

PUC	

ISSN 0103-9741

Monografias em Ciência da Computação
n° 10/2017

Checking the Behavior of BDI4JADE Agents
Using an Aspect-Based Approach

Francisco José Plácido da Cunha
Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 10/2017 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena June, 2017

Checking the Behavior of BDI4JADE Agents Using an
Aspect-Based Approach

Francisco José Plácido da Cunha1 Carlos José Pereira de Lucena1
1Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro

(PUC-Rio)
fcunha@inf.puc-rio.br, lucena@inf.puc-rio.br

Abstract. The growth and popularity of the Web has fueled the network-based software
development. In this context, multiagent system (MAS) has been considered a promising
approach to different areas such as security, or mission critical scenarios, monitoring of
environments and people, etc., which means analyzing the choices of this type of
software became crucial. However, the methodologies proposed so far by the Agent-
Oriented Software Engineering (AOSE) focused their efforts mainly on developing
approach to analyze, design and implement a MAS and little attention has been given to
how such systems can be tested. Furthermore, with regard to tests involving agents,
some issues related to the controllability and observability can difficult the checking of
the agents’ behavior, for instance: (i) the agent's decision-making process; (ii) the fact of
the agent's beliefs and goals are embedded inside the agent, hampering the observation
and control of behavior; (iii) how deal with test coverage. This work proposes a new unit
test approach for agents written in BDI4JADE, using the JAT Framework ideas and
Zhang's fault model.

Keywords: BDI Agents, testing agent, unit test, AspectJ, JAT, BDI4JADE, Mock Agent,
JAT4JADE.

Resumo. O crescimento e a popularidade da Web alimentaram o desenvolvimento de
uma nova categoria de software baseado em rede. Neste contexto, Sistema multiagente
(SMA) foi considerado uma abordagem promissora para diferentes áreas, como segu-
rança, ou cenários de missão crítica, monitoramento de ambientes e pessoas, etc., o que
significa que analisar as escolhas desse tipo de software tornou-se crucial. No entanto,
as metodologias propostas até agora pela Engenharia de Software Orientada a Agentes
(AOSE) concentraram seus esforços principalmente no desenvolvimento de abordagens
para analisar, projetar e implementar um SMA, e pouca atenção tem sido dada a como
esses tipos de sistemas podem ser testados. Além disso, no que diz respeito aos testes de
agentes, algumas questões relacionadas à controlabilidade e observabilidade podem di-
ficultar a verificação do comportamento dos agentes, como por exemplo: (i) o processo
de tomada de decisão do agente; (ii) o fato das crenças e objetivos do agente estarem
inseridos dentro do agente, dificultando a observação e o controle do comportamento;
(iii) como lidar com a cobertura do teste. Este trabalho propõe uma nova abordagem de
testes unitários para agentes escritos em BDI4JADE, apoiadas nas ideias do JAT Fra-
mework e no modelo de faltas de Zhang.

Palavras-chave: Agentes BDI, teste de agentes, teste unitário, AspectJ, JAT, BDI4JADE,
Agentes Mock, JAT4BDI.

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

Table of Contents

1 Introduction 1	
2 Theoretical Basis 3	

2.1 Rational and social agents 3	
2.2 Multiagent systems 3	
2.3 Software test 3	
2.4 Multiagent systems tests 4	
2.5 JAT Framework 4	

2.5.1 The JAT fault model 6	
2.6 Fault Model proposed by Zhang 6	

2.6.1 Faults plans 7	
2.6.2 Faults in cyclic plans 7	
2.6.3 Faults in events 8	
2.6.4 Faults in beliefs 8	

3 A new approach for testing deliberative agents 9	
3.1 Method proposed 9	
3.2 The data structured involved 10	
3.3 Synchronizing the parts involved 11	
3.4 The JAT4BDI tool: design and implementation 12	

3.4.1 JAT4BDI details 12	
3.4.2 Assertions 15	
3.4.3 Steps for execution 17	

4 Use Scenarios 18	
4.1 Book Trading System 18	

4.1.1 Description of the usage scenario 19	
4.1.2 Test cases – Book Trading System 20	
4.1.3 Running of the test cases – Book Trading System 23	

4.2 Results observed 24	
5 Limitation of the related works 24	
6 Conclusion and future work 25	
References 26	

 1

1 Introduction
The growth and popularity of the web have driven the development of network-based
software and, according to Zambonelli, the use of agents for these types of systems is
considered an appropriate approach (ZAMBONELLI, JENNINGS, et al., 2001) and has
been applied in different fields, such as: security, critical business or mission scenarios,
advanced monitoring of environments and people, etc., which means that analyzing the
choices that this type of software can perform becomes crucial (FISHER, DENNIS and
WEBSTER, 2013).

Despite the increasing use of multiagent systems (MAS) in critical scenarios, the
methodologies proposed thus far through Agent-Oriented Software Engineering
(AOSE) have been concentrated mainly on developing disciplined approaches to
analyze, design and code a MAS, with little attention paid as to how such systems could
be tested (CAIRE, COSSENTINO, et al., 2004).

Multiagent system are those that decide for themselves what they should do and
when they should do it to achieve a goal. Such systems vary in their degree of autonomy
employed by the agent and range from systems that are almost completely controlled
through human intervention to those that are almost fully automated, that is, with
minimal human intervention. Typically, the use of different levels of autonomy is
justified for reasons of precision in relation to human capacity and safety regarding the
execution of the operation, such as: (i) access to hard-to-reach places; (ii) in hazardous
environments; (iii) in long and repetitive activities or; (iv) that require a low response
time. Such activities present higher risk when performed by humans due to factors such
as fatigue or stress. However, the more autonomy that is employed in an agent, the
stricter must be the verification of the performance of this agent (FISHER, DENNIS and
WEBSTER, 2013).

In the development of agent-based software, an architecture that is widely known
and recommended for the project of agents with high levels of autonomy is BDI (Belief-
Desire-Intention). Rao and Georgeff (RAO and GEORGEFF, 1995) proposed this
architecture based on Bratman’s philosophical model (BRATMAN, 1987). In it, three
mental attitudes – belief, desire and intention – make up agents’ knowledge base and
decision-making mechanism. The agents take decisions from the knowledge they have
of themselves and the environment in which they are located in order to achieve their
goals.

Contemplating the paradigm of agent-based software development, in this work we
focus on the task of testing the software. According to the IEEE 610.12 standard,
“software testability is the degree to which a system or component facilitates the
establishment of test criteria and performance of tests to determine whether those
criteria have been met” (IEEE 610.12, 1990). Also with regard to software testability, two
basic characteristics need to be considered: controllability – the ability to control the
entry and the internal state of the component being tested, and observability – the ability
to observe the result produced by the component being tested. The tests involving
software agents bring up some issues related to the controllability and observability of
the agents that need to be carefully considered: (i) an agent is an autonomous entity and,
therefore, it can be difficult to control its behavior through a testing tool; (ii) the agent’s
beliefs and goals are embedded in the agent itself, so they cannot be easily observed and
controlled by a tool – almost always, a test tool can only observe an agent through its
interactions with other agents and with the environment; (iii) without the adoption of

 2

an efficient strategy for coverage of the tests, it certainly becomes unscalable, given the
number of possibilities to be tested (BINDER, 1999) and (VOAS and MILLER, 1995).

 Winikoff and Cranfield’s work presents a quantitative analysis of the coverage effort
required and, therefore, to check all the possible decisions that can be taken by the agent.
Their conclusion is emphatic, affirming that testing an MAS through the verification of
each pathway of the “behavioral space”, that is, each pathway of the set of all the
pathways that could be possible, is unfeasible (WINIKOFF and CRANFIELD, 2010).

Thus, given the need to check and understand complex behaviors performed by the
agent, to evaluate its effectiveness and the challenge and implications regarding the
testability of the deliberative mechanism and emergent behavior, this paper focuses on
the task of supporting the developer for building test cases for BDI agents. The following
questions arise as reasons for research as a result of this work:

RQ1: How can we support the development of multiagent systems by building and
maintaining test cases for BDI agents?

RQ2: How can we control and observe the actions performed during the BDI agent reasoning
cycle through the use of test cases?

Although it is possible to find works in the literature that discuss and present
strategies for testing BDI agents (NGUYEN, PERINI, et al., 2009) (NUNEZ, RODRIGUEZ
and RUBIO, 2005) (NGUYEN, PERINI and TONELLA, 2008) (WINIKOFF and
CRANEFIELD, 2010) (LOW, CHEN and RONNQUIST, 1999) (ZHANG,
THANGARAJAH and PADGHAM, 2007) (ZHANG, THANGARAJAH and
PADGHAM, 2009), none of these works is concerned with providing mechanisms to
assist in identifying gaps in implementation and observation of the internal state of the
agent’s elements. Despite the considerable contributions of the aforementioned works,
only two (NGUYEN, PERINI, et al., 2009) (LOW, CHEN and RONNQUIST, 1999) deal
with approaches that offer tools to support BDI agent testing. Even so, these tools have
a greater commitment to coverage strategies and criteria than do control and observation
of the agent’s internal state.

In view of the existing problem and the limitations of the current approaches to the
questions that motivated our research, this work proposes a new approach to BDI agent
unit testing based on the combination and adaptation of ideas supported by other
research found in the agents’ literature.

Support for this paper came from the use of mock agents and multiagent system
testing aspects as proposed in the work of Coelho et al. (COELHO, KULESZA, et al.,
2006), by the ideas of the JAT Framework (COELHO, CIRILO, et al., 2007) and in the
failure model proposed by Zhang (ZHANG, 2011) and, thus, assists the BDI4JADE
agents developer (NUNES, LUCENA and LUCK, 2011) in the construction and
maintenance of test cases and their evaluation. To corroborate the study, a tool was
created to serve as proof of concept of the new approach, which we call JAT4BDI. This
tool’s guideline is to support the development of software agents through the
construction of test cases. For this activity, the developer can count on a set of methods
that assist in the verification of the decisions taken and the observation of the internal
state of the agent during the execution of its reasoning cycle.

 3

2 Theoretical Basis

2.1 Rational and social agents

Wooldridge distinguishes between an agent and a rational or intelligent agent, stating
that the latter necessarily needs to be even more reactive, proactive and social
(WOOLDRIDGE, 2002).

In this work, we are interested in the testing of rational agents in pursuit of their goals.
Being rational means that an agent must not do “stupid” things, like simultaneously
conducting two conflicting activities such as, for example, planning on spending a lot of
money on a vacation and, at the same time, spending this money on buying a car
(PADGHAM and WINIKOFF, 2004). A detailed analysis of the meaning of “rational”
can be found in the work of Bratman (BRATMAN, 1987), which forms the basis of the
agent reasoning model proposed by Rao and Georgeff (RAO and GEORGEFF, 1991).

2.2 Multiagent systems

Generally, a software agent is not found alone in an application or system, but rather in
conjunction with other agents, of the same or different types, forming a company or
organization (WOOLDRIDGE, 2002). This society is called Multiagent System (MAS).
Thus, an MAS consists of a society of agents capable of interacting with each other and
that, to interact with success, they need the skills of cooperation, coordination and
negotiation among themselves, as occurs in human society (WOOLDRIDGE, 2002).

2.3 Software test

According to Pezzè and Young (PEZZE ̀ and YOUNG, 2008), engineering disciplines
align design and construction activities with activities that check intermediate and final
products so that the defects can be identified and removed. The same thing happens
with Software Engineering: the construction of high-quality software requires the
combination of design and verification activities throughout the development period.

Software is one of the most complex artifacts built on a regular basis. Quality
requirements for software used in an environment can be very different and
incompatible with another environment or application domain, and as the system
grows, its structure evolves and, frequently, deteriorates (PEZZE ̀ and YOUNG, 2008).

Software checking is an important activity that encompasses the entire development
and maintenance process (ADRION, BRANSTAD and CHERNIAVSKY, 1982). The goal
is to find defects in the specifications, the design of artifacts and in implementation. On
the other hand, another goal is to prevent defects. The test project can discover and
eliminate bugs in all stages of the software construction process (SCHACH, 1996).

However, the cost of software checking often represents more than half of the total
development and maintenance costs. Advanced development techniques and powerful
support tools can reduce the frequency of some error classes (PEZZE ̀ and YOUNG,
2008).

The purpose of software testing and analysis is to either evaluate the quality of the
software or make it possible to improve the software by revealing defects.

 4

2.4 Multiagent systems tests

Agents are distributed and asynchronous: Agents run in parallel and asynchronously.
An agent may have to wait for other agents to accomplish their intended goals. Also, it
is possible that an agent might work properly when it is alone and incorrectly upon
being placed in a community, or vice versa. Testing tools must have a global vision
regarding the distribution of agents, in addition to having local and individual
knowledge of each of them, in order to decide whether the system is working according
to the specifications (CACCIARI and RAFIQ, 1999).

Agents have autonomy: Agents are autonomous entities, which means that the same
test entry could result in different behavior under different executions, since agents can
update their knowledge base between the two executions, or can learn from previous
executions, resulting in different decisions for similar situations.

Agents exchange messages: Agents communicate by exchanging messages.
Traditional testing techniques, involving the invocation of methods, cannot be applied
directly, because agents may adopt their own strategies (such as simply not responding
to a message received) for sending and receiving messages.

Agents suffer the influence of environmental and regulatory factors: The
environment and constraints (norms, rules, laws, etc.) are important factors that
influence and govern agents’ behavior. Different configurations in the environment may
affect the test results. Thus, the environment and the restrictive factors are important
and must be considered when designing agent tests.

According to Nguyen, Perini, and Tonella, testing in software agents can be classified
into different levels: unit test, agent test, integration test, system test and acceptance test
(NGUYEN, PERINI, and TONELLA, 2007).

 This work is limited to the Unit Test, focusing on verifying the agent elements.

2.5 JAT Framework

The JAT (Jade Agent Testing Framework) (COELHO, CYRILO, et al., 2007) is a
framework for multiagent system based on the use of “mock” agents. A mock agent is a
“fake” implementation of a real agent, created with the restricted purpose of testing
agents (COELHO, KULESZA, et al., 2006).

A mock agent is responsible for sending messages to the agent being tested (AUT),
checking its answers and verifying whether the environment was affected as expected.
The work of controlling the interaction between the mock agents and AUT is through
the Synchronizer element, which is responsible for defining the order in which the mocks
interact with the AUT. Another element present in the framework is the Monitor, which
is responsible for observing the internal state of the agents and their transitions. Figure
1 depicts all the participants that make up the JAT Framework.

Agent Under Test (AUT): agent whose behavior is checked;

Mock Agent: “fake” implementation of a real agent that interacts with the AUT;

Monitor: responsible for observing the transition of the agents’ internal states;

Synchronizer: controls the order in which the mocks interact with the AUT;

Test Scenario: set of conditions to which the AUT will be exposed, to check if it is
according to its specification under these conditions;

 5

Test Suite: consists of a set of test scenarios and a set of operations performed to prepare
the test environment before starting a test scenario.

Figure 1 - Flow between the participants of a unit test in the JAT.

Each agent AUT follows the flow shown in Figure 1. In step 1, the test suite creates
the platform agents and other elements needed to set up the test environment.
Subsequently, the test scenario is initiated. Each test scenario creates one or more mock
agents that interact with the AUT (steps 3 and 4) – the number of mock agents varies
with the test scenario defined. Next, the AUT is created (step 2). The Monitor agent will
be notified when the interaction between the AUT and the mock agents ends (step 5). At
this point, the AUT and the mock agents begin their interaction. The mock agents send
messages to the AUT, which respond back or vice versa (steps 6 to 9). Steps 6 to 9 are
repeated as many times as necessary to run and complete the mock agents’ plans. For
example, mock agent 1 could answer three messages before finalizing its test activity,
and mock Agent 2 could answer only one message from the AUT before its plan ended.
During this process, the Monitor observes the interaction of agents and keeps track of
changes to the agents’ internal states. Three lists as shown in Figure 1 are used for this
purpose.

Created Agents List: maintains the identifiers of the agents that were created but that are
not yet running;

Running Agents List: maintains the identifiers of the agents that are running;

WorkDone Agents List: maintains the identifiers of the mock agents that have completed
their plans;

When a mock agent concludes its plan, the Monitor agent includes the identifier of
this agent on the WorkDone list and then notifies the test scenario that the interaction
between the mock agent and the AUT was completed (step 10). This notification
unblocks the running of the test scenario, which is now capable of: (i) asking the mock
agent if the AUT acted or not as expected (steps 11 and 12); and (ii) checking that the
environment was affected as expected (step 13). Without such notifications, the test
scenario would not be able of knowing when the interactions between the AUT and the
mock agents ended, that is, when the test scenario had ended and the verification (final
result = expected result) could be made in an intermediate state resulting in a false
positive or a false negative in the test. This is the reason why the Monitor is essential in
this approach.

The Synchronizer is an optional element. It is only used when the test developer must
establish an order in the interaction between the mock agents and the AUT. The
Synchronizer maintains a list with the order of interaction that is loaded at the beginning

 6

of the test scenario. This list contains the identifiers of the mock agents that have the
right to interact with the AUT in a specific moment in the test scenario. In figure 2, mock
agent 1 must send a message to the AUT before mock agent 2. Thus, the test scenario is
partially implemented by each mock agent’s plan, and the Synchronizer is the element
responsible for composing the test scenario. Therefore, the Synchronizer is the element
responsible for defining the moment when each mock agent must run in a test scenario.

The Monitor and the Synchronizer elements represent two intersecting interests of
the approach. Thus, its implementation is intertwined and spread over various parts of
the code of the mock agents, the AUT and platform. Therefore, the strategy adopted for
implementation was to use an aspect for each one of these elements (COELHO,
KULESZA, et al., 2006) (GRISWOLD, SHONLE, et al., 2006) (MEYER, 1997).

2.5.1 The JAT fault model

The agents encapsulate a complex internal structure composed of plans, goals and
beliefs. A plan is represented by a sequence of actions, such as sending messages or the
running of an internal procedure, which is executed to achieve a specific goal. Goals, like
beliefs, can be expressed as agent attributes and be characterized by a type, a name and
a default value that can be modified during the agent running (SILVA, CHOREN and
LUCENA, 2004). These abstractions associated with the agents are the origins of new
classes of errors. In addition to the bugs that can exist in an OO system (arising from
implementation in an OO language), there may be errors in: an agent’s plan or belief, the
interactions between the agents, the emergent behavior of the MAS, or in the restrictions
governing a MAS, to name a few. For practical reasons, a test approach should focus on
a model of specific errors (BINDER, 1999). The fault model defines a subset of errors
considered for the test approach, which includes its ability to detect errors and, therefore,
define the type of error it is intended to detect (BINDER, 1999).

The JAT approach defines as an initial candidate for a fault model a set of agent-
specific errors that can be expressed as a failure in the running of the plans and that,
consequently, undermines the accomplishment of a goal, including these: (i) error in
message order; (ii) error in message content; (iii) error to increase the message response
time; (iv) error in agents’ beliefs – similar to the failures in the OO attributes; (v) error in
the agents’ internal procedures– similar to the error in the OO methods.

2.6 Fault Model proposed by Zhang

The new abstractions introduced by the software agent paradigm define new error
classes. An effective way to reveal the errors in the system or a component under test is
to define a fault model for them, which specifies the situations in which, supposedly,
this is likely to be found (BINDER, 1999) (MYERS, SANDLER, et al., 2004) (BURNSTEIN,
2002). A testing approach, to be practical, must focus on a model of specific errors,
defining a subset of types of failures considered most relevant by the test approach, thus
delimiting the types of errors that are intended to be revealed (BINDER, 1999). In this
paper, we use an error-driven test approach where the building of test cases is used to
reveal and identify failures arising from implementation.

We adopted the fault model proposed by Zhang (ZHANG, 2011) in our approach. In
his work, Zhang uses this model to support the development of scenarios and the
automated generation of test cases for BDI agents through the Prometheus Design Tool
(PDT) (ZHANG, 2011).

 7

Based on Zhang’s fault model, definitions are made for testable characteristics, the
failure conditions for each of the agent’s elements and the errors that are revealed
(ZHANG, 2011).

2.6.1 Faults plans

Broadly speaking, a plan consists of a generating fact for the event that triggers the plan,
a context condition and the body of the plan. The plan’s generating fact indicates the
relevance of the plan for the event. The plan’s context condition determines the
applicability of the plan in relation to the agent’s beliefs. The body of the plan has a
sequence of actions taken to achieve a specific goal. When considering a plan as a
relevant element for the test agent, the intention is to reveal errors such as:

Is a plan, in fact, considered by an event?

A plan should be considered as applicable as soon as it becomes relevant to the event.
This requires that the event is of the correct type and also that all the necessary attributes
(generating factor and context condition) are present. If this does not occur, an error due
to the fact the plan is not considered applicable will be identified.

Is the plan’s context condition evaluated correctly in the selection of the plan?

The context condition of a plan indicates in which situation the plan is applicable. The
absence of a context condition denotes that the plan is always applicable in any situation.
If the developer then specifies a context condition, it is expected that this context
condition will be evaluated as true in some situation and false in others.

Does the plan only trigger the events that were specified to be triggered?

There are two possible points of failure: an event that we expected would be triggered
by the plan and that does not happen; an event triggered in a test that was not designed
to occur.

Does the plan complete its execution?

During the normal running of the program, there may be some reasons that lead to
the failure of the plan that is being tested such as, for example, changes in the
environment after the plan is selected. However, in a controlled test environment, all the
plans that have been selected for execution must be completed. Thus, if the plan being
tested does not complete, we should consider there to have been an error in its
implementation (ZHANG, 2011).

2.6.2 Faults in cyclic plans

We must consider the hierarchy of the plans when the project is specified. The interaction
of a plan with its subplans can form a cycle. A cyclical plan is treated as a special type of
agent unit and is tested as if it were a single entity. Some criteria need to be checked in
the test of the agent cyclic plans, such as:

Does the cycle occur in run time?

The specification of a cyclical plan in the project implies that a cycle can occur when
running. A failure is revealed when an expected cycle is not formed at run time. Another
failure possibility occurs in the opposite situation, that is, a cyclic execution is identified
even when no cyclical plan was specified in the project.

Is their completion of the cyclic plan execution?

 8

Running a cycle can continue indefinitely and it is up to the agent designer to set the
conditions to stop it. However, it is possible that a cycle might run endlessly due to some
implementation error. To verify this, an alternative is to introduce a pre-set maximum
limit for the number of iterations that occur. If the cyclic execution exceeds this limit, a
failure will be identified (ZHANG, 2011).

2.6.3 Faults in events

The characteristics that orient the test of an event are related to the fact of always having
a single plan applicable (complete coverage) to respond to the event or more than one
plan applicable (overlaid) to respond to this event. It is said, moreover, that the event
being tested has incomplete coverage if there is no applicable plan for this in any
situation.

The designer may have defined the occurrence of overlapping or incomplete coverage
plans for an event and, consequently, the application must permit it. However, such
permissions generally are described in natural language and can pass unnoticed in the
development of the agent and deserving, in this case, verification of its occurrence, even
when specified.

In this way, two characteristics must be considered when testing an event:

Does a plan always exist that applies to the event?

If not, the specification of the project needs to be checked to ensure that incomplete
coverage has been foreseen and permitted for the event. Otherwise, an error will be
identified.

Does more than one plan applicable for the event exist?

If there is an event that is dealt with by various plans, it is necessary to check if the
designer has, in fact, designed the overlay for the event. If not, an error was identified.

Does a plan exist that applies to the event and is never executed?

In this condition, what is most probable is that a coding error has led to a failure
situation (ZHANG, 2011).

2.6.4 Faults in beliefs

The test of a belief basically is designed to check two aspects: (i) if the structure for data
storage was designed as specified; (ii) if the update of a belief correctly triggers the
appropriate events, when specified in this way.

The first check occurs at the application level, because a belief can be structured and
implemented in different ways depending on the platform used. However, it must
respect the structure foreseen in the agent project. The second is intended for verification
of the events triggered by the change of the belief content, its removal from the agent’s
knowledge base or the inclusion of a new belief.

Was the belief structure implemented pursuant to what was specified?

This error can occur in two situations: the first is when the developer neglects the
coding of some element of the belief structure and the second checks if an error occurred
in the implementation of a belief, even though it is structurally correct.

Is the appropriate event triggered in the manipulation of the belief?

 9

The test of belief must consider whether, when updated, this action correctly
provokes the expected effects. So, if upon the updating of a belief’s value an event is
triggered, this situation must be verified by the test (ZHANG, 2011).

3 A new approach for testing deliberative agents
The development of an approach for testing deliberative agents, which in this paper is
being considered a synonym for BDI agents, is not a trivial task and some restrictions
were taken to limit the scope of the work. In this section the restrictions adopted during
the development of the proposed approach and the implementation of unit test tool to
support the construction of BDI agent test cases are described. The project’s first decision
was to adopt BDI4JADE as the BDI agent development platform. The reasons for this
decision derive from the fact that, in BDI4JADE, the BDI agents are written entirely in
the Java language, so it is not necessary to use the platform’s own language for the
development of the agents or additional configuration files.

We also restricted the scope of the tests to the unit level. Some researchers believe that
individually testing each agent comprising an MAS is not a relevant task, because it does
not guarantee the operation of the system when these are put together (WINIKOFF and
CRANEFIELD, 2010). Our approach is opposite to this way of thinking; rather, like other
researchers, we believe that the correct and individual functioning of the agent is
indispensable for the functioning of the MAS as a whole (ZHANG, THANGARAJAH
and PADGHAM, 2007). The approaches dealing with integration tests and system tests
are still necessary and essential to the final quality of the MAS.

We adopted the fault model proposed by Zhang (ZHANG, 2011) for this paper as a
guide to the construction of the assertive methods that the tool makes available. This
fault model tackles and describes the failure situations of the elements that make up the
agent.

3.1 Method proposed

As mentioned before, this paper adapted the ideas used by the JAT Framework to enable
the BDI agent test written in BDI4JADE. As illustrated in Figure 2, below are the main
elements used by the proposed solution:

Figure 2 – Participants of the unit test flow.

 10

• AUT (Agent Under Test): represents the agent whose behavior will be checked by
running a test scenario;

• Mock Agent: element created strictly to interact with the AUT, represents a “fake”
implementation of a real agent;

• Monitor: element responsible for monitoring the agent’s reasoning cycle and filling
the data structures with the information extracted during the running of the test
case;

• Synchronizer: element that organizes the running order of the mock agents in a test
scenario and;

• Test case: that defines a condition to which the AUT will be exposed, that is, creates
the Mock agent(s) that will interact with it and check if the AUT obeys its
specification in these conditions;

All the elements presented already were seen in Section 2.5 when the JAT Framework
was presented. Some adaptations were made to include in the BDI agents test. They are:

• AUT: whereas in the JAT the AUT represents an agent written in JADE, in our
approach the AUT represents a BDI agent written in BDI4JADE;

• Monitor: in the JAT, it is responsible for monitoring the internal states of the
agents while, in our approach, the monitoring is carried out in the agent
reasoning cycle;

• Test cases: in our approach, the developer uses assertive methods to test and
verify agent behavior;

3.2 The data structured involved

As has been said, one of an agent’s main characteristics is autonomy. Each agent has its
own execution “thread” and its behavior is determined by a set of inferences made from
its beliefs, goals and plans (GARCIA, LUCENA and COWAN, 2004). With the objective
of effectively testing the agent – taking into account that the tests are based on some form
of comparison of the expected result with the result produced – it is necessary to know
how each of the agent’s components behaved in each step of the reasoning cycle during
execution. Therefore, the information on the state of the beliefs, plans and events is
useful for checking if the agent’s behavior was as expected.

The idea of creating and maintaining structures containing the transitions of an
agent’s states adopted by the JAT Framework led to the building of a new set of data
structures capable of storing the information about the internal components of the
agents, seeking to identify the occurrence of possible errors according to the fault model
introduced in Section 2.6. To obtain this result, we must add code (in the agents and
platforms involved, which in our case is the BDI4JADE and JADE itself). These codes
should be added at all points where changes occur in the state of a component and where
important decisions are taken in the deliberative mechanism. Doing so, however, the
added code would be scattered in many places and in many platform modules. We
realized then that, as occurs with the JAT, monitoring the agent’s reasoning cycle is, of
course, a transversal interest; in these cases, one solution, widely adopted with regard to
the monitoring of transversal interests, is to define an aspect to point directly to the
agents’ execution locations, that is, in their reasoning cycle, and in the platform code
representing the component state transitions (BRIAND, LABICHE and LEDUC, 2005)
(COELHO, et al., 2006). We use the strategy to monitor the agent and platform reasoning

 11

cycle and platform through an aspect, implemented in the ASPECTJ language. To store
the internal state of the components of the AUT during the running of the test case, the
following data structures were created, as seen in Table 1.

Table 1. Populated data structures in the running of the AUT

Data structures with the information about the AUT

Set of Plans Storage of agent’s plans.

Set of Capacities Storage of agent’s capacities.

Set of Events Storage of triggered events.

Set of Messages Storage of messages received and sent by the agent.

Set of Goals Storage of agent’s goals.

The structures presented previously are used to classify the internal elements of the
agent as follows:

Beliefs inserted: are the beliefs inserted in the agent’s beliefs base during running;

Beliefs removed: are the beliefs removed from the agent’s beliefs base during running;

Beliefs updated: are the beliefs whose contents have been changed;

Plans executed: are the plans that the agent executed;

Plans not executed: are the plans from the agent’s plans library that were not executed;

Goals achieved: are the goals that the agent managed to achieve;

Unreached goals: are the goals the agent failed to achieve during its execution;

Intentions: are the goals that, at some point in the moment the agent was running,
were pursued by the agent.

Messages sent: messages sent by the agent (with all message information)

Messages received: messages received by the agent (with all message information)

Events triggered: are the events that occur during agent running

The data structures presented above were used by the assertive methods that, upon
consulting their contents, are able to check if when the agent was in execution an internal
component of the agent was able or not to reach an expected state.

3.3 Synchronizing the parts involved
To synchronize the parts presented in Sections 3.1 and 3.2, a test scenario is chosen and
partially implemented by the plan executed by each mock agent that participates in this
scenario. Sometimes, depending on the test scenario, it is necessary to define in which
order the mocks will interact with the AUT. This synchronization is, traditionally,
handled through construction of synchronized code snippets and data structures, in the
places that need to be synchronized. Similar to what occurs with the data structures, the
synchronization code can be spread by the code of the mock agents and by the main
functionalities, preventing the reuse of the mock agents in different test scenarios. Thus,
in a manner analogous to the monitoring of the agent reasoning cycle, synchronization
is also a transversal interest and can effectively be implemented as an aspect.

 12

In our approach, like with the JAT, an aspect is defined to implement this interest.
The Synchronizer Aspect is the element responsible for the composition of the test scenario
that is partially implemented in each mock agent’s plans. This element is responsible for
defining the time each mock agent must take action in a test scenario. However, the
Synchronizer defines only the order in which each mock agent will interact with an AUT.
It does not define the actions executed by the mock agents, which must be implemented
in the behavior of each mock agent involved in the AUT scenario.

Representing the synchronization of the mock agents as an aspect allows the reuse of
this mock agent in different test scenarios without the need to change its code.

3.4 The JAT4BDI tool: design and implementation
This section presents, in detail, the JAT4BDI tool, developed to serve as proof of concept
for the proposed testing approach. The components, structures and the use of the tool
for its purpose of supporting the development of test cases for agents written in
BDI4JADE will be presented. Figure 3 presents the approaches and technologies used in
the JAT4BDI solution of its interdependencies.

Figure 3 – Dependencies between the JAT4BDI and the approaches used

3.4.1 JAT4BDI details
The tool is organized internally in four packages: (i) the core package; (ii) the annotations
package; (iii) the aspects package and; (iv) the faultinjection package, as shown in Figure
4. The core package contains the classes responsible for supporting the creation and
execution of test cases and the checking of the information collected from the reasoning
cycle and the agents’ internal states during the running of an agent in the test (AUT).
The annotations package contains the classes (JAVA annotations) associated with each
failure of the fault model and used to annotate parts of the code where it is desired to
inject a certain falt for verification. The aspects package also contains the classes (aspects
developed in the AspectJ language) responsible for the monitoring of the agents’
reasoning cycle and for the synchronization of the execution of the test cases between
the AUT and the mock agents. Finally, the faultinjection package contains a class (this is
also an aspect implemented in the AspectJ language) responsible for injecting errors in
the behavior of the AUT.

 13

Figure 4 – Packages structure used by the tool

The classes contained in the core package provide the mechanisms to support the
construction and maintenance of the test cases. The main class of the package is
JAT4BDITestCase. This class extends the TestCase class of JUnit, which provides the
entire infrastructure necessary for running automated unit tests. The JAT4BDITestCase
class also provides methods to run mock agents and a set of assertive methods for
checking the agent’s state, as shown in Figure 5.

Figure 5 – Attributes and operations supplied by the JAT4BDITestCase

Another important core package class is JAT4BDIMockAgent, which implements the
concept of mock agents in the JAT4BDI tool. Unlike the agents being tested (AUT), the
mocks are simple JADE agents and extend the Agent class. This decision is based on the
simplicity of behavior that the mock agents should represent. Thus, the plan of a mock
agent is represented by a JADE behavior. Another important point is that the mock
agents must report the result of the AUT interaction. For this, an interface was defined
that contains a set of methods that must be implemented by the agent that wants to
report the result of the interaction with the AUT. Therefore, to report the results, the
JAT4BDIMockAgent class implements the JAT4BDITestReporter interface. Another way
to check the result of the interaction between the mock agent and the AUT is to use the
assertive methods to verify the information exchanged (content, performative, etc.) with
the mock agents.

 14

The aspects package contains the classes responsible for monitoring agents and the
storage of information for analysis and verification. The main classes contained in this
package are: AgentLists, ReasoningCycle and Synchronizer. The AgentLists class maintains
the data structures set capable of storing the reasoning cycle information and the internal
state of the agents. These structures are filled during the running of the test agent
through the ReasoningCycle aspect, responsible for agent monitoring.

The ReasoningCycle class defines the aspect responsible for monitoring and
collecting information about the reasoning cycle and the internal state of the AUT and
the filling out of the previously submitted data structures. For this, the platform or agent
points are intercepted to collect information on its operation, as shown in figure 6 where
a code snippet responsible for this monitoring is presented.

Figure 6 – The ReasoningCycle aspect fills out the data structures.

Another aspects package class is the Synchronizer. This is an aspect responsible for
“orchestrating” the execution of mock agents in the test cases. In its operation, the aspect
adds a snippet of code before the messaging code (lines 6-15), causing the mocks to check
whether it is their turn to send the message to the AUT. The OrderList class contains the
identifiers of the mock agents that must send a message to the AUT in a specific test
scenario, ordered by the interaction priority (line 7). So, if the return from the
orderList.checkTurn() method is true, the agent can send the message to the AUT;
otherwise, the agent waits a few seconds and checks again if it is its turn to send the
message pursuant to the code presented in the lines (lines 10-12) of Figure 7.

Figure 7 – Partial Synchronizer aspect Code.

There is also the annotations package containing the JAVA annotations. These notes
are responsible for configuring the faults that will be injected into the agents.

Finally, the faultinjection package contains the class responsible for injecting faults in
the AUT verifying the effectiveness of the assertions provided. This is an aspect that

 15

during the running of the test case injects a specific fault into the AUT that the developer
wants to check.

Figure 8 shows the class diagram with the main tool classes. Thus, it is possible to
have a view of the main classes and their dependencies.

Figure 8 – Class diagram with the main tool classes

3.4.2 Assertions
To assist the development of test cases as well as the verification and analysis of the

behavior of the internal state and the test agent reasoning cycle, the tool provides a set
of assertive methods in JUnit style in order to identify possible errors in the running of
an agent considering, for this, the error conditions presented in the fault model used.
These are not JAVA assertions that are inserted in the code of the agents and guarantee
a certain behavior or state of AUT, but rather methods offered by the tool itself to support
the identification of the errors or unwanted behavior that occurred.

Below is the list of methods provided by JAT4BDI to support the development of test
cases:

Methods for configuration of the environment:

• setUp: method run before the test case, used for settings;

• tearDown: run at the end of the execution of the test case;

• startAUT: start AUT execution;

• startMockAgent: start a mock agent execution on the platform;

• waitUntilAUThasFinished: waiting for the end of the AUT execution;

• waitUntilMockHasFinished: waiting for the end of the mock agent execution;

Tables 2-6 above lists methods that support the identification of faults associated with
beliefs, plans, capabilities, messages and events, respectively.

Table 2. Methods that support error identification associated with the beliefs
Verification Method Goal Description

 16

assertHasBelief checks if the agent has a belief in its belief base

assertWasInsertedBelief checks whether a belief was inserted into the belief base during
agent execution

assertWasRemovedBelief checks whether a belief has been removed from the belief base
during agent execution

assertWasUpdatedBelief checks whether a belief's value was changed during agent
execution

Table 3. Methods that support the identification of errors associated with the plans
Verification Method Goal Description
assertHasPlan checks if a plan is part of the agent's plan library
assertWasExecutedPlan checks whether a plan was executed
assertHasAssociatedGoal checks if a plan is associated with a goal (agent objective)
assertHasCyclePlan checks if there was a cycle during agent execution
assertPlanDispatchedEvent checks if the plan triggered an event

Table 4. Methods that support error identification associated with capabilities
Verification Method Goal Description
assertHasCapability checks whether an agent has a capacity

assertHasInCapability checks whether a component has a capacity which can be: a
belief or a plan

Table 5. Methods supporting the identification errors associated with message exchanges
Verification Method Goal Description

assertReceivedMessageFrom checks if the agent received a message from
another agent

assertSentMessageTo checks the contents of the message received by
the AUT from another agent

assertContentReceivedMessageEquals checks the contents of the message received by
the AUT from another agent

assertContentSentMessageEquals checks the message content sent by the AUT to
another agent

assertPerformativeReceivedMessageEquals checks the performance of the message received
by the agent

assertPerformativeSentMessageEquals checks the performance of the message sent by
the AUT

Table 6. Method which supports the identification of errors associated with events
Verification Method Goal Description
assertDispatchedEvent checks if an event was triggered by a plan or a belief

 17

3.4.3 Steps for execution

 The JAT4BDITestCase class performs the construction of test cases. The developer must
build test cases in the JUnit style in order to include the entire specification of the
specified test scenario. For this, the verification methods presented in the previous
section are used. The execution of a test scenario follows the flow shown in Figure 9.

Figure 9 – Workflow to run unit tests in JAT4BDI.

The use of the tool starts with the specification of the test scenario in which we want
to check the behavior. Once the test scenario has been specified, the next step is to specify
test cases that cover the specified scenario. Table 7 presents a test scenario model.

Table 7. Model for describing a test scenario
Agent Agent Under Test (AUT)

Test scenario (input)
Describes the entry of the test scenario that includes the entries for
the AUT in this scenario and the initial state of the agent and other
variables in the environment

Expected Outcome Describes the expected behavior for AUT - if it should send a
message or change the environment

The focus of the proposed work is to build test cases and, thus, the test case developer
must create a class extending the JAT4BDITestCase class. After creating the class that
represents the test case, the developer can implement the tests using the methods offered
by the tool to create the mock agents, the AUT and verify the result after running the
agent. Figure 10 shows a simple example for the verification of a belief through the
testVerifyingBelief method that checks if the agent has the “message” belief in its belief
base.

 18

Figure 10 – An example of execution of a test case in JAT4BDI.

 The result of the test execution above is represented by figure 11.

Figure 11 – Results of the execution of a test of the test case.

4 Use Scenarios
This section demonstrates the applicability of the approach proposed by the JAT4BDI
tool.

4.1 Book Trading System

This section presents an example that is well known and provided on various multiagent
platform system: the Book Trading System. This is a book commerce application in
which each agent can play the role of a seller, a buyer, or both. Figure 12 (B) details the
interaction protocol between these roles. The FIPA CONTRACT NET Protocol (FIPA,
2000) between the seller agent and the buyer agent is established, as illustrated in Figure
12 (A).

According to Figure 12 (B) as soon as a seller agent joins the room it registers on the
platform’s yellow pages service as a “book-seller” and awaits orders from a buyer. When
a buyer agent joins the environment it looks for “book-seller” agents registered in the
yellow pages and start interacting with them.

When the seller agent receives a “CPF” type of message from a buyer, it looks for the
book requested in its catalogue of books. If the book is available, the seller agent sends a
“PROPOSE” message in response to the “CPF”, whose content is the book’ price. On the
other hand, if the book is not in the seller agent’s catalogue, it sends a “REFUSE” message
to the buyer agent that the book is not available. The buyer agent receives all proposals
and rejections of selling agents and chooses the one with the best offer and, then, sends
the chosen seller a “PURCHASE” message. When the seller agent receives a

 19

“PURCHASE” message it removes the book from the catalogue and sends an “INFORM"
message to notify the buyer’s agent that book’s sale was completed. However, if for some
reason the book is no longer available in the catalogue, the seller agent sends a
“FAILURE” message informing the buyer agent that the requested book is no longer
available. If the buyer agent receives a message indicating that the purchase was
completed it can shut down. Otherwise, it will again execute its plan to try to buy the
book from another agent.

Figure 12 – FIPA CONTRACT-Net Protocol (A) and (B) the Book Trading System.

4.1.1 Description of the usage scenario

Using the error-guessing technique, the test scenario presented in Table 8 was defined. In
this scenario, the agent that must deal with the exceptional condition will be the test
scenario AUT, and mock agents will represent all other agents.

Table 8. Book Trading System test scenario example
Agent Under Test Seller Agent (BookSeller)

Test Scenario Two buyer agents (BookBuyer) try to buy the same book from the
seller agent (BookSeller) but it has only one copy available

Expected Outcome The seller agent (BookSeller) should sell the book to the first agent who
requested its purchase and reject the request of other agents

 20

Table 9 presents test cases that must be implemented in the tool in order to support
verification of the agent behavior described in the test scenario and identification of
possible errors.

Table 9. Bookseller agent test cases
Item to be tested Test Objective
Belief representing the book
catalog

Check if a belief containing the books catalog information
was created

belief Value Check if the book is available in the catalogue

plan BookSellerPlan Check if the BookSellerPlan plan is present in the agent's plan
library

plan BookSellerPlan Check if the plan was BookSellerPlan

plan BookSellerPlan Check if the BookSellerPlan plan received a purchase request
properly

plan BookSellerPlan Check if the BookSellerPlan plan announced the availability
of the book correctly

plan BookSellerPlan Check if the BookSellerPlan plan was the purchase of book
proposal

plan BookSellerPlan Check if the plan BookSellerPlan informed the buyer agent
that the purchase was finalized

4.1.2 Test cases – Book Trading System

The verification of the agent behavior is initiated by the test described in Figure 13. It
checks the existence of the “catalogue” belief in the agent’s knowledge base (line 11).

Figure 13 – Checks the existence of the belief in the knowledge base.

The next step is to check the value of the belief. Thus, it is possible to verify that the
seller agent has the copy of the book the buyer wishes. Line 18 shows the verification of
the value of the belief, as shown in Figure 14.

 21

Figure 14 – Checks the value of the belief in the agent’s knowledge base.

The next test checks whether the BookSellerPlan plan is present in the agent’s plan
library. This plan is responsible for selling the book to the buyer agent. Line 13 is the
check mentioned pursuant to Figure 15.

Figure 15 – Checks the existence of the plan in the agent's plans library.

The test shown in Figure 16 checks whether the plan BookSellerPlan was executed (line
17). The test also initializes the buyer agents as mock agents (lines 7 and 8). Each mock
agent awaits its moment for interacting with the AUT (lines 12 and 13).

Figure 16 – Checks if the BookSellerPlan plan was executed.

 22

Figure 17 shows the test where the AUT receives the purchase request from the mock
agent MockFirstBuyer. This test case verifies that the AUT has received a CPF type
message (line 18).

Figure 17 – Checks whether the type and message contents are correct.

The next test, as per Figure 18, checks if the response of the AUT to the buyer’s request
is correct. In this case, the AUT must respond by sending a proposal (line 18) and the
price of the requested book (line 19).

Figure 18 – Checks that a proposal was sent by the seller agent.

Figure 19 shows the test that confirms the purchase request. The AUT receives a
message from the buyer agent confirming the purchase of the book (line 17).

 23

Figure 19 – Checks the buyer agent’s purchase confirmation.

Finally, test scenario ends with the test case shown in Figure 20, which checks the
sending of the AUT's message to the buyer agent informing the completion of purchase
(line 17).

Figure 20 – Checks the sending of the purchase completion message.

The group of test cases shown above verified each stage of the checking of the
CONTRACT-NET protocol. An error in any of the above checks represents a failure in
the communication protocol proposed for the agents.

4.1.3 Running of the test cases – Book Trading System

The execution of all scenario test cases allows the developer to observe the behavior and
interaction between the seller agent (AUT) and the buyer agent. Figure 21 shows the test
results.

 24

Figure 21 – Results of the running of the test cases.

Figure 22 shows the BDI4JADE platform execution log reporting that the seller agent
achieved its goal.

Figure 22 – Log informing that the seller agent achieved its goal.

4.2 Results observed

Incremental tests were performed using JAT4BDI for the previously described example.
First, test cases were defined where the error-guessing technique (Meyer, 1997) (BEER
and RAMLER, 2008) was used. Given the test scenario for each defined test case, there
was only one AUT and mock agents represented the other agents that interact with the
AUT. The JAT4BDI tool was used to support the development of all the examples
described above and helped several times with regard to error identification, such as: (i)
error in the agent belief value configuration; (ii) failure to implement a plan, that is,
sometimes the plan was not executed for not being associated with the agent’s goal; (iii)
failure to exchange messages between agents because of errors in the message content
or the performative used.

5 Limitation of the related works
This section describes some of the works related to the proposed work that guided
decisions about the scope of this research.

The work of Winikoff and Cranefield (WINIKOFF and CRANEFIELD, 2010) presents
an analysis of the flexibility and the adaptive characteristics of the BDI agents observing
the behavioral space of the agent, that is, the number of possible ways of achieving a

 25

goal. Their work also has sought to understand what are the factors that influence the
size of the behavioral space and viability to ensure the effectiveness of multiagent system
through tests. Thus, Winikoff and Cranefield related the feasibility of the test of a
multiagent system to the proportion of paths taken in the behavioral space, and
moreover, considering that running a test consists of observing a way of execution and
determining whether this is correct or not. The concern of Winikoff and Cranefield’s
work is not to verify whether a given path is correct, but rather whether it is possible to
ensure the effectiveness of the system through testing. The conclusions of Winikoff and
Cranefield on the feasibility of multiagent system test corroborated the decision to
delimit the scope of the proposed approach to the unit testing of agents and not for
system or integration testing.

In their work, Coelho et al. present a framework for testing multiagent system
(COELHO, CIRILO, et al., 2007) based on the use of "mock agents," that is through a
"fake" implementation of a real agent for the sole purpose of testing the communication
between agents (COELHO, KULESZA, et al., 2006). By monitoring the transition of the
internal state of the agents, the JAT controls and observes the interaction between the
mock agents and the AUT. This monitoring is done through aspects written in the
ASPECTJ language. Despite the good contribution in relation to the software agents test,
the work of Coelho is limited to the testing of agents with reactive behavior. The work
was further limited, by using an fault model that focuses basically on finding errors in
the communication protocol between agents. The work of Coelho contributed in a
significant way to our approach, inspiring the use of mocks to test the interaction
between the agents and the framework execution model for the creation of the JAT4BDI
tool. We also adopted the idea of using aspects to monitor the reasoning cycle of the
BDI4JADE agents and store their states in internal data structures for subsequent
observation.

The Zhang’s work (ZHANG, THANGARAJAH and PADGHAM, 2009) presents a
framework for automatic generation of test cases for multiagent system. This work
considers the construction of model-based multiagent systems (APFELBAUM and
DOYLE, 1997) (EL-FAR and WHITTAKER, 2001), in this case the Prometheus
(PADGHAM and WINIKOFF, 2004), developed during the MAS project. In this
approach, the model designed for MAS provides inputs to the framework of what
should be tested. This work also presents a model to identify possible errors and the
conditions under which they may occur. The work focuses on the unit test of the agent’s
internal components, conducting a directed error test, where the goal is to reveal possible
implementation errors (BINDER, 1999). Despite presenting an interesting and relevant
approach regarding the agent test, the main focus of the work of Zhang is automated
generation of test cases. In relation to the fault model, despite precisely describing the
situations and error conditions, it is used to support the decisions of the generation of
test cases, not providing any mechanism for observation of the internal state of the
agent’s components when an error is identified. The contribution of the work of Zhang
to the approach proposed was quite important, providing an indication of what should
be tested on agents and precisely indicating the situation and condition of possible errors
in the agent’s attempt to achieve its goals.

6 Conclusion and future work
The use of agent technology for developing distributed software has shown promise for
this type of system. Its use in various business domains, especially in critical scenarios
for human activity, is a strategy that increasingly is being adopted. For these critical

 26

scenarios, analysis and software behavior verification become crucial. However, the
methods proposed so far by Agent-Oriented Software.

Engineering Agents (AOSE) have focused their efforts primarily on disciplined
approaches to analyze, design and code an MAS, with little attention given to how such
systems could be tested. In this context, this work proposed an approach to support the
development of software agents through the construction and maintenance of test cases
for deliberative agents (BDI) written in BDI4JADE. This approach was based on the ideas
supported by the JAT Framework (the use of mock agents to simulate the interaction
between the agent in tests and a real agent and the monitoring of agent behavior through
aspects) and in the fault model proposed by Zhang (ZHANG, 2011), describing the
possibilities of errors and which agent elements must be observed.

Also in this paper, a tool was proposed to support the construction and execution of
automated test cases, the JAT4BDI. Through an exploratory example about how to use
the tool and its resources were presented. Through verification methods, similar to those
existing in the JUnit Test Framework, the test developer has access to the information
from the agent that occurred during its reasoning cycle, helping identify possible errors.

A number of points could be improved and the following is the future work that
could be conducted as an outcome of the work proposed: (i) creation of a framework:
evolve the current tool so that it becomes a framework. Possible extension points for the
framework would be: the fault model used, the monitoring mechanism of the agent
reasoning cycle making it possible that agents written on other platforms could be tested
and not only BDI4JADE agents, the mechanism for the creation of customized assertive
methods by the test case developers; (ii) conducting an experimental study: usage
scenarios designed to present the approach and the tool were used. However, we
propose carrying out a study to test its effectiveness and efficiency; (iii) checking
normative behaviors: extending the tool to allow the unit testing of regulatory agents,
that is, agents whose behavior is governed by some external rule.

References

ADRION, W.; BRANSTAD, M.; CHERNIAVSKY, J. Validation, verication, and testing
of computer software. ACM Computing Surveys. v.14, p.159-192, 1982.

APFELBAUM, L.; DOYLE, J. Model Based Testing. International Software Quality Week
Conference. CA – USA, 1997.

BEER, A.; RAMLER, R. The Role of Experience in Software Testing Practice. Euromicro
Conference Software Engineering and Advanced Applications, 2008.

BINDER, R. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley, 1999.

BRATMAN, M. Intentions, Plans, and Practical Reason. Harvard University Press,
Cambridge – MA, 1987.

 27

BRIAND, L.; LABICHE, Y.; LEDUC, J. Tracing Distributed Systems Executions Using
AspectJ. Proceedomgs of ICSM, 2005.

BURNSTEIN, I. Practical Software Testing. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2002.

CACCIARI, L.; RAFIQ, O. Controllability and observability in distributed testing.
Information and Software Technology. V.41, p.767-780, 1999.

CAIRE, G.; COSSENTINO, M.; NEGRI, A.; POGGI, A.; TURCI, P. Multi-agent systems
implementation and testing. Proceedings of 4th International Symposium - From Agent
Theory to Agent Implementation, 2004.

COELHO, R.; DANTAS, A.; KULESZA, U.; STAA, A.; CIRNE, W.; LUCENA, C. The
Application Monitor Aspect Pattern. PLoP’06, 2006.

COELHO, R; CIRILO, E.; KULESZA, U.; STAA, A.; RASHID A.; LUCENA, C. JAT: A
Test Automation Framework for MultiAgent Systems. International Conference on
Software Maintenance. ICSM, 2007.

COELHO, R; CIRILO, E.; KULESZA, U.; STAA, A.; RASHID A.; LUCENA, C. The JAT
Testing Framework - Technical Report. PUC-Rio, Brazil, 2007.

COELHO, R.; KULESZA, U.; STAA, A.; LUCENA, C. Unit Testing in Multi-agent
Systems using Mock Agents and Aspects. International Workshop on Software
Engineering for Large-Scale Multi-Agent Systems. ICSE, 2006.

EL-FAR, I.; WHITTAKER, J. Model-Based Software Testing. Encyclopedia of Software
Engineering, pages 825-837. Wiley, Chichester, 2001.

FIPA Contract Net Interaction Protocol Specification, 2000. Disponível em:
http://www.fipa.org/specs/fipa00029/.

FISHER, M.; DENNIS, L.; WEBSTER, M. Verifying Autonomous Systems.
Communications of the ACM, Vol. 56 No. 9, p. 84-93, September 2013.

GARCIA, A.; LUCENA, C.; COWAN, D. Agents in Object-Oriented Software
Engineering. Software Practice & Experience. Elsevier, 34(5), pages 489-521, 2004.

 28

GRISWOLD, W.; SHONLE, M.; SULLIVAN, K.; SONG, Y.; TEWARI, N.; CAI, Y.;
RAJAN, H. Modular Software Design with Crosscutting Interfaces. IEEE Software,
Special Issue on Aspect-Oriented Programming, 2006.

IEEE 610.12 - IEEE Standard Glossary of Software Engineering Terminology, 1990 - DOI:
10.1109/IEEESTD.1990.101064.

LOW, K; CHEN, T.; RONNQUIST, R. Automated Test Case Generation for BDI Agents.
Journal Autonomous Agents and Multi-Agent Systems. v.2, No. 4. p. 311-332, 1999.

MEYER, B. Object-oriented software construction. Prentice-Hall, Inc. Upper Saddle
River, NJ, USA, 1997.

MYERS, G.; SANDLER, C; BADGETT, T.; THOMAS, T. The Art of Software Testing.
Wiley, Second Edition, June de 2004.

NGUYEN, C. D.; PERINI, A.; TONELLA, P. Automated Continuous Testing of Multi-
Agent Systems. European Workshop on Multi-Agent Systems (EUMAS), 2007.

NGUYEN, C.; PERINI, A.; TONELLA, P.; MILES, S.; HARMAN, M.; LUCK, M.
Evolutionary Testing of Autonomous Software Agents. International Conference on
Autonomous Agents and Multi-agent Systems (AAMAS), 2009.

NGUYEN, D.; PERINI, A.; TONELLA, P. A Goal-Oriented Software Testing
Methodology. Springer - Berlin, April 29, 2008.

NUNES, I.; LUCENA, C.; LUCK, M. BDI4JADE: a BDI layer on top of JADE.
International Workshop on Programming Multi-Agent Systems - ProMAS, 2011.

NUNEZ, M.; RODRIGUEZ, I.; RUBIO, F. Specification and testing of autonomous agents
in e-commerce systems. Journal of Software: Testing, Verification and Reliability. v.15,
issue 4, p. 211-233, 2005.

PADGHAM, L.; WINIKOFF, M. Developing Intelligent Agent Systems: A practical
guide. Wiley Series in Agent Technology. RMIT University, Melbourne, Australia, 2004.

PEZZÈ, M.; YOUNG, M. Teste e Análise de Software: processos, princípios e técnicas. 1ª.
ed. [S.l.]: Bookman, 2008.

RAO, A.; GEORGEFF, M. BDI-agents: from theory to practice. Proceedings of the First
International Conference on Multi-agent Systems, 1995.

 29

RAO, A.; GEORGEFF, M. Modeling rational agents within a BDI-Architecture. In: J.
Allen, R. Fikes, E. Sandewall (eds.) Principles of Knowledge Representation and
Reasoning, Proceedings of the Second International Conference, p. 473–484, Morgan
Kaufmann, 1991.

SCHACH, S. Testing: Principles and practice, Journal ACM Computing Surveys. v. 28,
n. 1, 1996, p. 277-279, Março 1996.

SILVA, V.; CHOREN, R.; LUCENA, C. A UML based approach for modeling and
implementing multiagent systems. Pages.914-92, AAMAS 2004.

Standard Glossary of Terms used in Software Testing – Documento de referência do
International Software Testing Qualification Board (ISTQB). Disponível em:
http://www.istqb.org/downloads/glossary.html (acessado em Novembro de 2014).

VOAS, J.; MCGRAW, G. Software Fault Injection: Inoculating Programs Against Errors.
Wiley, 1998.

VOAS, J.; MILLER, K. Software Testability: The New Verication. IEEE Software, 1995.

WINIKOFF, M.; CRANEFIELD, S. On the testability of BDI agents. European Workshop
on Multi-Agent Systems, 2010.

WOOLDRIDGE, M. An Introcuction to MultiAgent Systems. 2ª. edition. Wiley, 2002.

ZAMBONELLI, F.; JENNINGS, N.; OMICINI, A.; WOOLDRIDGE, M. Agent-oriented
software engineering for internet applications. Coordination of Internet Agents, p. 326–
346. Springer Verlag, 2001.

ZHANG, Z. Automated Unit Testing of Agent Systems. Tese de Doutorado - RMIT
University, Outubro de 2011.

ZHANG, Z.; THANGARAJAH, J.; PADGHAM, L. Automated Unit Testing For Agent
Systems. International Conference on Autonomous Agents and Multi-agent Systems,
2007.

ZHANG, Z.; THANGARAJAH, J.; PADGHAM, L. Model based testing for agent
systems. International Conference on Autonomous Agents and Multi-agent Systems,
2009.

