

PUC	

ISSN 0103-9741

Monografias em Ciência da Computação
No.07/2018

An Agent based Software Framework for
Creating Domain Conversational Agents

Pedro Elkind Velmovitsky
Ruy Luiz Milidiú

Marx Viana
Carlos José Pereira de Lucena

Catarina Chagas
Stevens Rehen

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22453-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 07/2018 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena July, 2018

iBot: An Agent based Software Framework for Creating
Domain Conversational Agents

Pedro Elkind Velmovitsky1 Ruy Luiz Milidiú1 Marx Viana1
Carlos José Pereira de Lucena1 Catarina Chagas2 Stevens Rehen2,3

1Laboratory of Software Engineering (LES), Pontifical Catholic University (PUC-Rio), Rio de
Janeiro, Brazil

2Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brazil
3Instituto de Ciências Biomédicas (ICB), Universidade Federal do Rio de Janeiro (UFRJ), Rio

de Janeiro, Brazil

{pvelmovitsky, mleles, lucena, milidiu}@inf.puc-rio.br

Abstract. Conversational Agents (chatbots) are computer programs that interact with
users using natural language. Since its inception, the technology has advanced greatly
and cloud based platforms from big companies allow developers to create intelligent
and efficient chatbots. However, there are not many development approaches to the
main modules of a chatbot that are flexible enough to allow the creation of different
applications for each domain, while maintaining a robust dialogue control in the appli-
cation. A promising approach for such a problem is the use of multiagent systems to
distribute and perform the tasks performed by the chatbot. This paper introduces a
general and flexible framework based on multiagent systems, which will facilitate
building chatbots in any domain chosen by the developer, with dialogue control in the
application. We conducted a research to outline relevant work and gaps for building a
new architecture, which we based our software framework. We show how our ap-
proach allows creating applications based on the information state approach to dia-
logue management in order to increase flexibility and reuse. Our analysis suggests that
the tool can be used to build different domains chatbots that allow a robust control of
the information in the dialogue. In addition, the use of multiagent systems and the in-
formation state approach provided modularity and flexibility to the developed sys-
tems.

Keywords: Conversational Agents; Chatbots; Multiagent Systems; Dialogue Manager;
Information State.

Resumo. Chatbots são programas de computador que interagem com usuários utili-
zando linguagem natural. Desde sua origem, a tecnologia avançou significantemente e
aplicações baseadas na nuvem de grandes empresas permitiram que desenvolvedores
criassem chatbots inteligentes e eficientes. No entanto, não há muitas abordagens de
desenvolvimento aos principais módulos de um chatbot que são flexíveis o suficiente
para permitir a criação de chatbots diferentes para cada domínio, mantendo um robus-
to controle de diálogo na aplicação. Existem trabalhos que tentam desenvolver uma
abordagem mais flexível, cada um com suas vantagens e desvantagens. Uma das van-
tagens mais notáveis é o uso de sistemas multiagentes para distribuir e realizar tarefas
feitas por chatbots. Nesse contexto, este trabalho propõe um framework geral e flexível
baseado em sistemas multiagentes para construir chatbots em um domínio escolhido
pelo desenvolvedor, com controle de diálogo na aplicação. Esta solução usa uma adap-
tação da abordagem de estado da informação, e agentes de software, para gestão do
diálogo.

 ii

Palavras-chave: Chatbots; Sistemas Multiagentes; Gestão de Diálogo; Estado da Infor-
mação; Agentes Conversacionais.

 iii

In charge of publications
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3114-1516 Fax: +55 21 3114-1530
E-mail: bib-di@inf.puc-rio.br

 iv

 Table of Contents

1 Introduction 1	
2 Multi-Agent Systems 2	

2.1 Software Agents 2	
2.2 The BDI Model 2	

3 Conversational Agents 2	
3.1 History and Early Chatbots 2	
3.2 Current Chatbot Technologies 3	
3.3 Main Components of Conversational Agents 4	
3.4 Dialogue Management and the Information State Approach 4	

4 Related Work 6
5 Proposed Solution 7
6 Proof of Concept 8
7 Conclusion and Future Work 10

 References 11

 1

1 Introduction
A conversational agent, or chatbot, can be defined as a computer program that interacts
with users using natural language (WOUDENBERG, 2014) (GATTI de BAYSER &
CAVALIN, 2017). Nowadays, the technology has become very popular, due to the suc-
cess of messaging apps and advances in Artificial Intelligence (APPEL, 2018). The con-
cept of conversational agent can be first attributed to Alan Turing, who wrote his semi-
nal work about machine intelligence and thinking in 1950 (TURING, 1950). In fact, it
was a chatbot program, called ELIZA, that first passed a version of the Turing Test in
1966 by simulating the behavior of a Rogerian psychologist. With advances in Natural
Language Understanding (NLU) and Machine Learning (ML) techniques chatbot tech-
nology has evolved since those days, as evidenced by a surge in the development of in-
creasingly intelligent software in research and in business.

However, even though there have been great advancements in NLU, as evidences by
cloud based solutions such as DialogFlow (“Dialogflow – Basics”, 2018) and IBM Wat-
son (WHITE, 2018), applications are still far from perfect, as most of them generate good
results in specific domains; a general model for interpreting each and every utterance,
independent of context, is still unattainable. Therefore, to deliver the best experience for
the user, developers must consider building their chatbots using an efficient architec-
ture that ensures the best solution for their domains. With this, considering the com-
plexity and interaction of the different components involved in building chatbots, a
promising approach is by using multiagent systems (MASs) in their development, espe-
cially in performing different tasks.

While there is a lot of research integrating dialogue systems and chatbot architecture
with multiagent systems, most of these architectures usually deal with one specific do-
main, or few correlated domains. Such works try to increase the domains handled by
distributing tasks to specific agents. However, an emerging challenge comes consider-
ing these works are not flexible enough to allow for the development of chatbots in dif-
ferent domains, or do not provide a robust dialogue control throughout the application.

In response to this challenge, we present an agent based Software Framework for
Creating Domain Conversational Agents (iBot). It is a general and flexible framework
based on multiagent systems, which will facilitate building chatbots in any domain cho-
sen by the developer, with dialogue control in the application. This approach aims at
providing new resources for the developer creating domain conversational agents. As
such, more human characteristics can be considered in order to improve the delibera-
tion process. By using these framework, it is possible to build chatbots that: (i) distribute
specific tasks to software agents, increasing the system’s intelligence and (ii) use the in-
formation state approach to dialogue management, thus allowing modularity, reuse
and dialogue control.

The remainder of this paper is organized as follows: Section II provides background
information about multiagent systems. Section III presents information about conversa-
tional agents’ history and main components and Section IV describes the related work.
Section V presents the proposed framework solution and Section VI presents the im-
plementation of a proof of concept. Finally, Section VII presents conclusions and future
work.

 2

2 Multi-Agent Systems

2.1 Software Agents
Software agents are reactive systems that exhibit some degree of autonomy in achieving
a goal: an agent is capable of independent action in unpredictable and changing envi-
ronments, without the need of direct human intervention architecture (BORDINI,
HUBNER and WOOLRIDGE, 2007). The system is called an "agent" because it is action
oriented: an agent should actively pursue its goals and tasks, independently reasoning
about the best way to do so. An agent is not usually found alone in a system; in fact, in-
dividual agents interact with each other, collaborating to perform complex tasks and
achieve their respective objectives (BORDINI, HUBNER and WOOLRIDGE, 2007).

Among the main characteristics of a software agent, we can cite (BORDINI,
HUBNER and WOOLRIDGE, 2007):

Autonomy: agents must act without direct human intervention, according to its rea-
soning;

Reactivity: agents perceive their environment and respond to changes in it;

Pro-activeness: agents should be opportunist and goal oriented, looking to execute
actions when applicable to their goals;

Social: agents are capable of interacting with other agents, when appropriate, in or-
der to achieve their goals.

2.2 The BDI Model
There are many ways to model the reasoning and behavior of agents. The most popular
and researched approach is the BDI (Belief Desire Intention) model. To talk about this
model, according to (BORDINI, HUBNER and WOOLRIDGE, 2007), we need to address
the idea that we can talk about computer programs as if agents had a “mental state”.
Thus, when we talk about a Belief Desire Intention system, we are talking about com-
puter programs with computational analogues of beliefs, desires and intentions.

Beliefs represent the agent’s information about the environment. This information,
however, is something the agent believes in but it may not be necessarily true. Desires
represent the possible states of affairs that the agent might like to accomplish. That does
not mean, however, the agent will act upon it – it is a potential influencer of the agent’s
actions. Intentions represent the state of affairs that the agent has decided to act upon.
In other words, intentions can be considered as a selected option between the potential
set of options/desires that the agent has decided to pursue.

These characteristics are the key data structures of the BDI model. The decision mak-
ing approach used by the agent, therefore, is practical reasoning: the agent weighs con-
flicting information for and against the available options, according to its beliefs and
desires. The result of this deliberation is the adoption of intentions, which in turn will
lead to the execution of actions.

3 Conversational Agents

3.1 History and Early Chatbots
In 1950, Alan Turing published his seminal work about machine intelligence and think-
ing (TURING, 1950). To answer the question of whether machines can think, Turing
proposed a test which he called the "imitation game" — nowadays known as the Tu-

 3

ring Test — in which an interrogator asked questions to a human and to a machine,
aiming to identify which of the two is the machine. If the interrogator is unable to do
so, it is established that the machine can think. By proposing a machine that can dia-
logue with humans in natural language, Turing was creating the very concept of a
chatbot.

In 1966, researchers at the MIT created ELIZA, the first chatbot to pass a version of
the Turing Test. ELIZA (WEIZENBAUM, 1976) (WOUDENBERG, 2014) simulated a
Rogerian psychologist whose goal was to make people reflect about their current situa-
tion by using techniques to keep the patient talking. Patients could not tell that they
were talking to a program, to the surprise of ELIZA's creator, Joseph Weizenbaum.

In 1972, and inspired by ELIZA, the psychiatrist Kenneth Colby created PARRY
(SHIEBER, 1994) (WOUDENBERG, 2014). Although this chatbot works similarly to
ELIZA, using pattern matching techniques to produce a suitable output, PARRY had
the goal of simulating a paranoid schizophrenic. Implementing a crude model of behav-
ior and a conversational strategy, it was more advanced than its predecessor. Colby de-
scribed it as "ELIZA with an attitude". PARRY also passed a variation of the Turing
Test, in which psychiatrists were given transcripts of dialogues with PARRY and tran-
scripts with actual paranoid schizophrenic patients, and were asked to decide which
one was simulated. The psychiatrists did no better than random guessing in this test
(SHIEBER, 1994) (WOUDENBERG, 2014).

Another noteworthy chatbot is ALICE, a chatbot created in 1995 by Dr. Richard Wal-
lace. It has won the Loebner Contest — an annual competition to identify the most
"human" computer and to award $100.000,00 for the first program that passes an unre-
stricted Turing Test — in 2000, 2001 and 2004 (WOUDENBERG, 2014) .

All these chatbots work similarly, using simple pattern matching and substitution
techniques to process the input and produce an appropriate output. Some examples are
shown in Table I (WOUDENBERG, 2014).

INPUT CHATBOT

* you are (depressed|sad) I AM SORRY TO HEAR YOU ARE \1

* all * IN WHAT WAY

* always * CAN YOU THINK OF A SPECIFIC
EXAMPLE

Table 1. Pattern Matching/Substitution Examples

3.2 Current Chatbot Technologies
Nowadays, chatbot technology has become very popular due to its integration in
smartphones and smart devices (WEINBERGER, 2017). Examples of modern chatbots
are Siri, embedded in Apple's iOS-based devices; Google Now, in Android devices;
Amazon's Echo and Alexa; and Microsoft Cortana (GATTI de BAYSER & CAVALIN,
2017). These bots take advantage of advanced natural language understanding and
machine learning techniques to generate responses based on analysis of web search
results. Other modern chatbots use Statistical Machine Translation techniques to "trans-
late" input into output responses.

Big players in the technology market, such as Google, Microsoft and IBM, have
launched cloud based platforms, such as Google Cloud, Microsoft Azure and IBM
Cloud, respectively, allowing access for developers to their services and solutions. Sev-

 4

eral of these deal with machine learning training problems, including natural language
processing such as DialogFlow, Google's platform for processing natural language ut-
terances and developing intelligent conversational agents.

Some applications, such as Facebook, Slack, Skype, Telegram, among others, allow
chatbots to be hosted and deployed. Facebook Messenger, for example, had 34.000 de-
velopers on its platform and was hosting 30.000 bots in the end of 2016 (CAHN, 2017).

This allows chatbots developers to have great efficacy and efficiency in developing
and deploying intelligent chatbot applications for specific domains and releasing them
in different platforms.

3.3 Main Components of Conversational Agents
Building a chatbot requires several components, some of them specific to the domain
and tasks being handled. However, chatbots systems usually have common modules.
Even though there are different approaches to how they should be developed and im-
plemented, the core concepts remain the same. These are listed below.

• Natural Language Understanding: it is responsible to receive the text and to
output a semantic representation of its content, that can be read and understood
by the Dialogue Manager component. If the utterance is spoken, a Speech
Recognition module will identify the spoken words and convert them into text
to the NLU.

• Dialogue Manager: it is responsible to control the state and flow of the conver-
sation, storing discourse context and managing the different components in the
architecture.

• Task Manager: it is responsible to actually perform the necessary tasks request-
ed by the user to the bot.

• Natural Language Generation: it is responsible to receive a meaning representa-
tion of what to say from the Dialogue Manager and conveys this in natural lan-
guage to the user. If the dialogue system is implemented with spoken dialogue
as output, a Text-To-Speech component is necessary to take the generated text
and transform it into synthetic speech.

3.4 Dialogue Management and the Information State Approach
The Dialogue Manager is the central component of a chatbot, with many different
methods being developed to implement it, such as finite state, frame based, plan based
or agent based systems. Each of these approaches are better suited for specific types of
dialogue. For example, finite-state based systems are ideal for simple and non flexible
dialogues where the system has the initiative, such as filling out forms, while plan
based systems are more suited to mixed initiative dialogue.

The information state approach (BUCKLEY and BENZMÜLLER, 2005) proposes a
unifying view of dialogue management, in which independent dialogue theories can be
implemented and evaluated in a reusable foundation. Similar names for information
state are "conversational score", "discourse context" or "mental state".

The term information state is used to define information about the conversation that
is stored by the system. More specifically, (LARSSON & TRAUM, 2003) defines the in-
formation state of a dialogue as the information necessary to distinguish it from other
dialogues, such as questions and answers, beliefs of the user, beliefs of the system, the
last utterance and who performed it, among others.

As the dialogue progresses, the information state must be updated to reflect the con-
sequences/effects that actions of the participants have on the dialogue context. In order

 5

to perform these updates, update rules are implemented to be fired in reaction to ob-
served dialogue moves. These rules are specified by precondition rules and effects: pre-
conditions define which information state is active at a time, and effect rules indicate the
changes that must occur to achieve the new information state. Update rules may also
have side conditions, allowing external functions to be called within the rule to calculate
the transition.

The authors in (BUCKLEY and BENZMÜLLER, 2005) and (BUCKLEY and
BENZMÜLLER, 2006) define a platform to implement information state based dialogue
management using software agents, called ADMP, Agent based Dialogue Management
Platform. Figure 1 provides the architecture of this platform. Information State is the
central data structure of the system. It is made up of slots, which store values. These
slots are read by software agents, called Update Rule Agents (URA). Each of these
agents are associated with an update rule, which have in its preconditions a subset of
the set of slots in the information state. When the URA observes that its preconditions
hold, it computes the information state update encoded in the rule and writes the result
to the update blackboard.

Update Agent (UA) surveys the update blackboard. After a timeout, or some other
stimulus, it chooses the heuristically preferred IS Update, executes it, and resets the sys-
tem for a new turn. Figure 2 shows the execution flow of an URA.

Figure 1. Architecture of ADMP

 6

Figure 2. Execution flow of URA

4 Related Work
(CAHN, 2017) provides a literature overview of the basic concepts involved in building
dialogue systems, while providing a case study of IBM Watson chatbot functionalities.

(WOUDENBERG, 2014) also reviews chatbot literature and develops a statistic tutor
that uses the information state approach to dialogue management, coupled with pattern
matching and substitution techniques. The authors in (BUCKLEY and BENZMÜLLER,
2005) and (BUCKLEY and BENZMÜLLER, 2006) define and expand upon ADMP, the
agent based information state approach to dialogue management (see Section II D).
These authors implement this platform in DIALOG, a system whose goal is to provide
natural tutorial dialogue between a student and a mathematical assistance system.

The authors in (HO, NGUYEN & WOBCKE, 2006) implement a distributed architec-
ture with multiagent systems to create a Smart Personal Assistant (SPA) to help users
with e-mail and calendar tasks. In this model, a special Coordinator BDI agent mediates
communication between the user and agents responsible for handling e-mail and calen-
dar tasks. This agent is plan based and is also responsible for dialogue management in
the application — it has plans, for example, to identify the conversational act and the
user’s intent in the conversation. This architecture is very interesting since it provides
dialogue control through centralization in the Coordinator and distributes tasks to
agents. However, the plan based agent is complex, and adding new domains, agents or
new dialogue theories may be too complex. The information state approach could, in
this case, provide for a solution that is more modular and flexible. In contrast to the cen-
tralization present in (HO, NGUYEN & WOBCKE, 2006), the authors in (LEE, LIN and
WANG, 1999) propose a decentralized architecture in which each of the task agents is
responsible for a part of the dialogue. A Facilitator module switches between agents ac-
cording to the domain being spoken by the user, and each agent will then proceed with
the dialogue, maintaining a record of its context. While this work avoids the complexi-
ties of implementing a centralized Coordinator, by distributing the dialogue it does not
account for a robust dialogue control in the application.

 7

5 Proposed Solution
Some approaches, such as (LEE, LIN and WANG, 1999) and (HO, NGUYEN &
WOBCKE, 2006), show that distributing complex tasks in an agent society, which can
autonomously realize specific tasks, can increase modularity and the overall power of
the system by allowing more domains to be handled.

Moreover, some control in the dialogue is desirable, guaranteeing quality in the in-
formation and robustness of behavior. Therefore, we propose a software framework for
building chatbots. This framework allows the creation of intelligent conversational
agents that are able to perform complex tasks and maintain dialogue control while be-
ing flexible enough to allow the development of software in different domains.

Figure 3 presents the iBot framework. The boxes with dotted lines represent the hot-
spots; these are the components extended to implement the proof of concept, described
in Section V. The other boxes contain the frozen spots. On the left side, the user interacts
with the application through a GUI or a User Interface Agent. The architecture also ac-
counts for Natural Language Interpreter and Generator components, to process the user's
input according to the goals of the system and generate output. The Dialogue Manage-
ment component is based on the information state approach implemented in ADMP. An
optional Persona module has been added to this component. This is because, in some
chatbots, developers may want to establish a persona in their program. For instance,
(WALLIS, 2005) implements “Eugene the Cuttlefish”, an embodied conversational agent
that is vain and likes to be paid compliments about his colors; he may blush or get an-
gry, and even withdraw for the conversation. In order to implement personalities like
Eugene's, the Persona component can make alterations to the beliefs of the update agent
in ADMP, altering its behavior. The Task Agent Society represents a multiagent system
with software agents capable of performing the tasks in the domain. To implement a
tour information service, for example, agents responsible for obtaining information
about hotels, buses or the weather would be part of this society. They would also be
able to access internal or external resources in order to accomplish their goals.

In a dialogue using this architecture, the user communicates with the GUI. The user
input is passed to the Dialogue Management component, updating the information state.
According to update rules, this component calls the Natural Language Interpretater mod-
ule, which processes the input and extracts the relevant information from it, updating
the relevant slots in the information state. These updates trigger the firing of new up-
date rules, which may lead to other modules or components being called in turn. For
example, if a slot in the information state stores the user's intention, and this is recog-
nized as being "Obtain Bus Information", the update rule related to this slot will fire,
and the necessary tasks accomplished. Those tasks may be to call the agent in the Task
Agent Society responsible for obtaining information about buses. Once this information
is returned, the update rule agent will place it on the blackboard, and the update agent
will select it as the next dialogue move to be performed. The Natural Language Generator,
then, generates a natural language output to provide the information that the user re-
quested.

ADMP was chosen for dialogue management because it is based on the information
state approach, thus allowing the implementation and evaluation of different theories of
dialogue. Also, it does not constraint types and values in the slots of the information
state, leaving the decision of what to model in the dialogue, i.e., which information will
be important in the context of the domain, to the developer. This is particularly im-
portant considering that the proposed architecture needs to be flexible enough to allow
for the development of applications in different domains. Each of these domains, in
turn, may need different information to be modelled in the information state, and
ADMP provides this flexibility. Finally, ADMP uses multiagent technology to imple-
ment the information state approach. Since the architecture uses software agents to in-

 8

crease modularity, in order to better perform complex tasks, the use of a multi-agent
system makes for a modular and relatively simple Dialogue Manager — in contrast to
the plan-based Coordinator in (LEE, LIN and WANG, 1999), for example — while also
providing an interesting complement and a nice fit, such as adapting a persona to the
update agent.

Figure 3. iBot Framework

6 Proof of Concept
This work has been developed jointly with the Laboratory of Software Engineering, at
PUC-Rio (LES) (“Les-Home”, 2018), and IDOR (“IDOR”, 2018), a non profit organiza-
tion whose goal is to promote technological advancement in the healthcare area. One of
these partnerships proposes the creation of a mobile app to stimulate scientific divulga-
tion. Most specifically, the app has three main stakeholders: listeners, researchers and
institutions/companies. Researchers and companies use the app to find each other and
organize scientific events — for example, a university may wish to create an event about
astronomy, while astronomers may want to share their knowledge with the public; so,
they use the app to connect and create the event. Listeners, on the other hand, attend the
events that they are interested in. The idea of the app came from the success of world-
wide events such as Pint of Science, and research showed that the Brazilian people is
interested in science — 61% of the interviewed declared being interested by the subject,
a percentage larger than the one from the European Union — while they lack
knowledge on the subject — 87% did not know the name of a Brazilian scientific institu-
tion, while 94% does not know the name of a Brazilian scientist (“Unicamp”, 2017).

Chatbots can greatly improve the user experience of an app, including innovative
ways to interact with users and solve their needs (GATTI de BAYSER & CAVALIN,
2017). Therefore, conversational agents for the proposed app have been developed as
proof of concept for the framework. One of these is a login chatbot. It allows users to log
in the app, storing their name and email. If the user is a company, then it should ask for
the Employer Identification Number. If the user is a person, then it should ask for more
information, such as Social Security and link to the person’s CV, if the person is a re-
searcher. Another proof of concept chatbot is a clarification chatbot for the subject of the
event: if the user wants to know more about the subject of an event, he can ask the chat-
bot to explain it. The chatbot can give a more detailed and longer explanation if the user
is experienced in the subject, or a simpler explanation, with analogies, to beginner users
(the user profile can be inferred through the use of the app). The last proof of concept
chatbot developed is an event chatbot, which allows users to research events in specific

 9

dates or about a specific subject and confirm presence in them. Table II shows an ex-
cerpt from the event chatbot dialogue.

Considering that these chatbots are to be integrated in a mobile app, the chatbots
were developed for iOS, using Apple’s IDE XCode (“Xcode - Apple Developer”, 2018),
and the programming language Swift 3.3. The GUI is a screen in an Apple mobile de-
vice, such as an iPhone. The chatbots accepts written and speech input and output, us-
ing native iOS development classes to generate speech. To interpret the user’s natural
language utterances, Google Cloud’s DialogFlow platform was used (“DialogFlow –
Basics”,2018). DialogFlow allows the training of Machine Learning models according to
samples of the user’s utterances. It also provides an iOS SDK, where the developer
makes a request to DialogFlow’s API, which returns the user’s intentions and parame-
ters embedded in the utterance.

We extend ADMP in the dialogue management component by defining the Infor-
mation State for the login chatbot with the following fields: (i) non-domain related: Ut-
terance_List, DFResponse, Intent_Lis, Next_Utterancet (ii) domain-related: name, email, id,
interests, cvLink, user_type, person_type. For the clarification chatbot, the non-domain re-
lated fields are the same, and the only domain-related field is subject, storing the subject
to be explained, while the event chatbot – which also has the same non-domain related
fields - has the domain-related field event_list to store the events according to the user’s
query.

The Utterance_List field stores the list of utterances spoken in the dialogue, and who
spoke it. The DFResponse field stores the current response from DialogFlow, Intent_List
stores the list of intents expressed in the dialogue by the user and Next_Utterance stores
the next utterance by the system in the dialogue. The rest of the fields are domain relat-
ed: name stores the username, email stores the user’s email, id stores the user’s Social Se-
curity or Employer Identification Number (depending on whether the user is a person
or a company), interests store the user’s interests, cvLink stores the link to the user’s CV,
user_type stores if the user is a person or a company and lastly, person_type stores if the
user is a researcher, listener, or both.

SPEAKER DIALOGUE

Chatbot Hello. I am a bot, here to help you to find
events and confirm presence in events. Please,
state the parameters of the event.

User Find events about astronomy.

Chatbot Start Date: 2018-07-12 End Date: 2018-
07-20

Start Date: : 2018-09-10 End Date: 2018-
10-03

Please state the event you would like to attend

User The first.

Chatbot You confirmed presence on the event starting
2018-07-12. Thank you!

Table 2. Event Chatbot Dialogue Excerpt

 10

The URA, defined in ADMP to monitor slots and trigger update rules, are created ac-
cording to what intent they monitor in the Intent_List slot. For example, in the login
chatbot a NameAgent monitors if the intent is provideName, and an EmailAgent monitors
if the intent is provideEmail. Since the login chatbot does not need to perform any tasks
outside collecting and storing user data, it does not use any other agent than the ones
present in the ADMP architecture. For the clarification chatbot, the only URA is the Sub-
jectAgent which monitors if the intent is explainSubject. This chatbot also has a TaskAgent
which gets the subject’s explanation in a database. The event chatbot has two URAs,
FindEventAgent to find all the events which satisfy the user’s query, and SelectE-
ventAgent to confirm presence in an event. It also has a TaskAgent to get the events from
a database. The agents where implemented using the iMobile framework for developing
multiagent systems in iOS (SOUZA, MIRANDA and LUCENA, 2017). The complete di-
alogues of the login chatbot1, the clarification chatbot2 and the event chatbot3 can be
seen in the respective YouTube links.

7 Conclusion and Future Work
This paper presented the iBot framework, a framework for developing chatbots in dif-
ferent domains while maintaining a robust control of the information in the dialogue.
This framework does not make any assumptions about which platform or programming
language the developer must use, but rather provides a blueprint for developers to cre-
ate chatbots in different domains, while maintaining a level of dialogue control in the
application. Login, clarification and event chatbots have been implemented with the
framework, to be integrated in the mobile app being developed jointly between LES and
IDOR.

 Future work will revolve around the improvement of the developed chatbots.
Following the Chatbot Best Practices from IBM (CUMMINS, 2018), the conversational
agents will be tested with users, since “supporting natural user interactions is the defin-
ing characteristic of the system”. Also, they will be continuously monitored and tuned
according to user feedback. Moreover, in order to further validate the solution, a quali-
tative evaluation of the framework will be performed. In this evaluation, users will be
presented with theoretical use cases, where they will answer which agents and infor-
mation states they would implement and reuse.

1 https://youtu.be/BFpEnit6VOU
2 https://youtu.be/m46oCJTqHLs
3 https://youtu.be/VLIlo3FneIE

 11

References

1. APPEL, Ana Paula et al. Combining Textual Content and Structure to Im-
prove Dialog Similarity. arXiv preprint arXiv:1802.07117, 2018. 

2. BORDINI, Rafael H.; HÜBNER, Jomi Fred; WOOLDRIDGE, Michael. Pro-
gramming multi-agent systems in AgentSpeak using Jason. John Wiley &
Sons, 2007.

3. BUCKLEY, Mark; BENZMÜLLER, Christoph. An Agent-based Platform for
Dialogue Management. Proceedings of the Tenth ESSLLI Student Session,
Edinburgh, Scotland, p. 33-45, 2005. 

4. BUCKLEY, Mark; BENZMÜLLER, Christoph. An agent-based architecture
for dialogue systems. In: International Andrei Ershov Memorial Conference
on Perspectives of System Informatics. Springer, Berlin, Heidelberg, 2006. p.
135-147.

5. CAHN, Jack. CHATBOT: Architecture, design, and development. Universi-
ty of Pennsylvania School of Engineering and Applied Science Department of
Computer and Information Science, 2017.

6. CAVALIN, P.; GATTI DE BAYSER, M. (2017) Tutorial on Architectures and
Algorithms for Conversational Agents.16th International Conference on Au-
tonomous Agents and Multi-agent Systems (AAMAS 2017).

7. CUMMINS, H. (2018). Chatbot Best Practices - IBM Cloud Blog. Retrieved
April 30, 2018, from
https://www.ibm.com/blogs/bluemix/2018/01/chatbot-best- practices

8. Dialogflow - Basics. (2018). Retrieved April 27, 2018, from:
https://dialogflow.com/docs/getting-started/basics 

9. Instituto D'Or de Pesquisa e Ensino | IDOR. (2018). Retrieved April 11,
2018, from: http://www.idor.org

10. Les - Home. (2018). Retrieved April 11, 2018, from: http://www.les.inf.puc-
rio.br/ LEVINSON, S. (2016). Chapter 9: Speech Acts. In HUANG, Y. Oxford
Handbook of Pragmatics. 

11. LIN, Bor-shen; WANG, Hsin-min; LEE, Lin-shan. A distributed architecture
for cooperative spoken dialogue agents with coherent dialogue state and
history. 1999.

 12

12. Pesquisa revela que brasileiro gosta de ciência, mas sabe pouco sobre ela |
Unicamp. (2018). Retrieved April 11, 2018, from:
https://www.unicamp.br/unicamp/ju/noticias/2017/09/25/pesquisa-
revela-que- brasileiro-gosta-de-ciencia-mas-sabe-pouco-sobre-ela

13. SHIEBER, Stuart M. Lessons from a restricted Turing test. arXiv preprint
cmp- lg/9404002, 1994.

14. E SOUZA, Pedro Augusto da Silva; MIRANDA, Andrew Diniz da Costa; DE
LUCENA, Carlos José Pereira. iMobile: A Framework to Implement Softwa-
re Agents for the iOS Platform. ICSEA 2017, p. 125, 2017. 

15. TRAUM, David R.; LARSSON, Staffan. The information state approach to
dialogue management. In: Current and new directions in discourse and dia-
logue. Springer, Dordrecht, 2003. p. 325-353. 

16. TURING, Alan M. Computing machinery and intelligence. In: Parsing the
Turing Test. Springer, Dordrecht, 2009. p. 23-65.

17. WALLIS, Peter. Believable conversational agents: Introducing the intention
map. In: International conference on autonomous agents and multiagent sys-
tems. 2005. p. 17-22. 

18. WEINBERGER, M. Why Amazon's Echo is totally dominating — and what
Google, Microsoft, and Apple have to do to catch up. (2017). Retrieved Feb-
ruary 28, 2018, from https://finance.yahoo.com/news/why-amazons-echo-
totally- dominating-133000032.html

19. WEIZENBAUM, Joseph. Computer power and human reason: From judg-
ment to calculation. 1976. 

20. WHITE, C. (2018). The Chatbot Never Sleeps: How We Created a Chatbot
Integration with Mendix That Enables 24/7 Customer Service - Watson.
(2017). Retrieved April 30, 2018, from:
https://www.ibm.com/blogs/watson/2017/08/chatbot-integration-with-
watson- and-mendix-enables-24x7-customer-service/

21. WOBCKE, Wayne et al. A BDI agent architecture for dialogue modelling
and coordination in a smart personal assistant. In: Proceedings of the 2005
NICTA- HCSNet Multimodal User Interaction Workshop-Volume 57. Aus-
tralian Computer Society, Inc., 2006. p. 61-66.

22. WOUDENBERG, Aswin van. A Chatbot Dialogue Manager-Chatbots and
Dialogue Systems: A Hybrid Approach. 2014. Dissertação de Mestrado.
Open Universiteit Nederland. 

23. Xcode - Apple Developer. (2018). Retrieved April 30, 2018, from:
https://developer.apple.com/xcode

