-92-18 - An Evaluation of Feature Selection Methodsand Their Ap-
plication to Computer Security. UC Davis Dept of Computer Science Tech Reports. Re-
trieved from http://escholarship.org/uc/item/2jf918dh 

Garner, S. R., & others. (1995). Weka: The waikato environment for knowledge analy-
sis. In Proceedings of the New Zealand computer science research students conference 
(pp. 57–64). Citeseer. 

Gentleman, R., Ihaka, R., Bates, D., & others. (1997). The R project for statistical compu-
ting. R Home Web Site: Http://Www. R-Project. Org. 

Green, T., & others. (2011). Prediction API: Every app a smart app. Google Developers 
Blog, Apr, 21. 

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). 
The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 
11(1), 10–18. 

Holzinger, A. (2016). Interactive machine learning for health informatics: when do we 
need the human-in-the-loop? Brain Informatics, 3(2), 119–131. 

Khalil, K. M., Abdel-Aziz, M., Nazmy, T. T., & Salem, A.-B. M. (2015). MLIMAS: A 
Framework for Machine Learning in Interactive Multi-agent Systems. Procedia Com-
puter Science, 65, 827–835. https://doi.org/10.1016/j.procs.2015.09.035 

Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine learning: A 
review of classification techniques. Retrieved from 
https://books.google.com/books?hl=en&lr=&id=vLiTXDHr_sYC&oi=fnd&pg=PA3&
dq=Kotsiantis,+Sotiris+B.%3B+Zaharakis,+I.%3B+Pintelas,+P.+Supervised+machine+l
earn-
ing:+A+review+of+classification+techniques.+2007&ots=CXtstyYGfr&sig=N7Gb9al_zt
idWdyRt-qG55pDbuw 

Kraska, T., Talwalkar, A., Duchi, J. C., Griffith, R., Franklin, M. J., & Jordan, M. I. 
(2013). MLbase: A Distributed Machine-learning System. In CIDR (Vol. 1, pp. 2–1). Re-
trieved from http://cidrdb.org/cidr2013/Papers/CIDR13_Paper118.pdf 

Kunft, A., Alexandrov, A., Katsifodimos, A., & Markl, V. (2016). Bridging the gap: to-
wards optimization across linear and relational algebra (pp. 1–4). ACM Press. 
https://doi.org/10.1145/2926534.2926540 

Lim, T.-S., Loh, W.-Y., & Shih, Y.-S. (n.d.). A Comparison of Prediction Accuracy, 
Complexity, and Training Time of Thirty-Three Old and New Classification Algo-
rithms. Machine Learning, 40(3), 203–228. https://doi.org/10.1023/A:1007608224229 

Lu, Y., Cohen, I., Zhou, X. S., & Tian, Q. (2007). Feature Selection Using Principal Fea-
ture Analysis. In Proceedings of the 15th ACM International Conference on Multime-
dia (pp. 301–304). New York, NY, USA: ACM. 
https://doi.org/10.1145/1291233.1291297 



 

 14 

Lucena, C., & Nunes, I. (2013). Contributions to the emergence and consolidation of 
Agent-oriented Software Engineering. Journal of Systems and Software, 86(4), 890–904. 
https://doi.org/10.1016/j.jss.2012.09.016 

Luo, G. (2016). PredicT-ML: a tool for automating machine learning model building 
with big clinical data. Health Information Science and Systems, 4(1). 
https://doi.org/10.1186/s13755-016-0018-1 

Nonaka, I., & Toyama, R. (2003). The knowledge-creating theory revisited: knowledge 
creation as a synthesizing process. Knowledge Management Research & Practice, 1(1), 
2–10. https://doi.org/10.1057/palgrave.kmrp.8500001 

Nouri, H. E., Driss, O. B., & Ghédira, K. (2015). Hybrid Metaheuristics within a Holonic 
Multiagent Model for the Flexible Job Shop Problem. Procedia Computer Science, 60, 
83–92. https://doi.org/10.1016/j.procs.2015.08.107 

Ranganathan, P. (2011). The data explosion. IEEE Computer Society Press. 

Scholkopf, B. (2001). The kernel trick for distances. Advances in Neural Information 
Processing Systems, 301–307. 

Shoham, Y., Powers, R., & Grenager, T. (2007). If multi-agent learning is the answer, 
what is the question? Artificial Intelligence, 171(7), 365–377. 
https://doi.org/10.1016/j.artint.2006.02.006 

Sparks, E. R., Talwalkar, A., Smith, V., Kottalam, J., Pan, X., Gonzalez, J., … Kraska, T. 
(2013). MLI: An API for distributed machine learning. In Data Mining (ICDM), 2013 
IEEE 13th International Conference on (pp. 1187–1192). IEEE. Retrieved from 
http://ieeexplore.ieee.org/abstract/document/6729619/ 

Stone, P. (2007). Multiagent learning is not the answer. It is the question. Artificial In-
telligence, 171(7), 402–405. https://doi.org/10.1016/j.artint.2006.12.005 

Wooldridge, M. (2009). An Introduction to MultiAgent Systems. John Wiley & Sons. 

Wooldridge, M., & Jennings, N. R. (1998). Pitfalls of Agent-oriented Development. In 
Proceedings of the Second International Conference on Autonomous Agents (pp. 385–
391). New York, NY, USA: ACM. https://doi.org/10.1145/280765.280867 

 


