

PUC�

ISSN 0103-9741

Monografias em Ciência da Computação
n° 13/17

A Hybrid Block and Stream Cipher Encryption
Algorithm Based on Colision Resistant Hash

Functions

Marcio Ricardo Rosemberg

Daniel Schwabe

Marcus Poggi

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 13/17 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena September, 2017

A Hybrid Block and Stream Cipher Encryption Scheme
Based on Collision Resistant Hash Functions

Marcio Ricardo Rosemberg, Daniel Schwabe, Marcus Poggi
{mrosemberg, dschwabe, poggi}@inf.puc-rio.br

Abstract. Background: The Vernam Cipher, or one time pad is considered the only
unbreakable encryption scheme. It consists of a XOR operation between the plain text
and a random key with the same length of the plain text. Once encrypted, the ciphered
message gives nothing the cryptanalyst can use to decipher the encrypted message.
The major drawback of the Vernam cipher is that it is not feasible to generate and
share a key that is as long as the plain text message. Aim: In this work, We propose a
hybrid encryption algorithm, which combines block an stream cipher characteristics,
using hashes, salts and block counters as block key generators to encrypt a variable
length message. The strength of the cryptosystem depends on the strength of the hash
function. Method: We belive that Collision resistant hash functions (CRHF) may be a
very effecitve way to generate peseudorandom block keys which can be used in a XOR
operation with the plain text. Results: In our experiments, we generated one billion
keys for each hash function we tested. None of them repeated itself. Conclusions: Our
experiments show the key generation algorithm mimics the behavior of the Vernam
Cipher and that the block cipher key will not be repeated for a long time. The encryp-
tion and the decryption algorithms are very simple and easy to implement, both in
software and in hardware.

Keywords: Symmetric Key, Vernam Cipher, Encryption, Security, Hash

Resumo. Introdução Teórica: a cifra de Vernam é considerada o único esquema de
criptografia totalmente segura. Consiste na operação XOR entre o texto simples e uma
chave aleatória com o mesmo comprimento da mensagem não cifrada. Uma vez crip-
tografada, a mensagem cifrada não fornece qualquer informação que o criptoanalista
possa usar para decifrar a mensagem criptografada. A principal desvantagem da cifra
Vernam é que não é viável gerar e compartilhar uma chave que seja tão longa quanto a
mensagem de texto simples. Objetivo: neste trabalho, propomos um algoritmo de crip-
tografia híbrido, que combina as características de bloco e de fluxo de criptografia, u-
sando hashes, salts e contadores de blocos como geradores de chave de bloco para
criptografar uma mensagem de comprimento variável. A força do criptosistema de-
pende da força da função hash. Método: acreditamos que as funções de hash resisten-
tes à colisão (CRHF) podem ser uma maneira muito eficaz de gerar chaves peseudoa-
leatórias que podem ser usadas em uma operação XOR com texto simples. Resultados:
em nossos experimentos, geramos um bilhão de chaves para cada função de hash tes-
tada. Nenhuma delas se repetiu. Conclusões: Nossos experimentos mostram que o al-
goritmo de geração de chaves imita o comportamento da Cifra Vernam e que a chave
de bloco não será repetida por muito tempo. Os algoritmos de cifragem e decifragem
são muito simples e fáceis de implementar, tanto em software como em hardware.

Palavras-chave: Chave Simétrica, Cifra Vernam, Criptografia, Segurança, Hash

This work has been sponsored by the Ministério de Ciência e Tecnologia da Presidência da República

Federativa do Brasil (CNPQ).

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

 Table of Contents

1 Introduction 1�
1.1 Motivation 1�

2 Background 2�
2.1 The Vernam Cipher 2�
2.2 Collision Resistant Hash Functions 2�
2.3 Block Cipher vs Stream Cipher 3�
2.4 Counter Mode Encryption 4�
2.5 Salts and Nonces 4�
2.6 The Birthday Attack 4�

3 Related Work 5�

4 The Proposed Encryption Algorithm 5�
4.1 Formal Description 5�
4.2 Analysis of the Encryption Scheme 6�
4.3 Stream or Block Cipher 8�

5 Our Experiments 8�
5.1 Research Questions 8�
5.2 Implementation 8�
5.3 Analyses of the results 9�

6 Conclusions and Future Works 9�

References 9�

 1

1 Introduction

In this section, we briefly explain our proposal and our motivation.

Symmetric key encryption is essentially divided in two categories: Block Ciphers
and Stream Ciphers (Paar & Pelzl, 2010).

Block Ciphers consists of two algorithms: one for encryption and another for de-
cryption (Cusick & Stanica, 2009). With block ciphers, the message is broken into
blocks of fixed sizes and each block is encrypted with the encryption key.

With Stream Ciphers, the plain text is combined with a pseudorandom cipher bit
stream and each bit of the plain text is combined with the cipher bit stream in a XOR
operation, implementing in practice, the Vernam Cipher (CryptoMuseum, 2012).

We belive that Collision Resistant Hash Functions (CRHF) may be a very effecitve
way to generate peseudorandom keys which can be used in a XOR operation with the
plain text.

In this work, We propose a hybrid encrytion algorithm which combines block an
stream cipher caracteristics, using hashes, salts and block counters as block key
generators to encrypt a variable length message. The strengh of the cryptosystem
depends on the strengh of the hash function.

1.1 Motivation

Recently, several symmetric key encryption algorithms have been broken. RC4 was
broken in less than one minute in 2007 (Tews, et al., 2007). In 2016, the security of Tri-
ple DES was lowered from 2168 to 2113 and Blowfish have been proven to be unsecure.
Both Blowfish and Triple DES are vulnerable to SWEET32 attacks (Bhargavan &
Leurent, 2016). As a result, new encryption algorithms are always in demand.

The AES (Advanced Encryption Standard) is the most popular and one of the most
secure, block cipher, encryption algorithm in use. Because it has several modes of op-
eration, AES is not trivial to be used by the developer. One of the most secure modes of
operation for AES is the CBC (Cipher Block Chaining). The first ciphered block is used
to encrypt the second and so on. For the first block, CBC requires an IV (Initialization
Vector), which consists of a block composed of random bits. The IV is transmitted with
the encrypted message to allow decryption by the receiver. A nonrandom IV weakens
the encryption and allows dictionary and differential attacks to have a better chance to
decipher the encrypted message (Preneel, 2007). Also, AES requires a key with a spe-
cific length. AES-128 requires a 128 bit long key, while AES-192 and AES-256 require
192 and 256 bit long keys, respectively. If one chooses a weak key or uses a shorter key
padded with spaces or nulls, one wakens the encryption algorithm.

We also encountered a problem in the development of mobile applications in the
AES algorithm of the Android Operating System. Its Java Cipher Class does not allow
all types of padding schemes. Padding is required because AES uses fixed 128 bits
length blocks. When a block does not have enough bits, the block must be padded to
with some padding scheme. The Cipher class of the Android SDK currently supports
PKCS5, ISO10126 or No Padding. However, Swift for IOS accepts PKCS7, ISO97971,
AnsiX923, ISO10126, ZeroPadding and NoPadding. Finally, we found Windows librar-
ies accepting PKCS7, AnsiX923, ZeroPadding and Padding with spaces (20 hex). Even

 2

though this problem is more related to Software Engineering or Human–computer in-
teraction, it gave us the initial motivation to propose an encryption scheme without the
need for padding.

Summarizing the motivation, our proposed encryption scheme focus on the follow-
ing characteristics:

• Requires only the plain text, the encryption key and the Hash Algorithm to
be used in the encryption process.

• Requires only the ciphered message, the encryption key and the Hash Algo-
rithm used in the decryption process.

• Keys can be of any length

• No padding scheme is needed

• No real time synchronization required between the sender and the receiver

• Easy to implement on almost any platform and programming language

• Flexibility and Modularity

By Flexibility and Modularity, we mean that the user or software developer can
choose a CRHF from a set, according to his/hers security requirements. If the CRHF
becomes unsecure, all he/she has to do is to adopt another CRHF. Neither the encryp-
tion or the decryption algorithm need changes in their coding.

2 Background

In this section, we provide the necessary background for the understanding of our
proposal.

2.1 The Vernam Cipher

The Vernam Cipher (Vernam, 1926) (Kahn, 1967) or one time pad is considered the on-
ly unbreakable encryption scheme. It consists of a XOR operation between the plain
text and a random key of the same length of the plain text. Once encrypted, the ci-
phered message gives nothing the cryptanalyst can use to decipher the encrypted mes-
sage. On the other hand, the Vernam Cipher has two drawbacks:

1) It is not feasible to negotiate a key between two parties, in which the key size is
as big as the message size.

2) If two parties are capable of negotiating a key with the same length of the mes-
sage, they can also exchange messages without the need for encryption.

2.2 Collision Resistant Hash Functions

Collision Resistant Hash Functions (CRHF) are used for various applications such as
message authentication, digital signatures, pseudorandom bit generation, integritty
assurance and so on (Akhimullah & Hirose, 2016). Hashes are mathematical functions
that compress an input of arbitrary length to a result with a fixed length. Hash
functions are also used to allocate as uniformly as possible storage for the records of a
file. Yet, CRHF are hashes which collisions are hard to find.

 3

The formal definition of a Collision resistant hash function appears to be credited to
Damgård (Damgard, 1988).

A collision resistant hash function is a function h satisfying the following conditions
(Preneel, 2003):

1. The description of h must be publicly known and should not require any secret
information for its operation (extension of Kerckhoffs’s principle).

2. The argument X can be of arbitrary length and the result h(X) has a fixed length
of n bits.

3. Given h and X, the computation of h(X) must be “easy”.

4. The hash function must be one-way in the sense that given a Y in the image of h,
it is “hard” to find a message X such that h(X) = Y and given X and h(X) it is “hard” to
find a message X’ � X such that h(X’) = h(X).

5. The hash function must be collision resistant: this means that it is “hard” to find
two distinct messages that hash to the same result.

In order to satisfy conditions 4 and 5, a CRHF must be resistant to preimage and
second preimage attacks (Rogaway & Shrimpton, 2004). For a preimage attack to be
successful, the computational complexity required is, at least, O(2n), while for a second
preimage attack, the computational complexity required is, at least, O(2n/2).

2.3 Block Cipher vs Stream Cipher

Block cipher operates on fixed length blocks of bits (Stallings, 2011). If the plain mes-
sage is shorter than the block size, some sort of padding is required.

Block ciphers use two different algorithms: one for encryption and another for de-
cryption (Bellare & Rogaway, 2005).

The goal of stream ciphers is to mimic the Vernam Cipher by continuously generat-
ing and synchronizing new keys between the sender and the receiver (El-Razouk, et
al., 2014). They are more difficult to implement than block ciphers, because the key-
stream cannot repeat itself during the session. There are two types for operation
modes: Synchronous Stream Cipher and Self-synchronizing stream ciphers.

In Synchronous Stream Cipher, the keystream is generated independently of the
plain text and of the ciphered message. The keystream is commonly produced by a
pseudorandom generator, parameterized by the secret key of the whole scheme. In this
mode, the sender and receiver must be synchronized for decryption to be successful.
One way to achieve synchronization is to send an IV in the open before each encrypted
frame (Fontaine, 2011) (Rueppel, 1986).

In a Self-synchronizing, or asynchronous, stream cipher, the keystream depends on
the secret key of the scheme and also on a fixed number of ciphered text digits that
have already been produced by the sender, or read by the receiver. The idea of self-
synchronization was patented in 1946 and has the advantage that the receiver will au-
tomatically synchronize with the keystream generator after receiving a certain number
of ciphered text digits (Fontaine, 2011) (Daemen & Kitsos, 2008).

 4

2.4 Counter Mode Encryption

In counter mode encryption, block ciphers use sequential numbers which are com-
bined with the encryption key in the encryption algorithm (Schneier, 1996). The result
of the operation is the block key. Finally a bitxor operation is performed with the block
key and the plaintext block. After each block encryption, the counter increments by
some constant or a function. Essentially, counter mode transforms a block cipher
scheme into a stream cipher one. The decryption algorithm of the block cipher is not
needed. Only the encryption algorithm is used.

Counter mode encryption has the following properties (Fay, 2016) :

• No error propagation: An error in a block Bi has no effect on Bi+1

• Synchronization: “Encryption and Decryption work synchronously as long
as the counters are in sync”. If the sender and receiver loose synchroniza-
tion, the receivers cannot decrypt the ciphered messages.

• Parallelizability: Fixed length block ciphers using counter mode encryption
can be encrypted and decrypted in parallel, because each block is independ-
ent from the others.

2.5 Salts and Nonces

Salts and Nonces are random data with different goals. Salts protect passwords against
dictionary attacks, when they are used as while nonces are one time random numbers
to be used as initialization vectors for encryption algorithms to protect both the en-
cryption key and the ciphered message, ensuring that the same plaintext encrypted
with the same key produces a different ciphered message because the nonce will be
different. Usually there is only one nonce for the entire encryption process, while salts
are abundant and preferably a unique for each password stored in a database.

2.6 The Birthday Attack

The Birthday Attack weakens any hash function by exploiting the mathematics behind
the birthday problem in probability theory (Jin, et al., 2017) (McKinney, 1966).

The Birthday Problem concerns the probability that, given a set of k randomly peo-
ple, two of them will have the same birthday. With just 30 people, the probability is
70%. Applying the birthday problem to hash functions, the attacker wants to create a
second message m’ which produces the same hash output of the original message m,
h(m’) = h(m). For a hash function of 2n possible outputs, where n is the fixed length
size in bits of the hash output, the probability of finding a collision is

As a result, the equation lowers the time complexity for obtaining a collision from

O(2n) to O(2n/2)

 5

3 Related Work

Bruce Schneier proposed a simple way to use a One-way Hash Functions to encrypt
data in a stream cipher algorithm (Schneier, 1996):

 Ci = Mi ⊕ H(K,Ci-1) and Mi = Ci ⊕ H(K,Ci-1)

A hash based stream cipher algorithm was published in 1999 (Peyravian, et al.,
1999). In this system, the authors use the sha-1 hash of the encryption key and a se-
quential counter to generate a keystream. Although efficient, the cryptosystem would
produce the same ciphered message given the same plaintext and using the same key
or session key.

The encryption/decryption algorithm is described as :

Ci = Mi ⊕ H(i,K) and Mi = Ci ⊕ H(i,K).

The ciphered text is C = C1 �C2�…�Cn, where �means string concatenation.

This hash based stream cipher have been cited 18 times. The articles (Gordon &
Loeb, 2002), (Campbell, et al., 2003), (Lee, et al., 2006), (Wang, et al., 2011), (Kumari,
et al., 2012), (Gordon & Loeb, 2001), (Kumari & Khan, 2014), (Gordon & Loeb, 2004),
(Demirkan & Goul, 2013), (Patrick, 2008), (Tesink, et al., 2005), (Elzouka H. , 2006),
(Yeh & Chou, 2001), (Elzouka H. A., 2008), (Chen, et al., 2013), (Li, et al., 2003) and
(Cheng, 2005) cite this work as background reference. (Huang, Feng, & Zhang, 2001),
in a four page short paper, propose an encryption scheme based on one-way hash and
the services of a pseudorandom number generator to enhance the algorithm.

Specifically for images encryption, (Cheddad, et al., 2010) proposed an encryption
algorithm that uses hashes and the Fourier Transform.

4 The Proposed Encryption Algorithm

In this section, we state our proposal and its advantages

4.1 Formal Description

The encryption processes consists of the following steps:

• The Sender and Receiver negotiate a CRHF (H)

• Generate and distribute a shared key K between the sender and the receiver.
The key can be of any length, but the optimal Key size is half the size of H.

• Divide the message M in n blocks of H size, such that M = m1 �m2�…�mn,
where �means string concatenation. For compatibility among operating sys-
tems regional code pages, M must be converted to CP-1252 encoding.

• For each block, generate a 32 bit integer pseudorandom number (Si). Si must be
a DWORD little endian format. The same format is required for the counter i.

• Generate the ciphered block with the following formula

ci = Si� mi ⊕ H(K, Si, i)

• Calculate the MAC (Message Authentication Code) = H(K,M,SMAC) and pre-
pend it to the ciphered message.

 6

As a result, the ciphered message is C = SMAC�MAC�c1 �c2�…�cn

The decryption process is different from the encryption:

• Separate both SMAC and MAC from the ciphered message.

• The ciphered block length is l = size of H + 32 bits long, except for the last ci-
phered block. The last block length may vary from 40 bits (last salt + one char-
acter) to l. For each ciphered block ci of l bits, take the first 32 bits which corre-
sponds to the block salt (Si). The remaining l-32 bits is the encrypted message
block (�i).

• The original message block is obtained from the formula

mi = � i ⊕ H(K, Si, i)

• Reassemble the message M = m1 �m2�…�mn

• Calculate the message’s MAC = H(K,M,SMAC)

• Check if the received and the calculated MAC match. If they do, the message is
both authentic and intact.

4.2 Analysis of the Encryption Scheme

Using the counter and having one Salt for each block guarantee the one time pad of the
Vernam Cipher and that the same message, encrypted with the same key twice will
not produce the same ciphered message, because Salts would be different for most of
the blocks.

A successful random collision attack on a block allows an attacker to decrypt only
that specific block.

The same key may be reused to encrypt other messages, since the sequence of Salts
generated for each block will be different.

Because the ciphered block is composed of the salt block and the encrypted block,
there is no need for synchronization between the sender and the receiver. However,
there is a significant increase in the size of the ciphered message. For a plain message
of 2GB, the ciphered message increases, according to the following table:

Hash Length (bits) Hash Length (Bytes) Number of Blocks Total Salt Cost (MB) Final Size (GB) Increase

160 20 107.374.183 409,6 2,40 20%

256 32 67.108.865 256 2,25 13%

384 48 44.739.243 170,7 2,17 8%

512 64 33.554.432 128 2,13 6%

1024 128 16.777.216 64 2,06 3%
Table 1 – Salt cost

 7

From
Hash Length (bits) Hash Length (Bytes) Number of Blocks Total Salt Cost (MB) Final Size (GB) Increase

160 20 107.374.183 409,6 2,40 20%

256 32 67.108.865 256 2,25 13%

384 48 44.739.243 170,7 2,17 8%

512 64 33.554.432 128 2,13 6%

1024 128 16.777.216 64 2,06 3%
Table 1, we can infer that the larger the size of the CRHF, the stronger the cipher and
the lower the salt cost.

The cipher strength depends only on the strength of CRHF to resist to preimage,
second preimage or collision attacks. Because the encryption algorithm applies the
CRHF to the key, the salt and the counter, the compression function of the hash is ei-
ther not used or used a few times, strengthening the resistance to second preimage at-
tacks to a complexity nearing O(2n) (Kelsey & Schneier, 2005). Nonetheless, because of
the Birthday Attack, the cipher strength is O(2n/2) per block, which is why the optimum
secret key length is half the size of the CRHF output length. If the key length is lower
than the CRHF output length, it is easier for the attacker to perform a brute force attack
on the key. Nevertheless, if the key length in greater than the CRHF output length, a
collision attack would take less time than a brute force attack on the key.

Assuming the attacker knows the size of the encryption key (not the key value it-
self) and that a dictionary attack will fail, the decision to attack either the key, by brute
force, or the hash, by trying random collisions, will depend on which is smaller: the
key size or the CRHF output size.

Recently, there have been significant improvements on Hash functions. In (Su, et
al., 2016), the authors claim that a non-iterative hash function for small messages can
produce a hash output complexity of O(2m), where 80 � m � 232 and 80 � m � n � 4096
and n being the size of the message to be hashed. Thus, the algorithm is capable of re-
sisting the Birthday Attack or Meet in the Middle Attacks (Stallings, 2011).

Chaos based one-way hash functions (CBHF) offers as much collision resistance as
CRHF, but, because chaotic systems are defined in the real number field (Yang, et al.,
2009), the authors claim that the collision attack is more difficult in CBHF than it is in
CRHF. CBHF also features better distribution than CRHF (Ahmad, et al., 2017).

Recent studies on Lattice hash functions also claims better distribution and equiva-
lent collision resistance, when compared to CRHF (Wang, et al., 2011).

The following table compares the cipher strength of the proposed algorithm with
various CRHF:

���� ���	
����������� � ���������������� ��	����������

����� ��	
� �	 	
� ��

�����
 �	 �
 	�

������� 	�� ��� 	�

�����	 	�� �	 �

� �������� �	 �	 �

������� �!���	
 ��������
 ������ ������
Table 2 – CRHF comparison

 8

4.3 Stream or Block Cipher

According to Rueppel’s definition (Rueppel, 1992): “Block ciphers operate on data with a
fixed transformation on large blocks of plaintext data; stream ciphers operate with a time-
varying transformation on individual plaintext digits.” the proposed encryption scheme is
a stream cipher. However, if we consider the fact that stream ciphers use the same al-
gorithm for both encryption and decryption, while block ciphers have different algo-
rithms, the proposed encryption scheme is a block cipher, since it adds the block salts
into the ciphered blocks in the encryption algorithm and removes them from the ci-
phered blocks in the decryption algorithm. As a result, the proposed encryption
scheme is a hybrid with both stream and block cipher characteristics.

5 Our Experiments

In this section, we report how we conducted our experiments

5.1 Research Questions

We already know that the counter produces the avalanche effect on hash functions
(Peyravian, et al., 1999) (Sanchez-Arias, et al., 2017). What we do not know is how the
salt, combined with the counter, is going to affect the hash output. Hence, our primiry
reaserach question is: Does the combination of a secret string, a salt and a counter can
generate block keys that will not repeat itself for a long time?

The null hypothesis is: The cipher key repeats itself for a different salt and counter
pair.

We can reject the null hypothesis, if we generate a large number of keys and they do
not repeat themselves. The experiment must be repeated for each CRHF we intend to
use for block keys generation.

5.2 Implementation

We selected four CRHF for testing purposes: RIPEMD160, SHA-256, SHA-384 and
SHA-512. For each CRHF, we generated one billion keys, divided in 200 sets of 5 mil-
lion keys. We used a pseudo-random algorithm to generate each salt ranging from 0 to
231. The counter started at 0 and was incremented by one for each key generated. The
first set had counters ranging from 0 to 4,999,999. The second had counters ranging
from 5,000,000 to 9,999,999, and so on. Because of memory constraints, each set was
saved in a CSV (comma separated values) file and loaded into memory only when
necessary. Each CSV file contains the block cipher key in a hexadecimal format, the salt
and the counter, both 32 bit integers converted to strings.

We used for the secret key the string: “Key_&_TesT-2017” without the quotes.

After the generation of the sets, each set was loaded into memory and confronted
with the others for duplicated keys. As expected, there were no key duplications and
the null hypothesis was rejected for all hash algorithms.

 9

5.3 Analyses of the results

The results shows that even with a relatively small salt length (32 bit positive integers),
block cipher key collisions do not occur.

With 1 billion different block cipher keys it is possible to transmit the following
amounts of data: 20GB with RIPEMD160, 32GB with SHA-256, 48GB with SHA-384
and 64GB with SHA-512.

Our results show that it is even safe to reuse the same secret several times, resetting
the counter. The probability of the same salt occur with the same counter is 1 in 64K
(birthday paradox on a 32 bit salt). As a result, repeating the same secret key 1024
times, resetting the counter on each cycle, allows us to safely encrypt files or transmit
messages up to 20TB with RIPEMD160, 32TB with SHA-256, 48TB with SHA-384 and
64TB with SHA-512.

If the chosen CRHF becomes unsafe, all the developer has to do is to choose another
CRHF. The algorithm itself remains unchanged.

6 Conclusions and Future Works

We presented an encryption scheme with block and stream cipher characteristics,
based on a Collision Resistant Hash Function. Our experiments show the algorithm
mimics the behavior of the Vernam Cipher and that the block cipher key will not be
repeated for a long time.

The encryption scheme is very simple and easy to implement, both in software and
in hardware.

We intend to continue to test the encryption scheme with other CRHF and to inte-
grate it with an authentication protocol, capable of negotiating a session key, which
will then be used with the encryption scheme to guarantee confidentiality.

References
Ahmad, M., Khurana, S., Singh, S., & AlSharari, H. (2017). A Simple Secure Hash

Function Scheme Using Multiple Chaotic Maps. In: 3D Research v.8 n.13 (p. 13).
Springer.

Akhimullah, A., & Hirose, S. (2016). Lightweight Hashing Using Lesamnta-LW
Compression Function Mode and MDP Domain Extension. Fourth International
Symposium on Computing and Networking (pp. 590-596). Hiroshima: IEEE.

Bellare, M., & Rogaway, P. (2005). Block Ciphers. In: Introduction to Modern
Cryptography (pp. 39-40). Mihir Bellare and Phillip Rogaway.

Bhargavan, K., & Leurent, G. (2016). On the practical (in-) security of 64-bit block
ciphers: Collision attacks on HTTP over TLS and OpenVPN. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security (pp.
456-467). ACM.

Campbell, K., Gordon, L. A., Loeb, M. P., & Zhou, L. (2003). The economic cost of
publicly announced information security breaches: empirical evidence from the
stock market. Journal of Computer Security (pp. 431-448). IOS Press.

Cheddad, A., Condell, J., Curran, K., & and McKevitt, P. (2010). A hash-based image
encryption algorithm. Optics communications v.283 n. 6 (pp. 879--893). Elsevier.

 10

Chen, B., Huang, Y., & Shi, Y. (2013). A Hybrid Mutual Identity Authentication
Technology with its Application. Computer security n.12, pp. 34-37.

Cheng, Y. (2005). A New Text Digital Watermarking Algorithm. Science & Technology
and Engineering v.5 n.14, pp. 1006-1008.

CryptoMuseum. (2012). The Vernam Cipher. Acesso em 16 de 05 de 2017, disponível em
Crypto Museum: http://www.cryptomuseum.com/crypto/vernam.htm

Cusick, T. W., & Stanica, P. (2009). Cryptographic Boolean functions and applications.
Academic Press. pp. 158–159. ISBN 9780123748904.

Daemen, J., & Kitsos, P. (2008). The self-synchronizing stream cipher moustique, new
stream cipher designs. Lecture notes in computer science, vol 4986 (pp. 210–223).
Springer.

Damgard, I. (1988). Collision free hash functions and public key signature schemes.
Advances in Cryptology, Proc. Eurocrypt’87, LNCS 304 (pp. 203–216). D. Chaum
and W.L. Price, Eds., Springer-Verlag.

Demirkan, H., & Goul, M. (2013). Taking value-networks to the cloud services: security
services, semantics and service level agreements. Information Systems and e-
Business Management v.11 n.1 (pp. 51-91). Springer.

Ellison, C., Hall, C., Milbert, R., & Schneier, B. (2000). Protecting secret keys with
personal entropy. Future Generation Computer Systems v.16 n.4 (pp. 311-318).
Elsevier.

El-Razouk, H., Reyhani-Masoleh, A., & Gong, G. (2014). New Implementations of the
WG Stream Cipher. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems V.22 N.9, pp. 1865-1878.

Elzouka, H. (2006). A New Robust and Secure Steganographic System for Greyscale Images.
Alexandria: Computer Engineering Department. Arab Academy for Science
and Technology.

Elzouka, H. A. (2008). FPGA based implementation of robust watermarking system.
Fifth International Conference on Information Technology: New Generations ITNG
2008. (pp. 1274-1278). IEEE.

Fay, R. (2016). Introducing the counter mode of operation to Compressed Sensing
based encryption. Information Processing Letters v.116 n.4 (pp. 279-283). Elsevier.

Fontaine, C. (2011). Self-Synchronizing Stream Cipher. Encyclopedia of Cryptography and
Security, 1175-1176.

Fontaine, C. (2011). Synchronous Stream Cipher. Encyclopedia of Cryptography and
Security, 1274-1275.

Gordon, L. A., & Loeb, M. P. (2001). Using information security as a response to
competitor analysis systems. Communications of the ACM v.44 n.9 (pp. 70--75).
ACM.

Gordon, L. A., & Loeb, M. P. (2004). The economics of information security investment.
In: Economics of Information Security (pp. 105-125). Springer.

Gordon, L., & Loeb, M. (2002). The economics of information security investment.
ACM Transactions on Information and System Security (TISSEC) v.5 n.4 (pp. 438-
457). ACM.

Huang, Z., Feng, X., & Zhang, H. (2001). Hash - based Encryption Scheme.
Communications Technology n.7, pp. 87-89.

Jin, Z., Lai, Y., Hwang, J., Kim, S., & Teoh, A. (2017). A New and Practical Design of
Cancellable Biometrics: Index-of-Max Hashing. arXiv preprint arXiv:1703.05455.

Kahn, D. (1967). The Codebreakers: The Story of Secret Writing. New York: Macmillan
Publishing Co.

Kelsey, J., & Schneier, B. (2005). Second preimages on n-bit hash functions for much
less than 2n work. In: R. Cramer (Ed.), EUROCRYPT v. 3494 of LNCS (pp. 474–
490). Springer.

 11

Kumari, S., & Khan, M. (2014). Cryptanalysis and improvement of ‘a robust smart-
card-based remote user password authentication scheme’. International Journal
of Communication Systems v.27 n.12 (pp. 3939-3955). Wiley Online Library.

Kumari, S., Gupta, M. K., & Kumar, M. (2012). Cryptanalysis and security
enhancement of Chen et al.’s remote user authentication scheme using smart
card. Central European Journal of Computer Science v.2 n.1 (pp. 60-75). Springer.

Lee, C., Hwang, M., & Liao, I. (2006). Security enhancement on a new authentication
scheme with anonymity for wireless environments. IEEE Transactions on
Industrial Electronics v.53 n.5 (pp. 1683-1687). IEEE.

Li, S., Qin, Z., & Wang, X. (2003). A New Message Digest Codes Generating Algorithm.
Journal of Computer Research and Development v.40 n.3, pp. 413-416.

McKinney, E. H. (1966). Generalized birthday problem. The American Mathematical
Monthly v. 73 n. 4,, 385-387.

Paar, & Pelzl. (2010). Understanding Cryptography. Berlin: Springer-Verlag p.30.
Patrick, K. N. (2008). Patente Nº 7,337,319. USA.
Peyravian, M., Roginsky, A., & Zunic, N. (1999). Hash-based encryption system.

Computers & Security (pp. 345-350). Elsevier.
Preneel, B. (2003). Analysis and Design of Cryptographic Hash Functions. Diss. PhD thesis,

Katholieke Universiteit Leuven. pp. 18.
Preneel, B. (2007). An introduction to modern cryptology. Dept. Electrical Engineering-

ESAT/COSIC.
Rogaway, P., & Shrimpton, T. (2004). Cryptographic hash-function basics: Definitions,

implications, and separations for preimage resistance, second-preimage
resistance, and collision resistance. In International Workshop on Fast Software
Encryption (pp. 371-388). Berlin-Heidelberg: Springer.

Rueppel, R. (1992). Stream Ciphers. In: G. Simmons, Contemporary Cryptology: The
Science of Information Integrity (pp. 65-134). New York: IEEE.

Rueppel, R. A. (1986). "Stream ciphers." Analysis and Design of Stream Ciphers. Berlin
Heidelberg: Springer pp 5-16.

Sanchez-Arias, G., Garcia, C., & G-Bustelo, B. (2017). Midgar: Study of communications
security among Smart Objects using a platform of heterogeneous devices for
the Internet of Things. In: Future Generation Computer Systems v.74 (pp. 444-466).
Elsevier.

Schneier, B. (1996). Counter Mode. In: Applied cryptography: protocols, algorithms, and
source code in C (Second Edition) (pp. 178-179). New York: John Wiley & Sons,
Inc.

Schneier, B. (1996). Using one-Way Hash Functions. In: Applied cryptography: protocols,
algorithms, and source code in C (Second Edition) (p. 296). New York: John Wiley &
Sons, Inc.

Stallings, W. (2011). Block Cipher Operation. In: Cryptography and Network Security
Principles and Practice Fifth Edition (pp. 196-197). Prentice Hall.

Su, S., Xie, T., & Lü, S. (2016). A provably secure non-iterative hash function resisting
birthday attack. In: Theoretical Computer Science v.654 (pp. 128-142). Elsevier.

Tesink, S., MIM, L. R., & Leune, C. (2005). Improving csirt communication through
standardized and secured information exchange. Tilburg Master Thesis.

Tews, E., Weinmann, R., & Pyshkin, A. (2007). Breaking 104 Bit WEP in Less Than 60
Seconds. Cryptology ePrint Archive, Report 2007/120.

Vernam, G. (1926). Cipher printing telegraph system for secret wire and radio
telegraph communications. Journal American Institute of Electrical Engineers Vol.
XLV, 109-115.

 12

Wang, R.-C., Juang, W.-S., & Lei, C.-L. (2011). Robust authentication and key
agreement scheme preserving the privacy of secret key. Computer
Communications (pp. 274-280). Elsevier.

Wang, Y., Wong, K., & Xiao, D. (2011). Parallel hash function construction based on
coupled map lattices. In: Communications in Nonlinear Science and Numerical
Simulation v.16 n.7 (pp. 2810-2821). Elsevier.

Yang, H., Wong, K., Liao, X., Wang, Y., & Yang, D. (2009). One-way hash function
construction based on chaotic map network. In: Chaos, Solitons & Fractals v.41
n.5 (pp. 2566-2574). Elsevier.

Yeh, Y.-S., & Chou, J.-S. (2001). RC hash function. Journal of Information and
Optimization Sciences v.22 n.2 (pp. 297-306). Taylor & Francis.

