

PUC

ISSN 0103-9741

Monografias em Ciência da Computação
n° 05/2018

Extending BDI Multiagent Systems with Agent
Norms

Francisco José Plácido da Cunha
Tassio Ferenzini Martins Sirqueira

Marx Leles Viana
Carlos José Pereira de Lucena

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 05/2018 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena July, 2018

Extending BDI Multiagent Systems with Agent Norms
Francisco José Plácido da Cunha, Tassio Ferenzini Martins Sirqueira, Carlos

José Pereira de Lucena
Departamento de Informática – Pontifícia Universidade Católica do Rio de Janeiro

(PUC Rio)
{fcunha, tmartins, mleles, lucena}@inf.puc-rio.br

Abstract. Open Multiagent Systems (MASs) are societies in which heterogeneous and
independently designed entities (agents) work towards similar, or different ends. Soft-
ware agents are autonomous and the diversity of interests among different members
living in the same society is a fact. In order to deal with this autonomy, these open sys-
tems use mechanisms of social control (norms) to ensure a desirable social order. This
paper considers the following types of norms: (i) obligation — agents must accomplish a
specific outcome; (ii) permission — agents may act in a particular way, and (iii) prohibition
— agents must not act in a specific way. All of these characteristics mean to encourage
the fulfillment of norms through rewards and to discourage norm violation by pointing
out the punishments. Once the software agent decides that its priority is the satisfaction
of its own desires and goals, each agent must evaluate the effects associated to the ful-
fillment of one or more norms before choosing which one should be fulfilled. The same
applies when agents decide to violate a norm. This paper also introduces a framework
for the development of MASs that provide support mechanisms to the agent’s decision-
making, using norm-based reasoning. The applicability and validation of this approach
is demonstrated applying a traffic intersection scenario.

Keywords: BDI Agent, BDI4JADE Framework, Multiagent System, Normative Agent.

Resumo. Sistemas Multiagente (SMA) são sociedades nas quais entidades (agentes) he-
terogêneas e projetadas de maneira independente trabalham com fins similares ou dife-
rentes. Os agentes de software são entidades autônomas e a diversidade de interesses
entre os diferentes membros que vivem em uma mesma sociedade é um fato. Para lidar
com tal autonomia, esses sistemas usam mecanismos de controle social (normas) para
garantir uma ordem social desejável. Neste trabalho, são considerados os seguintes tipos
de normas: (i) obrigação – os agentes devem realizar um resultado específico; (ii) permissão
– os agentes podem agir de maneira particular e (iii) proibição – os agentes não devem
agir de maneira específica. Todas essas características significam encorajar o cumpri-
mento das normas através de recompensas e desestimular a violação das normas apon-
tando as punições. Uma vez que o agente de software decide que sua prioridade é a
satisfação de seus próprios desejos e metas, cada agente deve avaliar os efeitos associa-
dos ao cumprimento de uma ou mais normas antes de escolher qual deve ser cumprida.
O mesmo se aplica quando os agentes decidem violar uma norma. Este trabalho apre-
senta uma estrutura para o desenvolvimento de SMA que fornecem mecanismos de su-
porte para a tomada de decisões do agente, usando o raciocínio prático baseado em nor-
mas. A aplicabilidade e validação desta abordagem é demonstrada ao aplica-la à um
cenário de interseção de tráfego.

Palavras-chave: Agente BDI, BDI4JADE Framework, Sistema Multiagente, Agentes Nor-
mativos.

 ii

In charge of publications:

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

Table of Contents

1 Introduction 1
2 Background 1

2.1 Norms and Normative Multiagent Systems 1
2.2 The BDI4JADE Framework 2
2.3 The NBDI Architecture 2

3 Related Work 3
4 NBDI4JADE – A Framework to Build Normative Agent 4

4.1 The NBDI4JADE Framework 4
4.2 Details of the NBDI4JADE Framework 4
4.3 Hot-Spots and Frozen-Spots 7

5 Usage Scenario: Traffic Intersection Norm in Brazil 8
5.1 Overview 9

6 Conclusion and Future Work 10
References 11

 1

1 Introduction

Multiagent systems are societies in which autonomous, heterogeneous and inde-
pendently designed entities can work toward similar or different goals [1]. In order to
deal with this autonomy and the diversity of interests among the different members,
those open systems provide norms, which are mechanisms of social control to ensure a
desirable social order [1]. Such mechanisms regulate the behavior of the agents by defin-
ing permission, obligation and prohibition [2]. Moreover, agents may be encouraged to
fulfill a norm by obtaining rewards while being discouraged to violate it by receiving
punishments [3]. Although norms are promising mechanisms to regulate an agent’s be-
havior, the agent’s autonomy might generate circumstances in which rather than fulfill
the norm, the agent would prefer to violate it in order to reach a private goal that it
considers to be more important. Within this context, new features were added to the
BDI4JADE Framework [4] aiming to support normative reasoning, i.e., to build agents
that are able to deal with desires and norms.

The original BDI4JADE Framework provides support only to the implementation of
BDI agents and not the implementation of mechanisms that support normative func-
tions. By using the proposed new features, it is possible to build BDI agents that are able
to check if a norm should be adopted, or not. In addition, these new features evaluate
the agent’s desires and the effects of the fulfillment, or violation, of the norm. Lastly, it
is possible to detect and solve conflicts among norms, and select desires and plans ac-
cording to the agent’s choice, i.e., whether the agent decides to fulfill a norm or not. The
architectural support of this approach is provided by the NBDI (norm–belief–desire–
intention) architecture [5], which extends the BDI (belief–desire–intention) architecture
[6] by including norms-related functions to support normative reasoning. A traffic inter-
section scenario as well as the issues related to norms adoption, evaluation, and compli-
ance are used to show the applicability of the new features.

The document is structured as follows. Section II focuses on the norms’ background;
presents the BDI4JADE framework, and offers an overview of the NBDI architecture.
Section III presents related work. Section IV presents the NBDI4JADE architecture and
details its implementation. Section V presents a usage scenario about traffic intersection
norms in Brazil. Finally, Section VI shows the paper’s conclusion and future work.

2 Background

This section summarizes the basic notions that will be used throughout this document,
which aims to present the basic concepts about norms and their use in multiagent sys-
tems. The BDI4JADE framework and the NBDI architecture, which contribute to this
work, are also presented.

2.1 Norms and Normative Multiagent Systems

Norms are informal rules that are socially enforced and represent an expected behavior
towards a specific situation [7]. In the context of multiagent systems, norms are mecha-
nisms commonly accepted as efficient means capable of regulating agent behavior and
represent the way in which agents understand the responsibilities of other agents [8],
[1]. Thus, agents work believing that other agents will behave according to the settled
norms. Norms, however, are mainly mechanisms that enable agents to demand that

 2

other agents behave in a certain way [9]. In addition, norms define permission obliga-
tion, or prohibition regarding the agents’ behavior. Norms may be kept in place for dif-
ferent periods of time, i.e., either while the agent remains in the society or only for a short
period of time, until the social goal has been fulfilled [10].

According to Mahmoud et al. [11], the literature suggests three different kinds of
norms for normative multiagent systems [12] such as: (i) regulative norms which specify
the behavior of a system by using obligations, prohibitions, and permissions [12]; (ii)
constitutive norms which, besides regulating their own behavior can also create new
norms derived from other existing norms [13–15]; (iii) procedural norms which are ad-
dressed to the agents in the normative system in order to regulate the behavior [16].

The definition of the norms used in this work [3] is represented by the following prop-
erties: Addressees, Condition (for example, Activation, Expiration), Motivation (for ex-
ample, Rewards, Punishments), Deontic Concept, and States. The description of each
property is given below: (i) Addressee is used to specify the agents or roles responsible
for norm compliance; (ii) Activation is the condition for the norm to become active; (iii)
Expiration is the validity condition for the norm to become inactive; (iv) Rewards is used
to represent the set of rewards to be given to the agent for norm compliance; (v) Punish-
ments is the set of punishments to be given to the agent for violating a norm; (vi) Deontic
Concept is used to indicate whether the norm establishes an obligation, a permission, or
a prohibition, and (vii) State is used to describe the set of states or actions that are being
regulated.

Normative systems are widely discussed as a mechanism to regulate software agents
[17]. Such systems are a set of constraints on the agents’ behavior. By imposing these
constraints, the intention is to enforce a social behavior. Normative systems are an im-
portant issue associated with software compliance. Norms are important whenever non-
compliance is accidental (e.g., a message fails and some participants are not informed
about the regulations). Alternatively, non-compliance may be deliberately rational (e.g.,
a participant chooses to ignore the norms because it does not see them as being in its
own best interests), or deliberately irrational [18]. Furthermore, norms are important be-
cause they help shed light on the interaction of autonomous agents with one another and
on how to control agent access to autonomous components [19].

2.2 The BDI4JADE Framework

BDI4JADE [4] is a framework based on the Java language that gives support to the de-
velopment and implementation of Belief, Desire and Intention (BDI) agents – one of the
widely known architectures for designing and implementing cognitive agents – and its
implementation is a layer on top of the JADE platform [20], which provides a robust
infrastructure to implement agents but does not support the BDI architecture.

Other BDI platforms based on the Java language, such as Jason [21], JACK [22], Jadex
[23], and the 3APL Platform [24] have their agents implemented by using new program-
ming languages – AgentSpeak(L) [25], JACK Agent Language [26], a Domain-specific
Language (DSL) written in XML, and 3APL [27], respectively. This was the motivation
behind the creation of the BDI4JADE Framework.

2.3 The NBDI Architecture

The NBDI architecture [5] extends the BDI architecture [6] by including norms-related
functions to support normative reasoning. Moreover, norms are considered a primary
concept that influences the agent’s decision while reasoning about its beliefs, desires and

 3

intentions. The extension of the NBDI architecture added three new components: (i) Be-
lief + Norm Review Function; (ii) Norm Selection Function, and (iii) Norm Filter (see
Figure 1).

The Belief + Norm Review Function helps the agent to recognize its responsibilities to-

wards other agents by adopting new norms that specify such responsibilities. In addi-
tion, it helps the agent to update the activated and adopted norms. This function consists
of two tasks: (i) verifying the adopted norms and (ii) updating the norms. The first task
checks if a new norm unifies with one of the norms already adopted, i.e., if the new norm
already exists in the agent’s belief base. This task further verifies if the agent is the ad-
dressee of the norm. Lastly, the first task updates the set of adopted norms in the agent’s
belief base if the new norm does not exist and the agent is the addressee of the norm.
The second task updates the set of activated norms by evaluating the activation and ex-
piration conditions and changing the status of the norm to “activated” or “deactivated”.

The Norm Selection Function aims at selecting the norms that the agent has the inten-
tion to fulfill. To this end, this function first evaluates the status of the norms, the re-
wards, punishments and consequences and then, it detects and solves possible conflicts
among the different norms that can be adopted.

Finally, the Norm Filter is responsible for discarding any intention that does not bring
benefits to the agent, retaining intentions that are still expected and adopting new inten-
tions. This function modifies the original BDI Filter Function, adding two additional
steps: (i) selecting desires – this task selects the desires that will become intentions, tak-
ing into account the norms the agent wants to fulfill, and (ii) selecting plans – this task
selects plans that are also influenced by the norms and will make the agents achieve their
intentions.

3 Related Work

In the architecture of normative multiagent systems, the literature offers some research
on normative systems. Following are some frameworks and their description.

BOID Normative Architecture: Broersen et al. proposed in this work, an architecture
with an obligation component – the belief, obligation, intention, and desire (BOID) ar-
chitecture. Such architecture adds an obligation component to the traditional BDI archi-
tecture and uses logical criteria to deal with the attitudes of the agent, with the changing
environment and to resolve conflicts by according to the agent type. However, this ap-
proach does not address the danger of mandatory norms that may interpose the agent’s
autonomy [28].

 4

BIO Normative Architecture: in this approach, Governatori and Rotolo proposed an ar-
chitecture which considers the beliefs, intentions, and obligations as components. As
well as the BOID architecture, BIO describes agents and their types in defeasible logic
[29].

The OP-RND Normative Framework: this approach proposed a normative agent frame-
work to regulate rules and norms effectively, the OP-RND framework. Their agents ex-
ecute tasks based on pre-compiled tasks that considers their beliefs of the reward and
penalty. Obligation and prohibition (OP) are rules imposed [30].

Boela et al. proposed an architecture of normative agents that uses deontic logic and
is an extension of the work [31], specifying illegal behavior that an agent can carry out
and its consequences [15].

4 NBDI4JADE – A Framework to Build Normative Agent

This section describes the main concepts of the proposed NBDI4JADE framework,
providing an overview and discussing the different components that were changed, or
added to the BDI4JADE framework, in order to allow NBDI4JADE to handle normative
agents and to follow the concepts of the NBDI architecture. Furthermore, this section
presents the NBDI4JADE class diagram and highlights details about its kernel (frozen-
spots) and flexible points (hot-spots) [32].

4.1 The NBDI4JADE Framework

The NBDI4JADE framework supports the creation of simulations that show the impact
of norms in multiagent systems. As such, NBDI4JADE enables the implementation of
normative agents, allowing it to build complex multiagent systems and high-level ab-
straction.

To ensure a high-level abstraction, the NBDI4JADE framework was designed as a
layer on top of other existing technologies, as shown in Figure 2. NBDI4JADE was built
as an extension of the BDI4JADE framework, which is a BDI framework but does not
support the norms concept. The design of NBDI4JADE considered the NBDI architec-
ture, which presents, conceptually, the extension points and the changes needed in the
BDI architecture in order to support normative reasoning agents. BDI4JADE, in turn, is
a layer on top of the JADE framework, which provides a robust infra-structure to imple-
ment agents, but does not follow the BDI architecture.

4.2 Details of the NBDI4JADE Framework

The implementation of the NBDI4JADE framework aims at supporting the development
of BDI agents capable of reasoning about their beliefs, desires and intentions, taking

 5

norms into consideration. As such, the original components used in the reasoning cycle
of the BDI4JADE agent, which is based on the BDI-interpreter algorithm presented in [6]
were modified. The reasoning cycle is implemented in six major steps and each step is
considered a component.

1. Revising beliefs: the first step consists of revising the agent’s beliefs. This compo-
nent was modified to enable agents to recognize their responsibilities towards
other agents by adopting norms.

2. Removing finished goals: this step consists of removing goals that might have been
“finished”, i.e. the goals (i) may have been achieved, (ii) are no longer desired, or
(iii) are considered unachievable. (This component was not modified.)

3. Generating options: in this step, are determined the goals (desires) that are availa-
ble to the agent. This step is responsible for generate new desired goals; establish
goals that are no longer desired, or preserve those goals that are still desired. This
component was changed to generate options that take into account the norms of
the environment.

4. Removing dropped goals: when a goal, or set of goals, is no longer considered de-
sirable in the previous step, it is removed from the agent’s set of goals and the
observers are notified about this occurrence (This component was not modified.)

5. Deliberating goals: in this step, the current agent goals are partitioned into two
subsets (i) goals to be achieved (intentions) and (ii) goals that are not achieved.
The latter will remain an agent’s desire, but the agent is not committed to achieve
it at the moment. (This component was changed to consider the norms in the
agent’s belief base and to select plans that take the norms into account.)

6. Updating goals status: based on the partition performed in the previous step, the
status of the goals is updated. Selected goals are updated to the “trying to
achieve” status, and unselected goals are updated to the “waiting” status. When
a goal has the “trying to achieve” status, the agent will select plans in order to
achieve that goal. (This component was not modified.)

Figures 3–5 were designed using UML to demonstrate the changes that have been
made to extend the BDI4JADE framework to deal with the norms concept. The red color
indicates classes that already existed in BDI4JADE and were modified. The blue color
indicates the new classes that were added to represent the norms concept. The gray color
is that of those classes that did not suffer any changes in the deliberative process.

Figure 3 shows the new DefaultBeliefNormRevisionStrategy class that extends the De-
faultBeliefRevisionStrategy class and adds the reviewNorms method. In addition, an inter-
face to manage the DefaultBeliefNormRevisionStrategy class as well as two new classes
to deal with the norms concept were added: (i) the Norm class, representing the structure
of the basic concepts of a norm and (ii) the NormBase class, representing the set of norms
of the system with their respective methods of manipulation.

 6

Figure 4 shows the changes in the deliberative goals function of the agent’s reasoning

cycle. As such, the agent’s deliberative process considers the adoption of norms regard-
ing its actions. The main changes occurred in the DefaultAgentDeliberationFunction class,
which has received new methods to select goals, plans and filters that will consider the
use of norms and their priorities.

Figure 5 represents the intentional generation Function and the agent’s plan to

achieve its goals. The change in the BeliefBase class propagates to the Capability class and
to the options generation class and agent selection plans. This change was a reflex of the
new classes – Norm and NormBase – and it adds norms into the agent’s reasoning cycle.
As a result, the agent can decide whether to fulfill the norms or not by taking into account
the norm’s punishments and rewards. The goals generation and the plans selection func-
tions take into account the concept of norm, which does not restrict the agent’s auton-
omy. Therefore, the agent is now able to reason about the norms addressed to it. Such
process is important when we consider normative conflicts.

 7

4.3 Hot-Spots and Frozen-Spots

Frameworks are generators of applications that are directly related to a specific domain
[33]. This work proposes a framework whose domain is the development of normative
agents.

Since frameworks are designed to generate complete applications, there must be flex-
ible points that are customized to solve a particular problem. The initial proposed flexi-
ble point is restricted to the strategy used to deal with norms. According to their goals,
agents can adopt a pressured, a rebellious or a social strategy in their decision-making
process.

Some features of the framework are present in all applications in the domain. These
immutable points constitute the core of a framework and are called fixed points (frozen-
spots). The core is unchangeable and is also an ever-present part of every domain in-
stance. However, there are also flexible parts in a framework providing extensible points
(hot-spots) that are customized by developers. The hot-spots specifically defined by
NBDI4JADE are:

 8

• DefaultBeliefNormRevisionStrategy: it invokes the NormRevisionStrategy.re-
viewNorms() method for the norms base of all agents;

• DefaultAgentOptionGenerationFunction: it returns the current set of goals but takes
into consideration the norms in place in the environment;

• DefaultAgentDeliberationFunction: it returns the whole set of goal, i.e., all goals
will go to a “trying to achieve” state without violating the norms;

• DefaultAgentPlanSelectionStrategy: it returns null if the set of plans is empty, and
the first plan retrieved from the set, otherwise, always respecting the norms im-
posed on the agent;

NBDI4JADE provides a default implementation for each one of these strategies and
the hot-spots of BDI4JADE are maintained.

The frozen-spots of NBDI4JADE are:

• NormBase: it is the class that carries the methods for norm manipulation, i.e., it
manages the environment’s existing and active norms;

All fixed points (frozen-spots) of the BDI4JADE were maintained.

5 Usage Scenario: Traffic Intersection Norm in Brazil

The number of cars is continuously growing in Brazil. The large increase in the Brazilian
fleet brought the number of cars to one car for every 4.4 inhabitants, i.e., it is estimated
that there are approximately 45.4 million private vehicles in Brazil. Ten years ago, the
proportion was 7.4 inhabitants per vehicle [9]. With the increase in the number of vehi-
cles on the streets and the arrival of autonomous cars, the need arose to create systems
capable of assisting both traffic experts as well as autonomous driver agents to better
deal with unexpected situations in day-to-day traffic. The right of way rules at traffic
intersections, for example, are difficult to follow at uncontrolled intersections, i.e., inter-
sections without signs. Therefore, there are serious consequences when those rules are
violated. An intersection is a junction where two or more roads meet, or cross.

According to data from the Brazilian Federal Highway Patrol [9], the main causes of
fatal accidents in 2016 were, among others: lack of attention (30.8%); high speed (21.9%);
alcohol consumption (15.6%); disregard for signs (10%); reckless overtaking (9.3%); and
sleep (6.7%). In addition, 60% of these car accidents occurred at uncontrolled intersec-
tion. According to the Brazilian Transit Code (BTC),

Article 29, the right of way rules for vehicles arriving at an uncontrolled intersection
are: (i) Norm1: vehicles moving on main thoroughfares have the preference; (ii) Norm2:
in the case of a traffic circle, the ones circulating around it have the preference, and (iii)
Norm3: in all other cases, vehicles coming from the right have the preference. In addition,
Article 38, states that before making a right or left turn, or merging into traffic, the driver
must, as per its Sole paragraph, yield to oncoming pedestrians, cyclists and vehicles, al-
ways respecting the norms of preference described in article 29.

The NBDI4JADE framework can simulate and assist in the planning of risk situations
at uncontrolled intersections. For example, in order to avoid accidents, a simulation can
be used to study the different strategies that can be adopted by normative autonomous
car agents.

 9

5.1 Overview

The simulation consists of autonomous cars, highways, traffic circles, and traffic inter-
sections, respectively, as shown in Figure 6. The goal of the autonomous cars is to arrive
at their destination without accidents. To achieve this goal, the autonomous car agent
must be restricted by norms, but due to its autonomy, the agent may decide whether to
fulfill these norms or not. Such simulations are, in fact, normative multiagent systems
that receive data with the following information: (i) different types of traffic intersec-
tions, (ii) autonomous car agents, (iii) norms to be followed by the autonomous car
agents, and (iv) different traffic scenarios. Simulations allow autonomous cars to find
different solutions to prevent accidents at intersections.

To deal with these scenarios and understand the norms applied to each scenario, the

autonomous car agents have: (i) a set of goals that is connected directly to their individ-
ual satisfaction; (ii) a knowledge base collected by the simulation environment to help
characterize traffic risk; and (iii) a set of strategies used to deal with the norms.

Figure 7 presents the following scenario: three cars arrive at an intersection at the
same time. The agents’ goals are: (i) The PINK autonomous car wants to proceed on
street 1 and will have to cross street 2 in order to do so; (ii) The YELLOW autonomous
car wants to proceed on street 2 and will have to cross street 1, and (iii) The RED auton-
omous car is on street 1 and wants to turn left onto street 2. However, there are no traffic
signs and the agents need to be able to make decisions to avoid collision among the cars,
taking into account the Brazilian traffic rules.

 10

As previously mentioned, articles 29 and 38 of the BTC deal with the right of way
rules at intersections. However, neither Norm1 nor Norm2 of article 29 can be applied in
this scenario. To solve this situation, the autonomous car agents need to decide whether
they will fulfill or violate Norm3 of article 29. This scenario considers that all autonomous
car agents fulfilled all the norms. The agents’ internal reasoning was built by using the
NBDI4JADE framework and it is described below as if the agents had fulfilled Norm3:

• The PINK autonomous car agent arrived at the intersection and stopped because
the YELLOW car is on its right;

• The YELLOW autonomous car agent arrived at the intersection and stopped be-
cause the RED car is on its right;

• The RED autonomous car agent arrived at the intersection and there is no car on
its right, therefore, the agent’s reasoning cannot use article 29. To decide what to
do, the agent needs to use article 38.

However, the Brazilian Transit Code (BTC) does not cover this situation, which cre-
ates an impasse. As such, we need to improve the agent’s reasoning process in order to
deal with this issue. Sometimes, the analysis of the BTC articles mentioned above will
not be enough to allow the agent to make a decision. Consequently, it is necessary to
consider different types of strategies that can be adopted by the agents to deal with the
norms. For instance, in the scenario presented in Table I: (i) the PINK autonomous car
agent adopts a pressured strategy, i.e., it fulfills the norms to achieve its individual goals,
considering only the punishments that it will suffer; (ii) the YELLOW autonomous car
agent adopts a rebellious strategy, i.e., it considers only their individual goals and violates
all of the environment’s norms, and (iii) the RED autonomous car agent adopts a social
strategy, i.e., it complies with the norms and then verifies if it is possible to fulfill some
of its individual goals. As a result, the PINK and RED autonomous car agents give the
preference to the YELLOW autonomous car agent, which in turn accepts it because its
rebellious strategy encourages this agent to go ahead.

6 Conclusion and Future Work

This paper presents an initial architecture of an artificial agent that is able to make deci-
sions by normative reasoning. The architecture is based on a NBDI architecture and
BDI4JADE framework and was applied by modeling the traffic intersection rules in Bra-
zil. The autonomous car agents make decisions about whether to continue or give the
right of way by examining and reasoning about the norms of the environment and the
presence, or absence, of any car near it.

As future work, this research aims to study how the concept of tests can be applied
to verify normative systems. When agents start their decision making process, their de-
cisions can lead to the violation of norms defined in the environment. An extension of
the proposed architecture can be created to test normative MASs, allowing the extension

 11

to check potential occurrences of such violations. Can these violations modify the agent’s
goals? Can we track and record the agent’s actions? Which types of tests should be developed to
check the potential occurrences of violations? What happens to an environment when an agent
violates a norm? This research intends to answer these questions in future work. Last but
not least, these tests will be applied in different usage scenarios, in order to evaluate
norms violation based on the analysis of agents’ behavior, thus understanding, to un-
derstand the fulfillment of the agent’s internal goals.

References

[1] F. L. y López, “Social power and norms: Impact on agent behavior,” Ph.D.
dissertation, University of Southampton, 6 2003.

[2] N. Oren, M. Luck, and T. J. Norman, “Argumentation for normative reasoning,” in
Proc. Symp. Behaviour Regulation in Multi-Agent Systems, 2008, pp. 55–60.

[3] V. T. da Silva, “From the specification to the implementation of norms: an automatic
approach to generate rules from norms to govern the behavior of agents,” Autonomous
Agents and Multi-Agent Systems, vol. 17, no. 1, pp. 113–155, 2008.

[4] I. Nunes, C. Lucena, and M. Luck, “Bdi4jade: a bdi layer on top of jade,” ProMAS
2011, pp. 88–103, 2011.

[5] B. F. d. S. Neto, V. T. da Silva, and C. J. P. de Lucena, “Nbdi: An architecture for goal-
oriented normative agents.” in ICAART (1), 2011, pp. 116–125.

[6] A. S. Rao, M. P. Georgeff et al., “Bdi agents: From theory to practice.” In ICMAS, vol.
95, 1995, pp. 312–319.

[7] A. Ahmad, “An agent-based framework incorporting rules, norms and emotions
(oprnd-e),” Ph.D. dissertation, PhD Thesis, Universiti Tenaga Nasional, 2012.

[8] M. Alberti, A. Gomes, R. Gonçalves, J. Leite, and M. Slota, “Normative systems
represented as hybrid knowledge bases,” Computational Logic in Multi-Agent Systems,
pp. 330–346, 2011.

[9] B. F. dos Santos Neto, V. T. Da Silva, and C. J. P. de Lucena, “Using jason to develop
normative agents,” in Brazilian Symposium on Artificial Intelligence. Springer, 2010, pp.
143–152.

[10] M. Luck, M. d’Inverno et al., “Constraining autonomy through norms,” in
Proceedings of the first international joint conference on Autonomous agents and
multiagent systems: part 2. ACM, 2002, pp. 674–681.

[11] M. A. Mahmoud, M. S. Ahmad, M. Z. Mohd Yusoff, and A. Mustapha, “A review of
norms and normative multiagent systems,” The Scientific World Journal, vol. 2014, 2014.

[12] P. Caire, “A normative multi-agent systems approach to the use of conviviality for
digital cities,” Lecture Notes in Computer Science, vol. 4870, pp. 245–260, 2008.

[13] G. Boella and L. W. van der Torre, “Regulative and constitutive norms in normative
multiagent systems.” KR, vol. 4, pp. 255–265, 2004.

 12

[14] R. Rubino, A. Omicini, and E. Denti, “Computational institutions for modelling
norm-regulated mas: An approach based on coordination artifacts,” In AAMAS
Workshops. Springer, 2005, pp. 127–141.

[15] G. Boella and L. van der Torre, “An architecture of a normative system: counts-as
conditionals, obligations and permissions,” in Proceedings of the fifth international joint
conference on Autonomous agents and multiagent systems. ACM, 2006, pp. 229–231.

[16] G. Boella and L. van Der Torre, “Substantive and procedural norms in normative
multiagent systems,” Journal of Applied Logic, vol. 6, no. 2, pp. 152–171, 2008.

[17] T. Balke, C. da Costa Pereira, F. Dignum, E. Lorini, A. Rotolo, W. Vasconcelos, and
S. Villata, “Norms in mas: definitions and related concepts,” in Dagstuhl Follow-Ups,
vol. 4. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

[18] T. Ågotnes, W. van der Hoek, and M. Wooldridge, “Robust normative systems,” in
Proceedings of the 7th international joint conference on Autonomous agents and
multiagent systems-Volume 2. International Foundation for Autonomous Agents and
Multiagent Systems, 2008, pp. 747–754.

[19] O. Kafalı, N. Ajmeri, and M. P. Singh, “Kont: Computing tradeoffs in normative
multiagent systems,” in Proceedings of the 31st Conference on Artificial Intelligence
(AAAI), To Appear, 2017.

[20] F. L. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent systems with
JADE. John Wiley & Sons, 2007, vol. 7.

[21] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming multi-agent systems
in AgentSpeak using Jason. John Wiley & Sons, 2007, vol. 8.

[22] N. Howden, R. Rönnquist, A. Hodgson, and A. Lucas, “Jack intelligent agents-
summary of an agent infrastructure,” in 5th International conference on autonomous
agents, 2001.

[23] L. Braubach, W. Lamersdorf, and A. Pokahr, “Jadex: Implementing a bdi-
infrastructure for jade agents,” 2003.

[24] 3APL - An Abstract Agent Programming Language, 2017 (accessed November 16,
2017), http://www.cs.uu.nl/3apl/.

[25] A. S. Rao,“Agentspeak(l): Bdi agents speak out in a logical computable language,”
in European Workshop on Modelling Autonomous Agents in a Multi-Agent World.
Springer, 1996, pp. 42–55.

[26] M. Winikoff, “JackTM intelligent agents: an industrial strength platform,” Multi-
Agent Programming, pp. 175–193, 2005.

[27] M. Dastani, M. B. van Riemsdijk, F. Dignum, and J.-J. C. Meyer, “A programming
language for cognitive agents goal directed 3apl,” in International Workshop on
Programming Multi-Agent Systems. Springer, 2003, pp. 111–130.

[28] J. Broersen, M. Dastani, and L. Van Der Torre, “Resolving conflicts between beliefs,
obligations, intentions, and desires,” in ECSQARU, vol. 1. Springer, 2001, pp. 568–579.

 13

[29] G. Governatori and A. Rotolo, “Bio logical agents: Norms, beliefs, intentions in
defeasible logic,” Autonomous Agents and Multi-Agent Systems, vol. 17, no. 1, pp. 36–
69, 2008.

[30] A. Ahmad, M. Ahmed, M. Z. M. Yusof, M. S. Ahmad, and A. Mustapha, “Resolving
conflicts between personal and normative goals in normative agent systems,” Journal of
IT in Asia, vol. 4, no. 1, pp. 1–12, 2016.

[31] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, P. Torroni, and G. Sartor, “Mapping
deontic operators to abductive expectations,” Computational & Mathematical
Organization Theory, vol. 12, no. 2-3, pp. 205–225, 2006.

[32] M. E. Fayad, D. C. Schmidt, and R. E. Johnson, Building application frameworks:
object-oriented foundations of framework design. John Wiley & Sons, Inc., 1999.

[33] M. E. Markiewicz and C. J. de Lucena, “Object oriented framework development,”
Crossroads, vol. 7, no. 4, pp. 3–9, 2001.

