

PUC

ISSN 0103-9741

Monografias em Ciência da Computação
n° 04/2018

Understanding Normative BDI Agents Behavior

Francisco José Plácido da Cunha
Marx Leles Viana

Tassio Ferenzini Martins Sirqueira
Marcio Ricardo Rosemberg

Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 04/2018 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena July, 2018

Understanting Normative BDI Agents Behavior
Francisco José Plácido da Cunha, Marx Leles Viana, Tassio Ferenzini Martins

Sirqueira, Marcio Ricardo Rosemberg, Carlos José Pereira de Lucena

Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro
(PUC Rio), Rio de Janeiro, Brasil

{fcunha, mleles, tmartins, mrosemberg, lucena}@inf.puc-rio.br

Abstract. Testing the autonomy of, and the interaction between, the agents in Multiagent
Systems (MAS) is the frontal challenge of traditional software testing approaches. When
we study MAS governed by norms – mechanisms created to restrain the behavior of
agents – this challenge increases even further. However, agents are autonomous and it
is not guaranteed that they will fulfill all norms. Given the fuzzy notion of “test”, espe-
cially in the context of MAS, in addition to the difficulties of dealing adequately with
normative constraints, the overall understanding of how to handle the creation of tests
for normative MAS is still vague. This paper proposes a testing tool to build and run
MAS test scenarios and it relies on the use of aspect-oriented techniques to monitor the
behavior of autonomous agents. We demonstrated our tool with a simulation of a traffic
intersection scenario, based on the Brazilian Transit Code. Our experience shows that
the tool can be used to build test scenarios that can achieve high fault detection effective-
ness.

Keywords: BDI Agent; Autonomous Behavior; Normative Agents; Testing in Multiagent
Systems.

Resumo. Testar o comportamento autônomo e a interação entre os agentes em Sistemas
Multiagente (SMA) é o “desafio frontal” das abordagens tradicionais de teste de sof-
tware. Quando estudamos os SMA regidos por normas – que são mecanismos criados
para regular o comportamento dos agentes – esse desafio aumenta ainda mais. No en-
tanto, os agentes são autônomos e não há garantias de que eles irão cumprir todas as
normas. Além disso, dada a “noção fuzzy” de teste, especialmente no contexto de SMA,
somado às dificuldades de lidar adequadamente com restrições normativas, a compre-
ensão geral de como lidar com a criação de testes para a SMA normativos ainda é vago.
Este artigo propõe uma ferramenta de teste para construir e executar casos de teste para
SMA normativos baseada no uso de técnicas orientadas a aspectos para monitorar o
comportamento de agentes autônomos. Demonstramos nossa ferramenta com um cená-
rio de uso de interseção de tráfego, regido por normas do Código de Trânsito Brasileiro.
Nossa experiência mostrou que a ferramenta pode ser usada para construir cenários de
teste que podem alcançar alta eficácia na detecção de falhas.

Palavras-chave: Agente BDI, Comportamento Autônomo, Agentes Normativos, Teste
em Sistemas Multiagente.

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

Table of Contents

1 Introduction 1
2 Background 1

2.1 Norms and Normative Multiagent Systems 1
2.2 Multiagent Systems Testing 2

3 The Approach Proposed 2
3.1 Overview 2
3.2 Normative assertions 3

4 N-JAT4BDI: Design and Implementation Details 3
4.1 NBDI4JadeMockAgent 4
4.2 Monitor 4
4.3 Synchronizer 4
4.4 NBDI4JadeTestCase 4

5 Usage Scenario 4
5.1 Motivation 4
5.2 Usage Scenario 4
5.3 Encoding test scenario 5

6 Evaluation 6
6.1 The Fault Injector 6
6.2 Results 7

7 Conclusion and Future Work 7
References 7

 1

1 Introduction

Multiagent Systems (MAS) are societies in which autonomous, heterogeneous and inde-
pendently designed entities work toward a common goal [9]. To reach this common goal,
it is necessary to deal with the agents’ autonomy and establish a strategy that will allow
open systems to provide social control mechanisms to ensure the desired order [9].
Agent autonomy is very important in MAS, however, from a testing perspective the
characteristics of normative agents add many new challenges to software testability. Tra-
ditionally, software behavior can be easily tested and understood when compared to a
reference behavior, whereas in multiagent systems, the behavior depends on the inter-
actions with other agents in a dynamic environment.

This means that if on one hand agent technology helps to address application require-
ments of complex systems, on the other hand, its characteristics, such as the autonomy
and the use of norms in the environment, bring obstacles to software testability [2]. Ac-
cording to Voas and Muller [2], testability has two facets: (i) controllability – the ability to
control the test input, and (ii) observability – the ability to observe the output of the com-
ponent under test. Agent autonomy impairs observability since agents may employ
some degree of nondeterministic behavior. Consequently, it is hard to define (control)
the test input that is not only derived from environment data but also from the messages
received from concurrent conversations among agents – this is made worse with the use
of norms.

This paper presents a tool named N-JAT4BDI: a JUnit-like testing tool implemented
in Java and Aspect-Oriented Programming, which is a technique to improve the modu-
larization of crosscutting concerns. N-JAT4BDI has been developed with the purpose of
testing agents built in NBDI4JADE [12], a framework for normative agent-based appli-
cations that follows the BDI architecture. We can point out the following contributions:
(i) an adaptation of JAT4BDI [13] that adds mechanisms to test the relevant properties of
normative BDI agents and their interactions with others; (ii) a tool to support the imple-
mentation and automatic execution of test cases; (iii) a real test showcasing a Brazilian
traffic scenario and (iv) a quality assessment of this test scenario by using a fault injection
technique.

The remained of this paper is organized as follows: Section 2 presents the background
and related work. Section 3 presents the testing approach to normative MAS. Section 4
presents design and implementation details of the N-JAT4BDI tool. Section 5 presents
the usage scenario. Section 6 presents the evaluation of the results. Finally, Section 7 pre-
sents our conclusions and future work.

2 Background

This section summarizes the concepts of norms and their use in Multiagent Systems as
well as MAS Testing approaches and their limitations.

2.1 Norms and Normative Multiagent Systems

In MAS, norms are mechanisms commonly accepted as efficient means of regulating
agents behavior and representing the way in which agents understand the responsibili-
ties of other agents [4] [9]. The definition of the norms used in this work is represented

 2

by the following properties: Addressee, Condition (for example, Activation, Expiration),
Motivation (for example, Rewards, Punishments), Deontic Concept, and State. The de-
scription of each property is given as such: (i) addressee is used to specify the agents or
roles responsible for norm compliance; (ii) activation is the condition for the norm to be-
come active; (iii) expiration is the validity condition for the norm to become inactive; (iv)
reward is used to represent the set of rewards to be given to the agent for norm compli-
ance; (v) punishment is the set of punishments to be given to the agent for violating a
norm; (vi) deontic concept is used to indicate whether the norm establishes an obligation,
a permission, or a prohibition, and (vii) state is used to describe the set of states or actions
that are being regulated [10].

2.2 Multiagent Systems Testing

According to Nguyen et al. [17], the full testing process of a multiagent system consists
of the following levels: unit, agent, integration (or group), system and acceptance.

Several approaches have proposed unit testing for individual agents in multiagent
systems [6] [5] [7] [13] [16], whereas few studies deal with the issue of testing a MAS at
group level [6] [15] [18] [1] [3]. According to Serrano [18], most approaches have focused
on capturing and visualizing messages exchanged among agents, and do not provide
ways of tracking the correlation among the agents’ behavior. It is important to empha-
size that none of the papers mentioned above provides an approach to verify the behav-
ior of normative agents. The main focus of this work is to test the capability of an indi-
vidual agent to fulfill a norm in order to reach its goal.

3 The Approach Proposed

This section presents a testing tool – the N-JAT4BDI – that proposes test cases to test
normative BDI agents encoded in the NBDI4JADE framework [12]. The N-JAT4BDI tool
resorted to the main ideas of the JAT4BDI approach [13] and added new features capable
of monitoring the behaviors of normative NBDI4JADE agents.

3.1 Overview

Our tool simulates real agent interactions by using mock agents [14]. The mock agents
interact and exchange messages with the agent under test (AUT) in order to verify the
AUT response and to check whether the environment was affected as expected.

Figure 1 depicts all the participants used in our testing approach: (i) Agent Under Test
(AUT): agent whose behavior is verified by the unit test execution; (ii) Mock Agent: a fake
implementation of a real agent that interacts with the AUT; (iii) Monitor: responsible for
monitoring agents’ behaviors (reasoning cycle); (iv) Synchronizer: manages the test sce-
nario execution by defining the order in which the mock agents interact with the AUT;
(v) Test Scenario: defines a set of conditions to which the AUT will be exposed and verifies
whether this agent obeys its specification under those conditions. Each scenario encom-
passes only one AUT and one, or more, mock agents, and (vi) Test Case: a particular
situation that requires verification.

 3

The workflow steps used by the tool are: (i) to create a Test Scenario that will define

the test cases involved; (ii) to start the Test Scenario; (iii) the test case creates and starts
the AUT and Mock Agents. The component Monitor starts to observe the AUT’s reason-
ing cycle (its beliefs, executed plans, goals, and norms fulfilled, or refused), and (iv)
mock agents exchange messages with the AUT. During this interaction process, the Mon-
itor keeps track of the information gathered during the execution. To do so, it uses a set
of data structures to store that information. Both the Monitor and Synchronizer were
implemented by aspects [8].

3.2 Normative assertions

Aiming to support norm fault identification in NBDI4JADE agents, we provide a set of
assertive methods that follow the JUnit style and are capable of verifying the agents’
decisions. These assertion methods check the information stored by the tool during the
agent’s execution.

The main assertions are described below: (i) assertNormActive: It checks whether a
norm is active in the environment; (ii) assertNormFulfillment: It checks whether a norm
is fulfilled by the agent; (iii) assertNormAffectGoal: It checks whether a norm affects an
agent’s goal; (iv) assertNormAffectPlan: It checks whether a norm affects an agent’s
plan; (v) assertNormAddressee: It checks whether a norm is addressed to the agent under
test; (vi) assertNormExpired: It checks whether a norm has expired during the AUT’s
execution; (vii) assertNormReward: It checks whether the AUT has received a reward
for fulfilling the norm; (viii) assertNormPunishment: It checks whether the AUT has re-
ceived a punishment for violating the norm; (ix) assertNormDeonticConcept: It checks
the type of norm constraint (obligation, permission or prohibition) that affects the AUT,
and (x) assertNormState: It checks the internal state of an element that has been regu-
lated.

4 N-JAT4BDI: Design and Implementation Details

This section discusses the main classes of the N-JAT4BDI tool.

 4

4.1 NBDI4JadeMockAgent

The NBDI4JadeMockAgent class implements the mock agent concept in N-JAT4BDI and
is an instance of the NBDI4JADE class; it has a simple plan that executes a mock agent’s
single action. The messages exchanged between the mock agents and the AUT is also
stored in the internal data structures and can be accessed by using assertive methods.

4.2 Monitor

The Monitor defines the pointcut that will intercept both the normative agents and the
NBDI4JADE framework in order to observe the agents’ reasoning, their decisions and
all the changes that occurred in the environment.

4.3 Synchronizer

The Synchronizer intercepts the code of the NBDI4JadeMockAgent class and orches-
trates the sequence of interaction between the AUT and mock agents.

4.4 NBDI4JadeTestCase

This class extends the JUnit framework features to support the NBDI4JADE agent tests.
As a result, developers can create agent tests more easily since they will be using their
own experience with JUnit tests. This is possible because NBDI4JadeTestCase provides
a set of Junit-based assertive methods to verify the normative agent’s behavior and to
manage the execution environment before a test scenario starts.

5 Usage Scenario

Our case study focuses on the simulation of a traffic scenario in Brazil. This section sum-
marizes our experience with the testing tool and its use in this scenario.

5.1 Motivation

According to Article 29 of the Brazilian Transit Code (BTC), the right of way rules for
vehicles arriving at an uncontrolled intersection are: (i) Norm1: vehicles moving on main
thoroughfares have the preference; (ii) Norm2: in the case of a traffic circle, the ones cir-
culating around it have the preference, and (iii) Norm3: in all other cases, vehicles coming
from the right have the preference. In addition, Article 38, in its sole paragraph, states
that before making a right or left turn, or merging onto traffic, the driver must yield to
oncoming pedestrians, cyclists and vehicles, always respecting the norms of preference
described in Article 29.

5.2 Usage Scenario

This simulation of Brazilian traffic rules was implemented to briefly demonstrate how
N-JAT4BDI can be used to test a normative agent. The complete simulation involves au-
tonomous cars (agents), highways, traffic circles, traffic intersections, and traffic rules.
The goal of the autonomous cars is to arrive at their destination without accidents, fol-
lowing local traffic rules.

 5

Figure 2 presents the scenario implemented with the NBDI4JADE framework: three
cars arrive at an intersection at the same time. The goals of the autonomous cars are: (i)
the pink car wants to proceed on street 1; (ii) the yellow car wants to proceed on street 2
and will have to cross street 1, and (iii) the red car is on street 1 and wants to turn left
onto street 2. In this scenario, however, there are no traffic signs and the agents need to
make decisions to avoid collision among the cars, taking into account Brazil’s traffic
rules.

In our scenario, neither Norm1 nor Norm2 of Article 29 of the BTC can be applied.

Therefore, the agents need to decide whether they will fulfill, or violate, Norm3 of Article
29. In our simulation, they all fulfilled Norm3, as follows: (i) The PINK car arrives at the
intersection and stops because the YELLOW car is on its right; (ii) The YELLOW car
arrives at the intersection and stops because the RED car is on its right; (iii) The RED car
arrives at the intersection and there is no car on its right, therefore, the agent’s reasoning
cannot comply with Article 29 and must, instead, comply with Article 38.

Because the BTC does not deal with similar situations at uncontrolled intersections, it
creates an impasse, and requires that the agent’s reasoning process be improved.

Due to space limitation, we describe only one simple test scenario and its implemen-
tation, as demonstrated in Table 1.

5.3 Encoding test scenario

Figure 3 illustrates the implementation of the test scenario. Line 13 of the test case starts
the agent under test (Red car) and line 15 configures the concurrence from the test envi-
ronment execution. Line 17 creates a local norm that emulates a real norm in the envi-
ronment. Line 18 checks whether the norm is active in the environment and line 19

 6

checks whether the norm is addressed to the agent under test. The goal of the autono-
mous cars is to arrive at their destination without accidents, following local traffic rules.

Figure 4 depicts the result of the test case execution visualized in a JUnit style.

6 Evaluation

Fault injection is considered a very useful technique to evaluate the effectiveness of test-
ing approaches. The key idea is to introduce faults during system execution and verify
whether the testing approach precisely detects the injected fault [11], which depends on
the fault model associated with a testing approach.

In order to estimate the effectiveness of the test cases development, we implemented
a module in the tool that uses Java Annotations and aspect-oriented programming that
intercepts the execution of the N-BDI4JADE agents and introduces faults in our norma-
tive agent.

6.1 The Fault Injector

The fault injector component adds specific faults defined by the annotation. Each anno-
tation describes one type of fault and aims to check how agents react to the fault. For
instance: (i) @ActivateNorm: forces the activation of a norm in the environment. The at-
tribute of this annotation is the norm that will be activated; (ii) @DeactivateNorm: forces
the deactivation of a norm in the environment. The attribute of this annotation is the
norm that will be deactivated; (iii) @IncreaseReward: forces the increase in the agent’s

 7

reward score even when a norm is not fulfilled; (iv) @IncreasePunishment: forces the in-
crease in the agent’s punishment score even when a norm is not fulfilled; (v) @Change-
Addressee: forces a change in the addressee of a norm, and (vi) @ChangeFulfillment: forces
the agent to fulfill, or not, a norm.

6.2 Results

We have injected 22 faults inside our simulation to check whether the test scenarios were
able to diagnose the injected faults. According to the results, the N-JAT4BDI tool helps
the developer in the identification of these types of faults. We attribute these results to
the use of the testing driven development technique during the development of our test-
ing tool. Thus, the test cases became consistent and accurate whereas the injection of
faults that involved reward and punishment, failed completely. Table 2 summarizes the
results.

7 Conclusion and Future Work

This work presented N-JAT4BDI, a testing tool for building and running automated test
cases for normative agents with N- JAT4BDI to verify a Brazilian traffic simulation in-
volving traffic intersections. To evaluate our approach, we used a fault injection tech-
nique to assess the quality of the test scenarios developed for this simulation. The results
have shown that N-JAT4BDI can effectively uncover bugs in normative agents. As future
work, we plan to improve the normative fault model and add features when testing
other normative properties such as reward and punishment.

References

[1] A. Ferrando, D. Ancona and V. Mascardi, Decentralizing mas monitoring with
decamon, Proceedings of the Conference on Autonomous Agents and MultiAgent
Systems, pp. 239–248, 2017.

[2] J. M. Voas and K. W. Miller, Software testability: The new verification, IEEE
software, v.12, n.3, pp. 17–28, 1995.

[3] N. M. do Nascimento, C. J. M. Viana, A. von Staa and C. J. P. de Lucena, A Publish-
Subscribe based Architecture for Testing Multiagent Systems, 2017.

 8

[4] M. Alberti, A. Gomes, R. Gonçalves, J. Leite, and M. Slota, Normative systems
represented as hybrid knowledge bases, Computational Logic in Multi-Agent Systems,
pp. 330–346, 2011.  

[5] R. Coelho, E. Cirilo, U. Kulesza, A. von Staa, A. Rashid and C. J. P. de Lucena, Jat: A
test automation framework for multi-agent systems, in IEEE International Conference
on Software Maintenance, pp. 425–434, 2007.

[6] D. T. Ndumu, H. S. Nwana, L. C. Lee and J. C. Collis, Visualising and debugging
distributed multi-agent systems, in Proceedings of the third annual conference on
Autonomous Agents. ACM, 1999, pp. 326–333.  

[7] Y. Abushark, J. Thangarajah, T. Miller, J. Harland and M. Winikoff, Early detection
of design faults relative to requirement specifications in agent-based models, in
Proceedings of the International Conference on Autonomous Agents and Multiagent
Systems, pp. 1071–1079, 2015. [8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. M. Loingtier and J. Irwin, (1997, June). Aspect-oriented programming, In
European conference on object-oriented programming (pp. 220-242). Springer, Berlin,
Heidelberg.

[9] F. L. y López, Social power and norms: Impact on agent behavior, Ph.D. dissertation,
University of Southampton, June, 2003.  

[10] V. T. da Silva, From the specification to the implementation of norms: an
automatic approach to generate rules from norms to govern the behavior of agents,
Autonomous Agents and Multi-Agent Systems, vol. 17, no. 1, pp. 113–155, 2008.

[11] J. Voas and G. McGraw, Software Fault Injection: Inoculating Programs Against
Errors, Wiley, 1998.

[12] F. J. P. da Cunha, T. F. M Siqueira, M. L. Viana and C. J. P. de Lucena, Extending
BDI Multiagent Systems with Agent Norms, International Conference on Intelligent
Agent Technology, 2018 – In Press.

[13] F. J. P. da Cunha, A. D. da Costa, M. L. Viana and C. J. P. de Lucena, JAT4BDI: An
Aspect-based Approach for Testing BDI Agents, Web Intelligence and Intelligent
Agent Technology (WI-IAT), 2015 IEEE/WIC/ACM International Conference on. Vol.
2. IEEE, 2015.

[14] R. Coelho, U. Kulesza, A. von Staa and C. J. P. de Lucena, Unit testing in multi-
agent systems using mock agents and aspects, In Proceedings of the international
workshop on Software engineering for large-scale multi-agent systems, 2006, pp. 83–90,
ACM.

[15] J. J. Gomez-Sanz, J. Botia, E. Serrano, and J. Pavón, Testing and debugging of mas
interactions with ingenias, in International Workshop on Agent-Oriented Software
Engineering. Springer, 2008, pp. 199–212.

[16] V. J. Koeman, K. V. Hindriks and C. M. Jonker, Automating failure detection in
cognitive agent programs, Proceedings of the International Conference on Autonomous
Agents & Multiagent Systems, 2016, pp. 1237–1246.

 9

[17] C. D. Nguyen, A. Perini, C. Bernon, J. Pavón and J. Thangarajah, Testing in multi-
agent systems, in International Workshop on Agent-Oriented Software Engineering.
Springer, 2009, pp. 180–190.

[18] E. Serrano, A. Muñoz and J. Botia, An approach to debug interactions in multi-
agent system software tests, Information Sciences, vol. 205, pp. 38–57, 2012.

