

PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n 02/18

A global integer programming formulation for

process discovery

Georges Miranda Spyrides

Beatriz Santiago

Marcus Poggi

Hélio Lopes

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 02/18 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena May, 2018

A global integer programming formulation for process

discovery

Georges Miranda Spyrides, Beatriz Santiago, Marcus Poggi, Hélio Lopes

gspyrides@inf.puc-rio.br, bsantiago@inf.puc-rio.br , poggi@inf.puc-rio.br, helio@inf.puc-rio.br

Abstract. Process Discovery amounts to determine a process model from an event log
of a business process. Using the model obtained, one should be able to produce logs
from the considered business process simulating the model. We propose an integer
programming formulation that, given a log, determines all places and arcs defining a
Petri net. Formulations from previous research discover one place at a time. To do so,
we extend the ILP model in van der Werf et al. 2008 to consider global properties such
as token balance and cohesion among places. Furthermore, the global approach allows
more control of the Petri net properties: fitness, simplicity, generalization, and preci-
sion. We test the resulting methodology on event logs that address most of the pitfalls
in process discovery algorithms. Also, we show the limitations of the method, regard-
ing the Petri net morphology and log scale, and paths for its improvement.

Keywords: process discovery, integer linear programming.

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

mailto:bib-di@inf.puc-rio.br

Conteúdo

1 Introduction 1

2 Definitions 2

3 Formulation 3
3.1 Base formulation for a single place . 3
3.2 Proposed formulation’s core ideas . 4
3.3 Global Integer Linear Programming Formulation 5
3.4 Global Formulation’s auxiliary ideas . 5

4 Model Evaluation and Experiment 7
4.1 Artificial logs . 7
4.2 Experiment setups . 11

5 Results 12
5.1 Correctness . 12
5.2 Time-efficiency . 13

6 Discussion 13
6.1 Findings and contributions . 13
6.2 Future research . 14

2

1 Introduction

Process discovery can be seen as a set of techniques comprised in the Process Mining
community’s accumulated knowledge. The main task executed by process discovery
algorithms is to reconstruct a graphical representation of a business process from its event
log.

One of the most common representations of business processes are Petri nets. A Petri
net is a directed bipartite graph containing a set of transitions and a set of places that
are connected between themselves. Petri nets have some simulation rules that provide
interesting properties for users. For readers interested in deepening their understanding,
we suggest the read of reference [4]. Therefore, in the context of this research, we are
interested in deriving a Petri net from and event log. The Petri net transition set is im-
mediately associate to the activities present in the event log, Methods to construct Petri
nets to represent business processes concentrate on finding its places along with their
connections.

Bergenthum et al [1] defines the relation between the theory of regions and formula-
tion using the prefix-closed language associated the event log. They also discuss how the
polyhedron defined by a system of inequalities derived with the theory of regions appro-
ach has its vertices (basic solutions) related to a place in the process to be synthesized as a
Petri net. Moreover, they discuss procedures to eliminate redundant places synthesized
in the Petri net.

The same approach is further developed by van der Werf et al. [7] and [8]. They
present the formulation of the ILP Miner and advances the previous work proposing
methods to search for a final marking. Thus, the formulation proposed returns a single
candidate place for each optimization step. The resulting algorithm constructs a Petri net
by repeatedly solving the ILP in search for additional places. Since then, ILP is used as a
benchmark method, because it has useful properties. Properties such as its formal gua-
rantee of perfect fitness and dealing efficiently with big event logs, assuming they don’t
deal with a wide variety of activities [9].

Often, researchers list two significant problems with the ILP approach: the complexity
of the models and the scalability with a large variety of events. In [2], the authors compare
several algorithms regarding model complexity. Among these, ILP miner consistently
produces process models with more transitions and places than block-based methods
such as the inductive miner. In [9], Zelst, Dongen, and Aalst, deal with the overfitting
using sequence encoding filtering, thus removing infrequent behavior from the log.

Verbeek, in [12] and [11], addresses the scaling problem. In both articles, the authors
explore the efficiency problem by subdividing logs into chunks. The time needed by the
miner to find solutions is greatly reduced. Another attempt at simplifying the model is
made in [10]. It tries to solve differently, proposing a mix of formulations using a more
robust formulation only when cycles are present. Therefore, they reduce the number of
integer variables needed in previous ILP formulations.

Our motivation is to design a global formulation that returns the whole process in one
execution of the optimizer. Along the paper, we propose a basic formulation and some
ideas to improve the result, these are pointers for further research. We do not expect a
time-efficient algorithm. Even with the stunning improvement of the efficiency of com-
mercial solvers for integer programs, the resolution of ILPs may be prohibitive for some
problems structures and huge sizes. Of course, this limitation impacts our results. Howe-
ver, we believe that with proper decomposition strategies and heuristics, the efficiency

1

and range of application of this approach can be improved in the future.

2 Definitions

Let A be a set of elements, each element represents an activity or an event in a log. For
instance, set A below contains activities a, b, c and d, i.e. A = {a, b, c, d}. A sequence,
or a trace is a string of elements in A which describes the flow of a case throughout the
business process. Each element in a trace is associated to the order of occurrence of each
activity in the business process case. A sequence σ, as represented below, indicates that
the activities a,b and d occurs in the following order d,a,b,a and d. Traces of a log are
sequences of events, in this case σ = ⟨d, a, b, a, d⟩ Sequences can also be concatenated as
in the following example.

σ1 · σ2 = ⟨d, a⟩ · ⟨b, a, d⟩ = ⟨d, a, b, a, d⟩

A set of sequences is a log:

X1 = {⟨a, b⟩, ⟨d, a, c⟩, ⟨b, b, c, a⟩}

The set of all possible sequences in the set A in be represented by A∗.

Bag and prefix-closed Language: A bag is different from a set since it attributes quan-
tities for each element or sequence, according to whether it is a bag of elements or a
bag of sequences. A bag B containing the sequences ⟨a, b⟩ once, ⟨d, a, c⟩ three times and
⟨b, b, c, a⟩ four times is represented as follows:

B1 = {⟨a, b⟩1, ⟨d, a, c⟩3, ⟨b, b, c, a⟩4}

A log of activities or an event log, can be represented as a bag of sequences, each se-
quence being a trace and the quantity representing the number of times that trace occurs
in the log. Given a set of sequences X its prefix-closure X is the set of every sequence σ
that belongs to X and all sequences σ1 that are a prefix of σ, i.e. σ1 is such that σ1.σ2 = σ,
we write:

X = {σ1 ∈ A∗|∃σ2∈A∗(σ1 · σ2 ∈ X)}

Petri net: We can define a Petri net as a bipartite directed graph. The two disjoint sets
are T, the set of transitions, and P, the set of places. The set of arcs (or links) F is a subset
of {(T × P)

∪
(P × T)}. We denote this bipartite graph as G = (P, T, F).

The simulation of a Petri net, or its execution, uses markings, i.e. tokens present at
the places of the net. A marking m specifies the number of tokens at each place in P, this
configures a state of the Petri net. A marked Petri net is a Petri net at a given state and is
completely described by P, T, F and m. A transition t is enabled when all the places p that
are predecessors of t in G have at least one token. As a result, the transition is triggered
and one token at each of t’s predecessors is consumed, generating an extra token at each
of t’s successors.

Firing sequence: Given a marked Petri net P, T, F and m0, a sequence σ over T, i.e. σ ∈
T∗ is a firing sequence of this Petri net if there exists a sequence of markings m1, m2, . . . , m|σ|

2

such that for σ = ⟨t1, . . . , t|σ|⟩, transition tj is enabled by marking mj−1 resulting in mar-
king mj, for j = 1, . . . , |σ|.

Observe that the set of transitions T of a Petri net corresponds to the set of activi-
ties/events A in the process discovery context. One firing sequence of a Petri net corres-
ponds to a trace in an activity log. The set of all firing sequences of a Petri net, therefore,
should correspond to the activity log of the business process it models. Metrics relating
the original log and the one produced by the Petri net indicate how well it represents the
business process.

3 Formulation

The Process Discovery problem seeks for a business model that corresponds to a mea-
ningful representation of a process that generated a given log. We propose an integer
linear programming (ILP) formulation that, given a log, outputs values to its variables
that correspond to a Petri net. We search for Petri nets with minimum number of links,
connection between two activities, or minimum number of places. We formalize the pro-
posed ILP model for the Process Discovery problem.

Input An alphabet A, a set of strings S on elements of A. A contains two special symbols
* and # that correspond to the start and the end of all strings in S, respectively. * and #
only appear once in any string s in S.

Output A Petri net with a set of transitions A such that it produces exactly S, mini-
mizing some structural property of the Petri net (number of places, number of “links”,
etc.)

Next, the proposed ILP formulation is presented. As stated above, the ILP we devise
has as solution space a set of Petri nets that potentially generates the activity/event log
given. We believe that a formulation that addresses the whole process may be interesting
to bring options for a process modeler to control global properties of a Petri net such as
token throughput and cohesion between places.

We first recall the ILP model in van de Werf et al. [8]. It follows the use of Language
Based Theory of Regions in Bergethum et al. [1] and in Lorenz and Juhás [3]. While
[1] proposes algorithms that obtains several places through the resolution of an integer
program and strives to eliminate redundant places, [8] makes use of objective functions
and additional constraints that controls this effect. In a loose sense, the intuition behind
these models is that adding a place, together with its connections, to a Petri net, reduces
the set of sequences it generates. Therefore, previous ILP based approaches solve several
integer programs in order to obtain places that assemble a desired Petri net. We proceed
in this section presenting the formulation for a single place, as in [8], [1].

3.1 Base formulation for a single place

The way to represent a region is through determining the activities with arcs entering and
leaving the region. Since a region cannot block any sequence of the language defined by
the log, each prefix of each sequence is used to determine the base constraints of the
model. Let, for q ∈ A, yq be binary variables that indicate there is an arc leaving the
region to activity q and let xq indicates that the region has an arc leaving to activity q. The

3

sequence ⟨a, b, c⟩ in the activity log implies constraints:

x∗ − ya ≥ 0 < a >
x∗ − ya + xa − yb ≥ 0 < a, b >
x∗ − ya + xa − yb + xb − yc ≥ 0 < a, b, c >

Says that, for each trace, for each string s, prefix of this trace, the sum of arcs that goes
out of the prefix to a Petri net place must be at least the number of arcs that come from a
Petri net place to s. The main constraint set of ILP formulations generating one place at a
time is the one above. We build our complete Petri net formulation on this constraint set.

3.2 Proposed formulation’s core ideas

We devise the proposed model applying the following three building blocks: (1) repli-
cation of the basic program for an arbitrary number of candidate places, (2) creation of
integer variables to allow or prohibit flow between transitions of the Petri net, (3) force
flow through through the Petri net, from the dummy start transition ∗ to the dummy
ending transition #.

The model we devise finds simultaneously several places while imposing constraints
on the resulting Petri net, i.e. the one induced by the set of places obtained. Mainly, these
constraints say that the Petri net must correspond to a connected graph and that the Petri
net should balance the generation and the consumption of tokens.

The way the model address the problem of drawing the full Petri net, finding all the
places, is considering K candidate places and K input and K output variables for each
activity. In a log with activities a, b, c, these variables are xk

a, xk
b, xk

c , yk
a, yk

b and yk
c , being K

a hyper-parameter. The upper bound on the number K of candidate places is arbitrarily
defined. We then replicate the base formulation for these K places. Additional variables
and constraints are then introduced to force cohesion among the K places.

The model has four variables sets. Variables xk
j and yk

j for j ∈ A and k = 1, . . . , K,
as described above, and variables zk

i,j, with k = 1, . . . , K, and wi,j, for all pairs (i, j) of
activities. While variables zk

i,j represent a directed connection between two activities i, j
by the place k, variables wi,j are set to one whenever a place k connects the pair of activities
(i, j).

Trace constraints: Correspond to the constraints for obtaining a place replicated for K
candidate places. It writes:

xk
∗ − yk

q + ∑
j∈σ1

(xk
j − yk

j) ≥ 0 ∀σ1, q | ∃σ ∈ S and σ2, σ = ∗.σ1.q, .σ2, ∀k (1)

where q is the last activity in the prefix considered of the sequence in the log.

Transition connectivity: A connection linking transition i to transition j is induced by
place k when both xk

i and yk
j are set to one. In other words, Activity i has an arc leaving

to place k, which has an arc leaving to activity j. The resulting constraints can be written:

zk
ij ≤ xk

i ∀(i, j) ∈ A × A, k = 1, . . . , K (2)

zk
ij ≤ yk

j ∀(i, j) ∈ A × A, k = 1, . . . , K (3)

4

zk
ij ≥ xk

i + yk
j − 1 ∀(i, j) ∈ A × A, k = 1, . . . , K (4)

Variables wij indicate the Petri net contains a link from activity i to j, this is true if at least
one place induces this link. The constraints below link variables z with variables w.

• If the Petri net links i to j, then at least one place must induce this connection:

K

∑
k=1

zk
ij ≥ wij ∀(i, j) ∈ A × A (5)

• If at least one place induces the link from i to j, then the Petri net has this link:

wij ≥ zk
ij ∀(i, j) ∈ A × A ∧ ∀k ∈ K (6)

Petri net connectivity: Let G = (A, W) be the support graph of a Petri net where the
set of activities A is the vertex set and W = {(i, j)|wij = 1} is the arc set. Since all traces
in the log start with activity ∗ and ends with activity #, and all activities in set A appear
at least in one trace of the log, the supporting graph of the Petri net G = (A, W) must be
connected. In particular, G must have at least one path from ∗ to # passing through every
other activity in A. This graph connectivity addresses the Petri net soundness as defined
by [6].

We formulate these directed connectivity requirements of the Petri net supporting
graph by imposing the any cut defined by D ⊂ A of the graph containing activity ∗
and not containing # must have at least one arc leaving. Alternatively, cuts for D con-
taining activity # and not containing ∗ must have at least one entering arc. These cut
constraints can be written:

∑
(i∈D)

∑
(j∈A−D)

wij ≥ 1 ∀D ⊂ A, ∗ ∈ D (7)

3.3 Global Integer Linear Programming Formulation

The basic complete ILP model for process discovery can be presented. It consists of an
objective function subject to constraints (1) - (7). There are two straightforward objective
functions that lead to minimal Petri nets: minimize the number of links and minimize the
number of places or arcs used by the places. Our tests balances those elements assigning
weights to the use of the variables. Therefore:

GILP :

min W1 ∑

(i,j)∈A×A
wij + W2

K
∑

k=1
∑

i∈A
(xk

i + yk
i)

s.t.
(1)− (7)
x, y, z, w binary

3.4 Global Formulation’s auxiliary ideas

In the previous sections the core ideas and the basic GILP formulation were presented, in
this section auxiliary ideas are presented, some of them correspond to heuristic elements
to improve the solution of the model. The auxiliary ideas are:

5

• Use trace suffixes in addition to trace prefixes

• Parallelism prohibition

• Fixing of starting and finish activities through wij

• Imposing token handling symmetry

Trace suffixes: As supplementary constraint, we may consider the suffix instead of the
prefix. Its validity is based on the same arguments for the prefix constraints from the
language based theory of regions. The trace ⟨a, b, c⟩ induces the following set of suffix
constraints:

xk
c − yk

≥ 0 < c >
xk

b − yk
c + xk

c − yk
≥ 0 < b, c >

xk
a − yk

b + xk
b − yk

c + xk
c − yk

≥ 0 < a, b, c >
(8)

While prefix constraints enforce places that connect transitions that are enforced by
the beginning of the traces, suffix constraints enforce places that are induced by the end
of the traces. Intuitively, assuming the all traces describe expected behaviors along the
business process they should be redundant. On the other hand, when there are traces
with anomalies in the log, assuming the beginning and the ending of a trace may reflect
more accurately the real process than parts of trace string in its middle, the use of both of
these constraint types are expected to allow the methodology to find Petri nets bound to
be a better representation of the original process.

Non-related constraints: Consider a pair of activities appearing in sequence in a trace
of the activity log. We count the number of appearances of each possible ordered pair of
activities. Let f denote this counting function, i.e.:

f : (A × A) → N (9)

Three types of possible activity relation can be extracted from f :

• Parallel Activities - Says that if a pair of activities i, j appear consecutively in a trace
as ij and as ji, then there should not be a connection from i to j and neither from j
to i.

P = {(i, j)| f (i, j) > 0 ∧ f (j, i) > 0}

• Non related Activities - Says that if a pair of activities (transitions) i, j never appear
consecutively in the whole log, there should not be a connection from i to j.

¬R = {(i, j)| f (i, j) = 0 ∧ f (j, i) = 0}

These sets are discussed thoroughly in van der Aalst(2016) [6]. They are the basic
elements for the alpha miner algorithm in the process discovery theory. In this work,
the non-relating and the parallel set of activities are used to fix the initial status of the
integer program variables. We configure them as hyper parameters to better understand
the impact in the ILP resolution time and the Petri net output of the proposed integer
programming model. In other words, we set:

wij = 0 ∀(i, j) ∈ (P ∪ ¬R)

6

Force start and end: The proposed ILP model also allows fixing the initial and the final
activities appearing in the traces of the activity log. We do so by setting variable w∗i to
one if i the the first activity of some trace in the event log. Also, wj# is set to one if j when
the last activity of some trace in the event log. We define set S as the set containing all
activities that start a trace and the analogous set E containing all activities ending traces.
Conversely, we set to zero the w variables associated to activities that in no trace appears
as first activity or last activity. Therefore:

w∗i = 1 ∀i ∈ S ; w∗i = 0 ∀i /∈ S
wi# = 1 ∀i ∈ E ; wi# = 0 ∀i /∈ E

Token Symmetry: Another constraint has use to conform the resulting Petri net to the
soundness property. We refer to the symmetry constraint that forces that the numbers of
arcs going out of the overall set of places to be equal to the number of arcs arriving in the
same place. We may write:

K

∑
k=1

∑
i∈A

xk
i =

K

∑
k=1

∑
i∈A

yk
i (10)

As mentioned above, the constraints described in this section may or may not be part
off the formulation, Their use is to provide elements to be activated when searching for a
sharper and more efficient formulation.

4 Model Evaluation and Experiment

We demonstrate the behavior of the proposed ILP formulation as a discovering proces-
ses tool under several conditions. Our experiment uses 14 artificial and small logs that
reproduce a number of common issues for process discovery algorithms, in particular
for those which rely on finding places of the resulting Petri net. One test log is a simple
sequence of activities, other has a decision, another contains a cycle. Also, we test the
GILP model using nine experiment setups, defined by different uses of the constraints
from the auxiliary ideas.

4.1 Artificial logs

We devised 14 small logs to reproduce common situations faced by process discovery
algorithms. Their heterogeneity allowed us to observe strengths and weaknesses of this
new method.

Log 1 - Linear: Simple linear process. First, we provide a simple baseline to observe the
algorithm’s effectiveness.

* A B C #
Log:

• ⟨A, B, C⟩

Log 2 - Skip/loop: Process with skip or optional simple loop. This example introduces
one of the first difficulties on modeling. Once we work with few different traces, we may
model this process as a single loop or as a skip.

7

Our formulation does not handle τ transitions yet. But it is still interesting to observe
the answers that each tested variant can return. We present different forms of modeling
the log. Logs with skips and cycles have a variety of ways of representing, depending on
the level of fidelity and readability required.

* A

B

C #

Log:

• ⟨A, B, C⟩,

• ⟨A, C⟩

* A B

τ

C #

Log 3 - OR-open: Process with decision without closing. This log tests the ability to
capture OR-gates without closing the flow.

* A B

C

#

Log:

• ⟨A, B⟩,

• ⟨A, C⟩

Log 4 - asym. OR-open Process with decision without closing 2. This log tests the
capability of capturing OR-gates without closing the flow with a slight asymmetry.

* A B

D

C #

Log:

• ⟨A, B, C⟩,

• ⟨A, D⟩

Log 5 - AND-open/close: Process with parallelism. In this log, we test the algorithm’s
capability of identifying all the multiple places that represent parallel flows. Traces in
the log vary between themselves by changing the order of activities. Therefore, the algo-
rithm must be capable of identifying parallel and consecutive activities to form different
streams.

* A B

D

C #

Log:

• ⟨A, B, D,
C⟩,

• ⟨A, D, B,
C⟩

8

Log 6 - OR-open/close: Process with decision with closing. Here, we test whether the
model can capture a pair of OR-gates used for opening and closing different streams.

* A B

D

C #

Log:

• ⟨A, B, C⟩,

• ⟨A, D, C⟩

Log 7 - 2OR-open/close: Process with two decisions with closing. This log scales up
the previous log testing decisions to two consecutive decisions. This model contains four
places which have more than one entering arc or more than one leaving arc.

* A B

D

C G

H

E #

Log:

• ⟨A, B, C, G,
E⟩,

• ⟨A, B, C, H,
E⟩,

• ⟨A, D, C, G,
E⟩,

• ⟨A, D, C, H,
E⟩

Log 8 - Choice-relation: Long-term choice relationship. This log is similar to the last
one, but a more correct models bounds the decisions made in different points in the flow
of the process.

This means, there are two new places added to the last model to force a trace passing
through B to pass through G later and, similarly, another place bounds D to H.

* A B

D

C G

H

E #

Log:

• ⟨A, B, C, G,
E⟩,

• ⟨A, D, C, H,
E⟩

Log 9 - Asym. AND: Asymmetric parallelism. Just like the previous log, this one tests
the ability of perceiving parallelism with slight scaling. This example introduces the
difficulty of perceiving the consecutive relationship between activities B and C.

9

* A B

D

C E #

Log:

• ⟨A, B, C, D,
E⟩,

• ⟨A, B, D, C,
E⟩,

• ⟨A, D, B, C,
E⟩

Log 10 - Nested 2OR: Nested decisions. This log increases the difficulty of previous
decisions. It also has an interesting place with three entering arcs.

* A B

E

C

D

F #

Log:

• ⟨A, B, C,
F⟩,

• ⟨A, B, D,
F⟩,

• ⟨A, E, F⟩

Log 11 - Oblig. Loop: Loop with at least one passage. This log represents a process
with loop that must be executed at least one. It is different from the variant previously
presented, where there was an option not execute the activity B.

* A B

τ

C #

Log:

• ⟨A, B, C⟩,

• ⟨A, B, B,
C⟩,

• ⟨A, B, B, B,
C⟩

Log 12 - Oblig. Loop large; Larger loop with at least one passage. This log scales the
concept introduced in the last one.

* A B

τ

C E #

Log:

• ⟨A, B, C, E⟩,

• ⟨A, B, C, B, C,
E⟩

Log 13 - Optional loop: Larger optional loop. This log allows flow to ignore the loop.

10

* A

B C

E #

Log:

• ⟨A, E⟩,

• ⟨A, B, C, E⟩,

• ⟨A, B, C, B, C, E⟩

Log 14 - Nested loop: Nested loops or loop with skip. This log can be modeled with
many other representations. We present below a simple alternative, which can lead to
logs not stated in the log.

* A B

τ

C

E #

Log:

• ⟨A, E⟩,

• ⟨A, B, E⟩,

• ⟨A, B, C, B,
E⟩

4.2 Experiment setups

The main goal of this article is to test the new formulation and some minor variations
of it. It would be impossible to demonstrate all combinations of variants. Therefore,
we established a base case and some variants to better understand the final effect of the
formulation onto the process Petri nets discovered.

Base case - Variant zero Corresponds to the GILP formulation above with W1 = 5 and
W2 = −1. Additionally, we consider: no trace suffixes constraints, parallelism prohibi-
tion using wij as above, fixing of start and end, and token handling symmetry

Variant 1 - OF:W objective function keeps weight 5 in wij but gives zero weight for xk
i

and yk
i variables;

Variant 2 - OF:XY objective function keeps weight -1 for xk
i and yk

i variables but gives
zero weight for wij variables;

Variant 3 - OF:XYZ objective function with zero weight for wij variables, weight of 5 for
the zk

ij variables and keeps weight -1 for xk
i and yk

i variables;

Variant 4 - Suffixes include suffixes constraints;

Variant 5 - XY parallel. constraining parallelism using xk
i and yk

i variables instead of the
wij variables;

Variant 6 - w/o W fix. exclude Start and Finish fixing on the wij variables;

Variant 7 - token sym. forcing token symmetry;

Variant 8 - w/o flow forcing exclude constraints (7).

11

5 Results

5.1 Correctness

Abbreviations used in the table above:

• ok - places found by the algorithm were expected;

• wrong - the algorithm found at least one wrong place;

• dup - some places found were duplicate;

• missing - the algorithm found some correct places but not all;

• infeasible - integer program generated does not have a feasible solution;

• wrong* - specifically in Log 8, there were two places that all algorithms have diffi-
culties in finding. These tests did not find those special places.

Variant 8 showed that turning off the graph connectivity (flow forcing) constraints, the
model finds only the start and finish places, which was fixed. Therefore, the correctness
of all models rely on this set of constraints with exponential cardinality in relation to the
input (number of cuts in the graph).

Additionally, the algorithms and its variants found wrong places in logs with AND-
gates (parallelism). In Logs 5 and 9, the algorithm could find the places that form an
AND-gate opening, but closed the parallel streams with an OR-gate.

Logs which we predicted the need for a τ transition were all wrong. The formulation
still does not provide a way to model τ. However, the Petri nets obtained keep their
ability to replay in exchange for its soundness.

The example below shows the state in the Petri net after the second firing of transition
B in log 11. Although this work flow creates tokens indefinitely in the place before C,
violating the proper completion property of the Petri net, the Petri net still can replay the
log, but is not sound.

12

* A B C #

Log 11:

• ⟨A, B, C⟩,

• ⟨A, B, B,
C⟩,

• ⟨A, B, B, B,
C⟩

Log 2 has a double nature, it can be either modeled with a simple cycle or using tau.
Variant 2 was able to capture the complex place that handles the sequence and the loop.

Some cycles of greater size can make the model infeasible. It happened to the expe-
riments in log 12. Nevertheless, the optimization model was feasible in variants 6 and
8 which are have significantly less constrained than the others. However, log 13 was
captured by all Variants correctly.

5.2 Time-efficiency

The table above shows the execution time in seconds of the optimizers. In terms com-
puting times, the only model that did poorly was the one without fixing start and end
activities. The Logs that had a significant worse time-efficiency were the Logs 7 and 8.
Interestingly, those have a greater variety of activities, which translate to more variables
in the optimization model. [5]

6 Discussion

6.1 Findings and contributions

As expected the model does not handle situations where ghost (τ) activities are required.
However, we noticed that the process model could still play-out the log, although the
process model is not sound. This means that tokens are left in intermediary places after
the Petri net finishes its execution.

The algorithm does not handle well parallelism. The main problem with all the wrong
tests was that the model bifurcates streams correctly using an AND-gate, but it closes

13

them using an OR-gate, which may cause problems with the Petri net’s soundness. The
constraint which obligated the sum of all leaving arcs be equal to the sum of entering arcs
for all intermediary places seemed to work well in these cases.

Cases in which there were only OR-gates, all variants seemed to perform well. All the
cases, 3, 4, 6, 7 and 10 returned the right answer consistently. One particular characteristic
of the OR-gate is that it does not change the total amount of tokens when activated.

Prefix constraints and Suffix constraints may be redundant, as observed in the results
from Variant 4 in relation to the Base Case. In this case, perhaps a good strategy would be
to generate constraints only to prefixes that are about a bit more lengthy than half to size
of the trace, and do the same with the suffixes. This would induce a formulation with
way less non-zeros.

Variants that try different schemes for objective function had a great sensibility in the
correctness of the result. Among the base case and variants 1, 2 and 3, the variants using
mixed weights in both W and XY or Z and XY families got the best results. Just as in
the ILP case, there is still room for further research on the balance of objective function
weights.

6.2 Future research

We presented a powerful new idea for process discovery, although new developments
are needed to scale to large models. Nevertheless, this idea can set a path for research on
understanding the relation between logs and Petri nets’ topology.

On the efficiency issue of our process discovery methodology, one clear acceleration
may be achieved by decomposition where a master problem takes care of the global pro-
perties of the Petri net, while subproblems generate places. The use of polyhedral com-
binatorics to improve the linear programming relaxation of the model is other line for
improvement.

Moreover, we observed that fixing the start and finish reduce the optimization time.
We believe that there are opportunities in discovering heuristics that allow the model
to fix more variables, especially the set of wij variables. This would lead also to better
optimization performance.

Finally, a more immediate recommendation would be to model τ use cases. τ is useful
for modeling skips, some nested cycles and compositions of gates such as AND-gates
followed by OR-gates. Any advance on this sense could improve the representational
power of this new approach.

Referências

[1] Robin Bergenthum, Jörg Desel, Robert Lorenz, and Sebastian Mauser. Process mi-
ning based on regions of languages. In International Conference on Business Process
Management, pages 375–383. Springer, 2007.

[2] Sander JJ Leemans, Dirk Fahland, and Wil MP van der Aalst. Discovering block-
structured process models from event logs containing infrequent behaviour. In In-
ternational Conference on Business Process Management, pages 66–78. Springer, 2013.

14

[3] Robert Christian Lorenz, Sebastian Mauser, and Gabriel Juhás. How to synthesize
nets from languages - a survey. 2007 Winter Simulation Conference, pages 637–647,
2007.

[4] Wolfgang Reisig. Understanding petri nets: modeling techniques, analysis methods, case
studies. Springer, 2013.

[5] Wil MP Van der Aalst. Process discovery: An introduction. In Process Mining, pages
125–156. Springer, 2011.

[6] W.M.P. van der Aalst. Process Mining: Data Science in Action. Springer Berlin Heidel-
berg, 2016.

[7] Jan Martijn EM Van der Werf, Boudewijn F van Dongen, Cor AJ Hurkens, and Ale-
xander Serebrenik. Process discovery using integer linear programming. In Interna-
tional conference on applications and theory of petri nets, pages 368–387. Springer, 2008.

[8] J. M. E. M. van derWerf, B. F. van Dongen, C. A. J. Hurkens, and A. Serebrenik.
Process discovery using integer linear programming. Fundam. Inf., 94(3-4):387–412,
August 2009.

[9] Sebastiaan J van Zelst, Boudewijn F van Dongen, and Wil MP van der Aalst. Avoi-
ding over-fitting in ilp-based process discovery. In International Conference on Busi-
ness Process Management, pages 163–171. Springer, 2015.

[10] Sebastiaan J van Zelst, Boudewijn F van Dongen, and Wil MP van der Aalst. Ilp-
based process discovery using hybrid regions. In ATAED@ Petri Nets/ACSD, pages
47–61, 2015.

[11] HMW Verbeek and Wil MP van der Aalst. Decomposed process mining: The ilp
case. In International Conference on Business Process Management, pages 264–276.
Springer, 2014.

[12] HMW Verbeek, WMP van der Aalst, and J Munoz-Gama. Divide and conquer: a tool
framework for supporting decomposed discovery in process mining. The Computer
Journal, 60(11):1649–1674, 2017.

15

