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Abstract. Background: The Vernam Cipher, or one time pad is considered the only 
unbreakable encryption scheme. It consists of a XOR operation between the plain text 
and a random key with the same length of the plain text. Once encrypted, the ciphered 
message gives nothing the cryptanalyst can use to decipher the encrypted message. 
The major drawback of the Vernam cipher is that it is not feasible to generate and 
share a key that is as long as the plain text message. Aim: In this work, We propose a 
hybrid encryption algorithm, which combines block an stream cipher characteristics, 
using hashes, salts and block counters as block key generators to encrypt a variable 
length message. The strength of the cryptosystem depends on the strength of the hash 
function. Method: We belive that Collision resistant hash functions (CRHF) may be a 
very effecitve way to generate peseudorandom block keys which can be used in a XOR 
operation with the plain text. Results: In our experiments, we generated one billion 
keys for each hash function we tested. None of them repeated itself. Conclusions: Our 
experiments show the key generation algorithm mimics the behavior of the Vernam 
Cipher and that the block cipher key will not be repeated for a long time. The encryp-
tion and the decryption algorithms are very simple and easy to implement, both in 
software and in hardware. 

Keywords: Symmetric Key, Vernam Cipher, Encryption, Security, Hash 

Resumo. Introdução Teórica: a cifra de Vernam é considerada o único esquema de 
criptografia totalmente segura. Consiste na operação XOR entre o texto simples e uma 
chave aleatória com o mesmo comprimento da mensagem não cifrada. Uma vez crip-
tografada, a mensagem cifrada não fornece qualquer informação que o criptoanalista 
possa usar para decifrar a mensagem criptografada. A principal desvantagem da cifra 
Vernam é que não é viável gerar e compartilhar uma chave que seja tão longa quanto a 
mensagem de texto simples. Objetivo: neste trabalho, propomos um algoritmo de crip-
tografia híbrido, que combina as características de bloco e de fluxo de criptografia, u-
sando hashes, salts e contadores de blocos como geradores de chave de bloco para 
criptografar uma mensagem de comprimento variável. A força do criptosistema de-
pende da força da função hash. Método: acreditamos que as funções de hash resisten-
tes à colisão (CRHF) podem ser uma maneira muito eficaz de gerar chaves peseudoa-
leatórias que podem ser usadas em uma operação XOR com texto simples. Resultados: 
em nossos experimentos, geramos um bilhão de chaves para cada função de hash tes-
tada. Nenhuma delas se repetiu. Conclusões: Nossos experimentos mostram que o al-
goritmo de geração de chaves imita o comportamento da Cifra Vernam e que a chave 
de bloco não será repetida por muito tempo. Os algoritmos de cifragem e decifragem 
são muito simples e fáceis de implementar, tanto em software como em hardware.  

Palavras-chave: Chave Simétrica, Cifra Vernam, Criptografia, Segurança, Hash 
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1  Introduction 

In this section, we briefly explain our proposal and our motivation. 

Symmetric key encryption is essentially divided in two categories: Block Ciphers 
and Stream Ciphers (Paar & Pelzl, 2010). 

Block Ciphers consists of two algorithms: one for encryption and another for de-
cryption (Cusick & Stanica, 2009). With block ciphers, the message is broken into 
blocks of fixed sizes and each block is encrypted with the encryption key. 

With Stream Ciphers, the plain text is combined with a pseudorandom cipher bit 
stream and each bit of the plain text is combined with the cipher bit stream in a XOR 
operation, implementing in practice, the Vernam Cipher (CryptoMuseum, 2012). 

We belive that Collision Resistant Hash Functions (CRHF) may be a very effecitve 
way to generate peseudorandom keys which can be used in a XOR operation with the 
plain text. 

In this work, We propose a hybrid encrytion algorithm which combines block an 
stream cipher caracteristics, using hashes, salts and block counters as block key 
generators to encrypt a variable length message. The strengh of the cryptosystem 
depends on the strengh of the hash function. 

1.1  Motivation 

Recently,  several symmetric key encryption algorithms have been broken. RC4 was 
broken in less than one minute in 2007 (Tews, et al., 2007). In 2016, the security of Tri-
ple DES was lowered from 2168 to 2113 and Blowfish have been proven to be unsecure. 
Both Blowfish and Triple DES are vulnerable to SWEET32 attacks (Bhargavan & 
Leurent, 2016). As a result, new encryption algorithms are always in demand. 

The AES (Advanced Encryption Standard) is the most popular and one of the most 
secure, block cipher, encryption algorithm in use. Because it has several modes of op-
eration, AES is not trivial to be used by the developer. One of the most secure modes of 
operation for AES is the CBC (Cipher Block Chaining). The first ciphered block is used 
to encrypt the second and so on. For the first block, CBC requires an IV (Initialization 
Vector), which consists of a block composed of random bits. The IV is transmitted with 
the encrypted message to allow decryption by the receiver. A nonrandom IV weakens 
the encryption and allows dictionary and differential attacks to have a better chance to 
decipher the encrypted message (Preneel, 2007). Also, AES requires a key with a spe-
cific length. AES-128 requires a 128 bit long key, while AES-192 and AES-256 require 
192 and 256 bit long keys, respectively. If one chooses a weak key or uses a shorter key 
padded with spaces or nulls, one wakens the encryption algorithm. 

We also encountered a problem in the development of mobile applications in the 
AES algorithm of the Android Operating System. Its Java Cipher Class does not allow 
all types of padding schemes. Padding is required because AES uses fixed 128 bits 
length blocks. When a block does not have enough bits, the block must be padded to 
with some padding scheme. The Cipher class of the Android SDK currently supports 
PKCS5, ISO10126 or No Padding. However, Swift for IOS accepts PKCS7, ISO97971, 
AnsiX923, ISO10126, ZeroPadding and NoPadding. Finally, we found Windows librar-
ies accepting PKCS7, AnsiX923, ZeroPadding and Padding with spaces (20 hex). Even 
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though this problem is more related to Software Engineering or Human–computer in-
teraction, it gave us the initial motivation to propose an encryption scheme without the 
need for padding. 

Summarizing the motivation, our proposed encryption scheme focus on the follow-
ing characteristics:  

• Requires only the plain text, the encryption key and the Hash Algorithm to 
be used in the encryption process. 

• Requires only the ciphered message, the encryption key and the Hash Algo-
rithm used in the decryption process. 

• Keys can be of any length 

• No padding scheme is needed 

• No real time synchronization required between the sender and the receiver 

• Easy to implement on almost any platform and programming language 

• Flexibility and Modularity 

By Flexibility and Modularity, we mean that the user or software developer can 
choose a CRHF from a set, according to his/hers security requirements. If the CRHF 
becomes unsecure, all he/she has to do is to adopt another CRHF. Neither the encryp-
tion or the decryption algorithm need changes in their coding. 

2  Background 

In this section, we provide the necessary background for the understanding of our 
proposal. 

2.1  The Vernam Cipher  

The Vernam Cipher (Vernam, 1926) (Kahn, 1967) or one time pad is considered the on-
ly unbreakable encryption scheme. It consists of a XOR operation between the plain 
text and a random key of the same length of the plain text. Once encrypted, the ci-
phered message gives nothing the cryptanalyst can use to decipher the encrypted mes-
sage. On the other hand, the Vernam Cipher has two drawbacks: 

1) It is not feasible to negotiate a key between two parties, in which the key size is 
as big as the message size. 

2) If two parties are capable of negotiating a key with the same length of the mes-
sage, they can also exchange messages without the need for encryption. 

2.2  Collision Resistant Hash Functions 

Collision Resistant Hash Functions (CRHF) are used for various applications such as 
message authentication, digital signatures, pseudorandom bit generation, integritty 
assurance and so on  (Akhimullah & Hirose, 2016). Hashes are mathematical functions 
that compress an input of arbitrary length to a result with a fixed length. Hash 
functions are also used to allocate as uniformly as possible storage for the records of a 
file. Yet, CRHF are hashes which collisions are hard to find. 
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The formal definition of a Collision resistant hash function appears to be credited to 
Damgård (Damgard, 1988).  

A collision resistant hash function is a function h satisfying the following conditions  
(Preneel, 2003): 

1. The description of h must be publicly known and should not require any secret 
information for its operation (extension of Kerckhoffs’s principle). 

2. The argument X can be of arbitrary length and the result h(X) has a fixed length 
of n bits. 

3. Given h and X, the computation of h(X) must be “easy”. 

4. The hash function must be one-way in the sense that given a Y in the image of h, 
it is “hard” to find a message X such that h(X) = Y and given X and h(X) it is “hard” to 
find a message X’ � X such that h(X’) = h(X). 

5. The hash function must be collision resistant: this means that it is “hard” to find 
two distinct messages that hash to the same result. 

In order to satisfy conditions 4 and 5, a CRHF must be resistant to preimage and 
second preimage attacks (Rogaway & Shrimpton, 2004). For a preimage attack to be 
successful, the computational complexity required is, at least, O(2n), while for a second 
preimage attack, the computational complexity required is, at least, O(2n/2). 

2.3  Block Cipher vs Stream Cipher 

Block cipher operates on fixed length blocks of bits (Stallings, 2011). If the plain mes-
sage is shorter than the block size, some sort of padding is required.  

Block ciphers use two different algorithms: one for encryption and another for de-
cryption (Bellare & Rogaway, 2005). 

The goal of stream ciphers is to mimic the Vernam Cipher by continuously generat-
ing and synchronizing new keys between the sender and the receiver (El-Razouk, et 
al., 2014). They are more difficult to implement than block ciphers, because the key-
stream cannot repeat itself during the session. There are two types for operation 
modes: Synchronous Stream Cipher and Self-synchronizing stream ciphers. 

In Synchronous Stream Cipher, the keystream is generated independently of the 
plain text and of the ciphered message. The keystream is commonly produced by a 
pseudorandom generator, parameterized by the secret key of the whole scheme. In this 
mode, the sender and receiver must be synchronized for decryption to be successful. 
One way to achieve synchronization is to send an IV in the open before each encrypted 
frame  (Fontaine, 2011)  (Rueppel, 1986). 

In a Self-synchronizing, or asynchronous, stream cipher, the keystream depends on 
the secret key of the scheme and also on a fixed number of ciphered text digits that 
have already been produced by the sender, or read by the receiver. The idea of self-
synchronization was patented in 1946 and has the advantage that the receiver will au-
tomatically synchronize with the keystream generator after receiving a certain number 
of ciphered text digits  (Fontaine, 2011)  (Daemen & Kitsos, 2008). 
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2.4  Counter Mode Encryption 

In counter mode encryption, block ciphers use sequential numbers which are com-
bined with the encryption key in the encryption algorithm  (Schneier, 1996). The result 
of the operation is the block key. Finally a bitxor operation is performed with the block 
key and the plaintext block. After each block encryption, the counter increments by 
some constant or a function. Essentially, counter mode transforms a block cipher 
scheme into a stream cipher one. The decryption algorithm of the block cipher is not 
needed. Only the encryption algorithm is used. 

Counter mode encryption has the following properties (Fay, 2016) :  

• No error propagation: An error in a block Bi has no effect on Bi+1 

• Synchronization: “Encryption and Decryption work synchronously as long 
as the counters are in sync”. If the sender and receiver loose synchroniza-
tion, the receivers cannot decrypt the ciphered messages. 

• Parallelizability: Fixed length block ciphers using counter mode encryption 
can be encrypted and decrypted in parallel, because each block is independ-
ent from the others. 

2.5  Salts and Nonces 

Salts and Nonces are random data with different goals. Salts protect passwords against 
dictionary attacks, when they are used as while nonces are one time random numbers 
to be used as initialization vectors for encryption algorithms to protect both the en-
cryption key and the ciphered message, ensuring that the same plaintext encrypted 
with the same key produces a different ciphered message because the nonce will be 
different. Usually there is only one nonce for the entire encryption process, while salts 
are abundant and preferably a unique for each password stored in a database. 

2.6  The Birthday Attack 

The Birthday Attack weakens any hash function by exploiting the mathematics behind 
the birthday problem in probability theory  (Jin, et al., 2017) (McKinney, 1966). 

The Birthday Problem concerns the probability that, given a set of k randomly peo-
ple, two of them will have the same birthday. With just 30 people, the probability is 
70%. Applying the birthday problem to hash functions, the attacker wants to create a 
second message m’ which produces the same hash output of the original message m, 
h(m’) = h(m). For a hash function of 2n possible outputs, where n is the fixed length 
size in bits of the hash output, the probability of finding a collision is  

 
As a result, the equation lowers the time complexity for obtaining a collision from 

O(2n) to O(2n/2) 
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3  Related Work 

Bruce Schneier proposed a simple way to use a One-way Hash Functions to encrypt 
data in a stream cipher algorithm  (Schneier, 1996): 

 Ci = Mi ⊕ H(K,Ci-1) and Mi = Ci ⊕ H(K,Ci-1) 

A hash based stream cipher algorithm was published in 1999 (Peyravian, et al., 
1999). In this system, the authors use the sha-1 hash of the encryption key and a se-
quential counter to generate a keystream. Although efficient, the cryptosystem would 
produce the same ciphered message given the same plaintext and using the same key 
or session key. 

The encryption/decryption algorithm is described as : 

Ci = Mi ⊕ H(i,K) and Mi = Ci ⊕ H(i,K). 

The ciphered text is  C = C1 �C2�…�Cn, where �means string concatenation. 

This hash based stream cipher have been cited 18 times. The articles  (Gordon & 
Loeb, 2002),  (Campbell, et al., 2003),  (Lee, et al., 2006),  (Wang, et al., 2011),  (Kumari, 
et al., 2012),  (Gordon & Loeb, 2001), (Kumari & Khan, 2014),  (Gordon & Loeb, 2004), 
(Demirkan & Goul, 2013), (Patrick, 2008),  (Tesink, et al., 2005), (Elzouka H. , 2006), 
(Yeh & Chou, 2001), (Elzouka H. A., 2008),  (Chen, et al., 2013),  (Li, et al., 2003) and 
(Cheng, 2005) cite this work as background reference. (Huang, Feng, & Zhang, 2001), 
in a four page short paper, propose an encryption scheme based on one-way hash and 
the services of a pseudorandom number generator to enhance the algorithm. 

Specifically for images encryption,  (Cheddad, et al., 2010) proposed an encryption 
algorithm that uses hashes and the Fourier Transform. 

4  The Proposed Encryption Algorithm 

In this section, we state our proposal and its advantages 

4.1  Formal Description 

The encryption processes consists of the following steps: 

• The Sender and Receiver negotiate a CRHF (H) 

• Generate and distribute a shared key K between the sender and the receiver. 
The key can be of any length, but the optimal Key size is half the size of H. 

• Divide the message M in n blocks of H size, such that M = m1 �m2�…�mn, 
where �means string concatenation. For compatibility among operating sys-
tems regional code pages, M must be converted to CP-1252 encoding. 

• For each block, generate a 32 bit integer pseudorandom number (Si). Si must be 
a DWORD little endian format. The same format is required for the counter i. 

• Generate the ciphered block with the following formula 

ci = Si� mi ⊕ H(K, Si, i) 

• Calculate the MAC (Message Authentication Code) = H(K,M,SMAC) and pre-
pend it to the ciphered message.  
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As a result, the ciphered message is C = SMAC�MAC�c1 �c2�…�cn 

The decryption process is different from the encryption: 

• Separate both SMAC and MAC from the ciphered message. 

• The ciphered block length is l = size of H + 32 bits long, except for the last ci-
phered block. The last block length may vary from 40 bits (last salt + one char-
acter) to l. For each ciphered block ci of l bits, take the first 32 bits which corre-
sponds to the block salt (Si). The remaining l-32 bits is the encrypted message 
block (�i). 

• The original message block is obtained from the formula 

mi = � i ⊕ H(K, Si, i) 

• Reassemble the message M = m1 �m2�…�mn 

• Calculate the message’s MAC = H(K,M,SMAC) 

• Check if the received and the calculated MAC match. If they do, the message is 
both authentic and intact. 

4.2  Analysis of the Encryption Scheme 

Using the counter and having one Salt for each block guarantee the one time pad of the 
Vernam Cipher and that the same message, encrypted with the same key twice will 
not produce the same ciphered message, because Salts would be different for most of 
the blocks. 

A successful random collision attack on a block allows an attacker to decrypt only 
that specific block. 

The same key may be reused to encrypt other messages, since the sequence of Salts 
generated for each block will be different. 

Because the ciphered block is composed of the salt block and the encrypted block, 
there is no need for synchronization between the sender and the receiver. However, 
there is a significant increase in the size of the ciphered message. For a plain message 
of 2GB, the ciphered message increases, according to the following table: 

 
Hash Length (bits) Hash Length (Bytes) Number of Blocks Total Salt Cost (MB) Final Size (GB) Increase

160 20 107.374.183            409,6 2,40 20%

256 32 67.108.865              256 2,25 13%

384 48 44.739.243              170,7 2,17 8%

512 64 33.554.432              128 2,13 6%

1024 128 16.777.216              64 2,06 3%  
Table 1 – Salt cost 
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From 
Hash Length (bits) Hash Length (Bytes) Number of Blocks Total Salt Cost (MB) Final Size (GB) Increase

160 20 107.374.183         409,6 2,40 20%

256 32 67.108.865           256 2,25 13%

384 48 44.739.243           170,7 2,17 8%

512 64 33.554.432           128 2,13 6%

1024 128 16.777.216           64 2,06 3%  
Table 1, we can infer that the larger the size of the CRHF, the stronger the cipher and 
the lower the salt cost. 

The cipher strength depends only on the strength of CRHF to resist to preimage, 
second preimage or collision attacks. Because the encryption algorithm applies the 
CRHF to the key, the salt and the counter, the compression function of the hash is ei-
ther not used or used a few times, strengthening the resistance to second preimage at-
tacks to a complexity nearing O(2n)  (Kelsey & Schneier, 2005). Nonetheless, because of 
the Birthday Attack, the cipher strength is O(2n/2) per block, which is why the optimum 
secret key length is half the size of the CRHF output length. If the key length is lower 
than the CRHF output length, it is easier for the attacker to perform a brute force attack 
on the key. Nevertheless, if the key length in greater than the CRHF output length, a 
collision attack would take less time than a brute force attack on the key. 

Assuming the attacker knows the size of the encryption key (not the key value it-
self) and that a dictionary attack will fail, the decision to attack either the key, by brute 
force, or the hash, by trying random collisions, will depend on which is smaller: the 
key size or the CRHF output size. 

Recently, there have been significant improvements on Hash functions. In  (Su, et 
al., 2016), the authors claim that a non-iterative hash function for small messages can 
produce a hash output complexity of O(2m), where 80 � m � 232 and 80 � m � n � 4096 
and n being the size of the message to be hashed. Thus, the algorithm is capable of re-
sisting the Birthday Attack or Meet in the Middle Attacks (Stallings, 2011). 

Chaos based one-way hash functions (CBHF) offers as much collision resistance as 
CRHF, but, because chaotic systems are defined in the real number field (Yang, et al., 
2009), the authors claim that the collision attack is more difficult in CBHF than it is in 
CRHF. CBHF also features better distribution than CRHF (Ahmad, et al., 2017). 

Recent studies on Lattice hash functions also claims better distribution and equiva-
lent collision resistance, when compared to CRHF (Wang, et al., 2011). 

The following table compares the cipher strength of the proposed algorithm with 
various CRHF: 

 
���� ���	
����������� � ���������������� ��	����������

����� ��	
� �	 	
� ��

�����
 �	 �
 	�

������� 	�� ��� 	�

�����	 	�� �	 �


� �������� �	 �	 �


������� �!���	
 ��������
 ������ ������  
Table 2 – CRHF comparison 
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4.3  Stream or Block Cipher 

According to Rueppel’s definition (Rueppel, 1992): “Block ciphers operate on data with a 
fixed transformation on large blocks of plaintext data; stream ciphers operate with a time-
varying transformation on individual plaintext digits.” the proposed encryption scheme is 
a stream cipher. However, if we consider the fact that stream ciphers use the same al-
gorithm for both encryption and decryption, while block ciphers have different algo-
rithms, the proposed encryption scheme is a block cipher, since it adds the block salts 
into the ciphered blocks in the encryption algorithm and removes them from the ci-
phered blocks in the decryption algorithm. As a result, the proposed encryption 
scheme is a hybrid with both stream and block cipher characteristics. 

5  Our Experiments 

In this section, we report how we conducted our experiments 

5.1  Research Questions 

We already know that the counter produces the avalanche effect on hash functions 
(Peyravian, et al., 1999)  (Sanchez-Arias, et al., 2017). What we do not know is how the 
salt, combined with the counter, is going to affect the hash output. Hence, our primiry 
reaserach question is: Does the combination of a secret string, a salt and a counter can 
generate block keys that will not repeat itself for a long time? 

The null hypothesis is: The cipher key repeats itself for a different salt and counter 
pair. 

We can reject the null hypothesis, if we generate a large number of keys and they do 
not repeat themselves. The experiment must be repeated for each CRHF we intend to 
use for block keys generation. 

5.2  Implementation 

We selected four CRHF for testing purposes: RIPEMD160, SHA-256, SHA-384 and 
SHA-512. For each CRHF, we generated one billion keys, divided in 200 sets of 5 mil-
lion keys. We used a pseudo-random algorithm to generate each salt ranging from 0 to 
231. The counter started at 0 and was incremented by one for each key generated. The 
first set had counters ranging from 0 to 4,999,999. The second had counters ranging 
from 5,000,000 to 9,999,999, and so on. Because of memory constraints, each set was 
saved in a CSV (comma separated values) file and loaded into memory only when 
necessary. Each CSV file contains the block cipher key in a hexadecimal format, the salt 
and the counter, both 32 bit integers converted to strings. 

We used for the secret key the string: “Key_&_TesT-2017” without the quotes. 

After the generation of the sets, each set was loaded into memory and confronted 
with the others for duplicated keys. As expected, there were no key duplications and 
the null hypothesis was rejected for all hash algorithms. 
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5.3  Analyses of the results 

The results shows that even with a relatively small salt length (32 bit positive integers), 
block cipher key collisions do not occur. 

With 1 billion different block cipher keys it is possible to transmit the following 
amounts of data: 20GB with RIPEMD160, 32GB with SHA-256, 48GB with SHA-384 
and 64GB with SHA-512. 

Our results show that it is even safe to reuse the same secret several times, resetting 
the counter. The probability of the same salt occur with the same counter is 1 in 64K 
(birthday paradox on a 32 bit salt). As a result, repeating the same secret key 1024 
times, resetting the counter on each cycle, allows us to safely encrypt files or transmit 
messages up to 20TB with RIPEMD160, 32TB with SHA-256, 48TB with SHA-384 and 
64TB with SHA-512. 

If the chosen CRHF becomes unsafe, all the developer has to do is to choose another 
CRHF. The algorithm itself remains unchanged. 

6  Conclusions and Future Works 

We presented an encryption scheme with block and stream cipher characteristics, 
based on a Collision Resistant Hash Function. Our experiments show the algorithm 
mimics the behavior of the Vernam Cipher and that the block cipher key will not be 
repeated for a long time. 

The encryption scheme is very simple and easy to implement, both in software and 
in hardware. 

We intend to continue to test the encryption scheme with other CRHF and to inte-
grate it with an authentication protocol, capable of negotiating a session key, which 
will then be used with the encryption scheme to guarantee confidentiality. 
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