

PUC

ISSN 0103-9741

Monografias em Ciência da Computação

n° 09/18

CM-OPL: Configuration Management Ontology
Pattern Language Specification – Revised Edition

Ana Carolina Brito de Almeida

Maria Luiza Machado Campos

Fernanda Baião

Daniel Schwabe

Sérgio Lifschitz

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 09/18 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena December, 2018

CM-OPL: Configuration Management Ontology Pattern
Language Specification – Revised Edition

Ana Carolina Brito de Almeida1, Maria Luiza Machado Campos2
Fernanda Baião, Daniel Schwabe, Sérgio Lifschitz

1Department of Computer Science – State University of Rio de Janeiro (UERJ)
2Department of Computer Science - Federal University of Rio de Janeiro (UFRJ)

ana.almeida@ime.uerj.br, mluiza@ppgi.ufrj.br, {fbaiao, dschwabe, sergio}@inf.puc-rio.br

Abstract. This document presents the Configuration Management Ontology Pattern
Language (CM-OPL). It is the second version of the CM-OPL, represented by using
OPL-ML (Ontology Pattern Language Modeling Language). Therefore, we used a
structural model to represent the CM-OPL patterns and structural relationships be-
tween them. Also, we present a general process model to provide a general view of the
CM-OPL process, and detailed process models expand the process general view.

Keywords: Ontology; Pattern; OPL; Configuration Management.

Resumo. Este documento apresenta a linguagem de padrão de ontologia para gerência
de configuração (CM-OPL). É a segunda versão da CM-OPL, representada pelo uso da
OPL-ML (Linguagem de Modelagem para Linguagem de padrão de ontologia). Além
disso, utilizamos um modelo estrutural para representar os padrões da CM-OPL e os
relacionamentos entre eles. Adicionalmente, nós apresentamos o modelo do processo
geral para viabilizar uma visão geral do processo CM-OPL e detalhamos os modelos
do processo, expandindo a visão geral do processo.

Palavras-chave: Ontologia; Padrão; OPL; Gerência de configuração.

 ii

In charge of publications :

Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

 iii

 Table of Contents

1 Introduction 1

2 CM-OPL Domain-Related Ontology Patterns 1

3 CM-OPL Structural Model 5

4 CM-OPL Process 5

5 CM-OPL Pattern Descriptions 11
5.1 Configuration Identification Group 12

ISelection – Item Selection 12
P-Manager – Person Configuration Manager 13
A-Manager – Computational Agent Configuration Manager 14
PA-Manager – Person/ Computational Agent Configuration Manager 15
CIDecomposition - Configuration Item Decomposition 16

5.2 Version Control Group 17
CIVersion – Configuration Item Version 17
CIVDecomposition – Configuration Item Version Decomposition 18
CIVBaseline – Configuration Item Version Baseline 19
CIVMode – Configuration Item Version Mode 20

5.3 Change Control Group 21
P-Requester - Person Requester 21
A-Requester - Computational Agent Requester 22
PA-Requester - Person/ Computational Agent Requester 23
CIVCRequest – Configuration Item Version Change Request 24
P-Evaluator - Person Evaluator 25
A-Evaluator - Computational Agent Evaluator 26
PA-Evaluator - Person/ Computational Agent Evaluator 27
CIVCREvaluation - Configuration Item Version Change Request Evaluation 28
CIVCheckout – Configuration Item Version Check-out 29
P-Executor - Person Executor 30
A-Executor - Computational Agent Executor 31
PA-Executor - Person/ Computational Agent Executor 32
CIVCRExecution – Configuration Item Version Change Request Execution 33
CIVCheckin – Configuration Item Version Check-in 34
P-Verifier - Person Verifier 35
A- Verifier – Computational Agent Verifier 36
PA- Verifier - Person/ Computational Agent Verifier 37
CIVCRVerification - Configuration Item Version Change Request Verification 38

References 39

 1

1 Introduction

We have written this document based on the S-OPL specification written by NEMO
group [Quirino et al, 2018]. An Ontology Pattern Language (OPL) is a network of inter-
connected Domain-Related Ontology Patterns (DROPs) that provides holistic support
for solving ontology development problems for a specific domain [Ruy et al, 2017]. We
used the OPL-ML [Quirino et al, 2017] to represent the CM-OPL.

The Configuration Management Ontology Pattern Language (CM-OPL) is an OPL
that addresses the core conceptualization about the configuration management prob-
lem. We have extracted CM-OPL patterns from the Configuration Management Task
Ontology (CMTO) used for semantic integration [Calhau et al, 2012][Calhau, 2011]. We
have chosen this ontology because it is generic and well-founded using UFO-A
[Guizzardi, 2005]. The CMTO focuses on the three main activities of the Configuration
Management process: Configuration Identification, Version Control, and Change Con-
trol. Thus, we may organize the patterns of CM-OPL in these three groups: Configura-
tion Identification, Version Control, and Change Control.

We briefly present the patterns that compose CM-OPL in Section 2. Then, we give
the CM-OPL structural model in Section 3, explaining the CM-OPL process model in
Section 4. Finally, in Section 5, each CM-OPL pattern is fully described.

2 CM-OPL Domain-Related Ontology Patterns
We organize CM-OPL into three groups, namely: (i) Configuration Identification, (ii) Ver-
sion Control, and (iii) Change Control.

According to CMTO (Configuration Management Task Ontology) [Calhau et al,
2012], the Configuration Identification refers to identifying product items to be con-
trolled (Configuration Items - CIs), defining criteria for selecting CIs and their versions,
establishing standards for numbering, and defining tools and techniques to be used to
control the items. Item can be any element that composes a product and can have its
configuration managed. The Configuration Item is an element from the product that
we may configure and manage. This is an item that has a configuration selection done
by a configuration manager.

We describe in Table 1 the intent of the patterns of the Configuration Identification
group.

 2

Table 1 – Patterns of the Configuration Identification group

Id Name Intent

P-Manager Person Configuration
Manager

Represents persons as configuration
managers.

A-Manager Agent Configuration
Manager

Represents agents or machines as con-
figuration managers.

PA-Manager Person / Agent Con-
figuration Manager

Represents persons and agents or ma-
chines as configuration managers.

ISelection Item Selection Allows selecting the configuration that
is necessary, which items are managed
and who is responsible for it. Repre-
sents an object that formalizes which
items of a product/item that are
managed.

CIDecomposition Configuration Item
Decomposition

Represents a decomposition of the con-
figuration item of the product/item
which could be configured and man-
aged.

Version control combines procedures and tools to manage different versions of the
CIs. The item evolves over time. So, the CI has one or more versions which represent
the evolution of the item. The version is related to the configuration item and can be
atomic or composite. A composite CI has others versions, and they are called configu-
ration. The Atomic CI can have 1..* atomic versions. When a configuration has a
markup, it practices the role of baseline done by Configuration Manager.

We describe in Table 2 the intent of the patterns of the Version Control group.

 3

Table 2 - Patterns of the Version Control group

Id Name Intent

CIVersion Configuration Item
Version

Represents the version of the configu-
ration item that has configuration
changed.

CIVDecomposition Configuration Item
Version Decomposi-
tion

Represents the decomposition of
versions: an atomic or
composite/configuration version of
the CI.

CIVBaseline Configuration Item
Version Baseline

Defines a configuration snapshot to
the CI verison at any given time.

CIVMode Configuration Item
Version Mode

Represents the variation of the
configuration item version – parallel
versions or the revision of the item –
when versions overwrite others ver-
sions.

Change Control deals with change management during the product life cycle. The
Requester requires a change of a configuration item of the product based on a version.
This version is submitted to the change. The change can be a problem to solve or
customization of the item. An Evaluator evaluates the possibility to implement the
change and decides if the change can be implemented or not. When the request is ap-
proved, the Executor can execute the change of the version checked-out and submitted
to the validation (check-in). The Verifier validates the changes made, verifying if it is in
accordance with what was specified. Additionally, it has control of the version before
and after the modification. Before the modification, the CI needs to have the version
checked out. Then, s/he does the modification and checks-in the modified version.

We describe in Table 3 the intent of the patterns of the Version Control group.

 4

Table 3 - Patterns of the Change Control group

Id Name Intent

P-Requester Person Requester Represents persons as requesters.
A-Requester Agent Requester Represents agents/machines as re-

questers.
PA-Requester Person / Agent Re-

quester
Represents persons and agents or
machines as requesters.

CIVCRequest Configuration Item Ver-
sion Change Request

Represents the change request medi-
ated by a Requester and a version,
when submitted for change.

P-Evaluator Person Evaluator Represents persons as evaluators.
A-Evaluator Agent Evaluator Represents agents/machines as

evaluators.
PA-Evaluator Person / Agent Evalua-

tor
Represents persons and agents or
machines as evaluators.

CIVCREvaluation Configuration Item Ver-
sion Change Request
Evaluation

Represents the evaluation if the con-
figuration item version can have the
change applied.

CIVCheckout Configuration Item Ver-
sion Check-out

Represents the last version of the
configuration item that will be
changed.

P-Executor Person Executor Represents persons as executors.
A-Executor Agent Executor Represents agents/machines as

executors.
PA-Executor Person / Agent Executor Represents persons and agents or

machines as executors.
CIVCRExecution Configuration Item Ver-

sion Change Request Ex-
ecution

Represents the execution of the
change in a version of the
configuration item.

CIVCheckin Configuration Item Ver-
sion Check-in

Represents the register of the version
of the modified configuration item.

P-Verifier Person Verifier Represents persons as verifiers.
A- Verifier Agent Verifier Represents agents/machines as veri-

fiers.
PA- Verifier Person / Agent Verifier Represents persons and agents or

machines as verifiers.
CIVCRVerification Configuration Item Ver-

sion Change Request
Verification

Represents the verification of the
configuration item version with the
change applied through a specifica-
tion.

 5

3 CM-OPL Structural Model
We present in Figure 1 the CM-OPL structural model. In the model, patterns are repre-
sented by rectangles with underlined labels. Regions delimited by blue straight lines
represent pattern groups. Rectangles with red dotted edges delimit groups of variant
patterns. Variant patterns are patterns that solve the same problem but in different ways.
Thus, from a set of variant patterns, only one can be used to solve the problem when
developing an ontology. Pattern dependency relations are represented by directed ar-
rows, meaning that the source pattern (or pattern group) requires the target pattern to
be applied first. Finally, dotted arrows are used to indicate that a pattern requires one
of the patterns of a variant group. In the structural model, different colors are used to
identify pattern application action from different groups.

Figure 1 CM-OPL Structural Model

4 CM-OPL Process
Figure 2 provides a general view of the CM-OPL process. Pattern application action
groups are represented as black boxes, providing a more general view of CM-OPL. In
this figure, pattern application action groups are represented by labeled rectangles

with blue edges and with the symbol in the corner. A pattern application action refers
to the application of a specific pattern. Initial nodes (solid circles) are used to represent
entry points in the OPL, i.e., pattern application actions in the language that can be per-
formed first, without performing other pattern application actions. Control flows (ar-
rowed lines) represent the sequences of paths that the ontology engineer can follow in
the OPL. Endpoints (solid circle doubly circled) are used to indicate where the pattern
application process can be finished. Like in the structural model, different colors are
used in the process models (Figures 2-6) to identify application actions patterns from
different groups.

 6

We have extracted the patterns in CM-OPL from the CM Task Ontology, mentioned
previously. The CM-OPL patterns are organized into three groups according to the
process presented in [Calhau et al, 2012]: Configuration Identification, Version Control
and Change Control and represented in Figure 2.

Figure 2 – CM-OPL Process (general view)

Initial nodes (solid circles), pattern application action nodes (the labeled rounded
rectangles), decision nodes (diamonds), control flows (arrowed lines) and end points
(solid circle doubly circled) have the same graphical representation of the structural
model. Moreover, we group variant pattern application actions inside rectangles with red
dotted edges.

Figure 3 – Detailed Process Model of the Configurat ion Identification Group

 7

Figure 4 - Detailed Process Model of the Version Co ntrol Group

 8

Figure 5 - Detailed Process Model of the Change Con trol Group

 9

F
ig

u
re

 6
 –

 C
M

-O
P

L
 P

ro
ce

ss
 (

d
et

ai
le

d
 v

ie
w

)

 10

As Figure 6 shows, CM-OPL has only one entry point (EP1). The ontology engineer
(OE) must start the new ontology by selecting the configuration that s/he needs to do
(ISelection). Next, s/he decides who will manage the configuration. The OE has to select
a pattern from the Configuration Manager group of variant patterns. Also, it is necessary
to define which configuration item that will be configured (CIDecomposition).

After, the OE needs to apply the CIVersion pattern. This pattern includes the relation-
ship between Version and Configuration Item, since Version is a mode of a Configura-
tion Item. Next, we have a pattern dealing with the decomposition (CIVDecomposition)
of versions. This version can be atomic or complex, i.e., a Version composed of other
Versions, and it characterizes Composite CI. For each CI that is part of a Composite CI,
there must be a Version that is part of a Configuration. The next pattern addresses the
baseline of the item (CIVBaseline). A baseline is a product configuration that was revised
and designated to be a basis for future development [Calhau et al. 2012]. Also, there is
the mode of the version (CIVMode), that is, a variant or revision of the configuration item.
This is a complete and disjoint generalization set of Version.

After modeling the version control, the CIVCRequest pattern is used. This pattern
models a change request that is submitted by the Requester. The Version mediates the
change request and the Requester must have its chosen pattern from the variant group
(Requester).

Next, the OE decides about the relevance of the evaluation. If it is relevant, the Eval-
uator decides if the change should be implemented or not (CIVCREvaluation). Following
the process, the last version of the configuration item registered can be checked out to
the computational agent/person to change (CIVCheckout). Thus, the Executor imple-
ments the modification modeling through the CIVCRExecution pattern. After the modi-
fication, s/he can do the checkin to register the new version (CIVCheckin). After register-
ing the change, validation occurs. The pattern corresponding to the last configuration
step (CIVCRVerification) presents the Verification relator mediating Verified Change and
the Verifier. Finally, the process ends.

 11

5 CM-OPL Pattern Descriptions
The description of CM-OPL patterns includes the following items:

 Name: provides the name of the pattern.
 Intent: describes the pattern purpose.
 Rationale: describes the rationale underlying the pattern. A short statement an-

swering the following question: What is the pattern rationale?
 Competency Questions: describes the competency questions that the pattern

aims to answer.
 Conceptual Model: depicts the OntoUML diagram representing the pattern

elements.
 Axiomatization: presents the axioms related to the pattern conceptual model.
 FOPs Support: lists Foundational Ontology Pattern (FOPs) used, FOPs are reus-

able fragments derived from foundational ontologies [Falbo et al, 2013].
 Term Definitions: Definition of the class in the context of the conceptual model

in the pattern.

 12

5.1 Configuration Identification Group

ISelection – Item Selection

Name: Item Selection

Intent: Allows selecting the configuration that is necessary, which items are managed
and who is responsible for it. Represents an object that formalizes which items of a prod-
uct/item that are managed.

Rationale: A Configuration Selection mediates the relation between a Configuration Man-
ager and a Configuration Item, that is the role played by an Item when it is selected in a
Configuration Selection. Configuration Selection defines the selection on an item configu-
ration. Configuration Manager is the role played by the persons, the agents or both when
they become a Configuration Manager. The stereotype of the Configuration Manager class
is given by the pattern selected from the Configuration Manager sub-group.

Competency Questions:

 Which items have to be their configuration managed?
 Who is the Configuration Manager that selects each configuration item?

Conceptual Model:

Figure 7 ISelection – Conceptual Model

Note: The stereotype of the Configuration Manager class is given by the pattern selected
from the Configuration Manager sub-group. For instance, if the P-Manager pattern is
selected, then Configuration Manager is a <<role>>; if the PA-Manager pattern is selected,
then Configuration Manager is a <<rolemixin>>. Due to this fact, the Configuration Man-
ager class is not stereotyped in the current pattern.

Axiomatization: -

FOPs Support: Relator Pattern – Variant 1 and Category Pattern – Variant 1.

Term Definitions:
Item A product that can evolve through new configurations.
Configuration Item An item of product that has a configuration which can be

managed.

 13

Configuration Selection Formalizes which items of a product that are managed.
Registers the act of selecting items to be managed and trans-
formed them into Configuration Items.

Configuration Manager The role played by a Person, an Agent or both when they
manage a configuration of a configuration item.

P-Manager – Person Configuration Manager

Name: Person Configuration Manager

Intent: Represents persons as configuration managers.

Rationale: Persons can act as (play the role of) Configuration Managers, i. e., the ones re-
sponsible for the configuration management.

Competency Questions:
 Who can play the role of configuration manager?

Conceptual Model:

Figure 8 P-Manager – Conceptual Model

Axiomatization: -

FOPs Support: Role Pattern.

Term Definitions:
Person An individual human being.
Person Configuration Manager The role played by a Person when s/he manages a

configuration of a configuration item.

 14

A-Manager – Computational Agent Configuration Manager

Name: Computational Agent Configuration Manager

Intent: Represents computational agents or machines as configuration managers.

Rationale: Software Agents or machines can act as (play the role of) Configuration Man-
agers, i. e., the ones responsible for the configuration management (automatic).

Competency Questions:
 Who can play the role of configuration manager?

Conceptual Model:

Figure 9 A-Manager – Conceptual Model

Axiomatization: -

FOPs Support: Role Pattern.

Term Definitions:
Computational Agent Encapsulated system that is situated in an environ-

ment and that presents characteristics like flexibility
and autonomy to reach its objectives.

Computational Agent Config-
uration Manager

The role played by a Computational Agent when it
manages a configuration of a configuration item.

 15

PA-Manager – Person/ Computational Agent Configuration Manager

Name: Person/ Computational Agent Configuration Manager

Intent: Represents persons and agents or machines as configuration managers.

Rationale: Persons (playing the role of Person Configuration Manager) and Computational
Agents (playing the role of Computational Agent Configuration Manager) can act as Config-
uration Managers, i.e., the ones responsible for the configuration management (semi-au-
tomatic).

Competency Questions:
 Who can play the role of configuration manager?

Conceptual Model:

Figure 10 PA-Manager – Conceptual Model

Axiomatization: -

FOPs Support: Rolemixin Pattern – Variant 2.

Term Definitions:
Person An individual human being.
Person Configuration Manager The role played by a Person as a Configuration

Manager.
Configuration Manager The role played by a Person and an Agent when they

manage a configuration of a configuration item.
Computational Agent Encapsulated system that is situated in an environ-

ment and that presents characteristics like flexibil-
ity and autonomy to reach its objectives.

Computational Agent Configu-
ration Manager

The role played by a Computational Agent as a Con-
figuration Manager.

 16

 CIDecomposition - Configuration Item Decomposition

Name: Configuration Item Decomposition

Intent: Represents a decomposition of the configuration item of the product/item which
could be configured and managed.

Rationale: when a Configuration Item is atomic, i. e. , it is not composed by other config-
uration items, it can specialize in a rolemixin called AtomicCI. It is classified as rolemixin
because it is an antirigid type whose instantiation depends on a relational property (as a
role of an Item Category). On the other hand, a Configuration Item can be composite (Com-
posite CI). In this case, other configuration items compose a Configuration Item and there
is a relationship ComponentOf between Configuration Item and Composite CI. If it is
composite, this means that it has at least two Configuration Items. These parts of a Com-
posite CI can be an AtomicCI or another Composite CI. So, Composite CI and AtomicCI are a
specialization of Configuration Item and classified as rolemixin. Configuration Item is a role
of the Item Category (rolemixin).

Competency Questions:
 How is a configuration item decomposed?

Conceptual Model:

Figure 11 CIDecomposition – Conceptual Model

Axiomatization:
A1 ∀ ci: ConfigurationItem, cci: CompositeCI (isA(cci, ci)) 

(ComponentOf(ci,cci) ^ ∃cii: ConfigurationItem ^ Componen-
tOf(cii,cci))

FOPs Support: Category Pattern – Variant 1.

Term Definitions:
Item A product that can evolve through new configurations.
Configuration Item An item of product that has a configuration that can be

managed.
AtomicCI Configuration Item that is not composed by another one.
Composite CI Configuration Item composed by others configuration items.

 17

5.2 Version Control Group

CIVersion – Configuration Item Version

Name: Configuration Item Version

Intent: Represents the version of the configuration item that has configuration changed.

Rationale: models the Version that is a mode of a Configuration Item.

Competency Questions:
 Which version of the item will be changed?

Conceptual Model:

Figure 12 CIVersion – Conceptual Model

Axiomatization: -

FOPs Support: Mode Pattern.

Term Definitions:
Configuration Item An item of product that has a configuration that can be

managed.
Version Represents a specific state of a Configuration Item at a given

point in time of the product development.

 18

CIVDecomposition – Configuration Item Version Decomposition

Name: Configuration Item Version Decomposition

Intent: Represents a decomposition of the configuration item version.

Rationale: If the Configuration Item is atomic means that it has atomic versions (Atomic
Version mode) when it evolves. If the Configuration Item is composite, it means that it has
composite versions and these versions are called Configuration. If there is a Configuration,
the Configuration Item has its characteristics changed. Therefore, the Version of the Item
has a Configuration mode, and the Versions of the Item (before and after the configuration
change) is a component of the Configuration.

Competency Questions:
 How is an item version decomposed?

Conceptual Model:

Figure 13 CIVDecomposition – Conceptual Model

Axiomatization: -

FOPs Support: Mode Pattern.

Term Definitions:
Version Represents a specific state of a Configuration Item at a given point in

time of the product development.
Atomic Version A version of an atomic Configuration Item.
AtomicCI Configuration Item that is not composed by another one.
Configuration Set of physical and functional characteristics that describe the prod-

uct at a given time. It is a version of the composite Configuration
Item.

Composite CI Configuration Item composed by other configuration items.

 19

CIVBaseline – Configuration Item Version Baseline

Name: Configuration Item Version Baseline

Intent: Defines a configuration snapshot at any given time to the configured item.

Rationale: A Markup mediates the relation between a Configuration Manager and a Base-
line. When a Configuration of a Version receives a markup, it plays a role of Baseline. Con-
figuration Manager is the role played by the persons, the computational agents or both when
they become a Configuration Manager. The stereotype of the Configuration Manager class
is given by the pattern selected from the Configuration Manager sub-group.

Competency Questions:
 Which Configuration has the Configuration Manager set as a Baseline?

Conceptual Model:

Figure 14 CIVBaseline – Conceptual Model

Axiomatization: -

FOPs Support: Relator Pattern – Variant 1.

Term Definitions:
Markup Markup in the product to indicate the extent to which evo-

lution can suit as a reference (baseline) for making changes.
Configuration Manager The role played by a Person and an Agent when they

manage a configuration of a configuration item.
Baseline Configuration snapshot at any given time. When a product

configuration that has been revised and designed to serve
as a reference for future development or changes. It is a
reference formally defined at a particular stage in the evo-
lution of a product lifecycle.

Configuration Set of physical and functional characteristics that describe
the product at a given time.

 20

CIVMode – Configuration Item Version Mode

Name: Configuration Item Version Mode

Intent: Represents the mode (variant - parallel versions or revision – overwritten ver-
sions) of the configuration item version.

Rationale: A Configuration Item may have multiple Versions. Versions of configuration
items that may exist in parallel are said to be Variant. So, Variant is a mode of the Version,
i. e., intrinsic moments in one single individual of the Version. Also, Versions of configu-
ration items that may overlap others Versions are said to be Revision. So, Revision is a
mode of the Version, i. e., intrinsic moments in one single individual of the Version. This
type of generalization is complete and disjoint.

Competency Questions:
 Does the version change correspond to a revision or a parallel version (variant)?

Conceptual Model:

Figure 15 CIVMode – Conceptual Model

Axiomatization: -

FOPs Support: -

Term Definitions:
Version Represents a specific state of a Configuration Item at a given point in time of

product development.
Variant A parallel version of a configuration item with specific characteristics that

differ from other versions.
Revision A revised version of a configuration item that overlaps another (original)

version.

 21

5.3 Change Control Group

P-Requester - Person Requester

Name: Person Requester

Intent: Represents persons as requesters.

Rationale: Persons can act as (play the role of) Requester, i. e., the ones responsible for the
configuration change request.

Competency Questions:
 Who can play the role of requester?

Conceptual Model:

Figure 16 P-Requester – Conceptual Model

Axiomatization: -

FOPs Support: Role Pattern.

Term Definitions:
Person An individual human being.
Person Requester The role played by a Person as a Requester of the configuration

change.

 22

A-Requester - Computational Agent Requester

Name: Computational Agent Requester

Intent: Represents computational agents/machines as requesters.

Rationale: Software Agents or machines can act as (play the role of) Requester, i. e., the
ones responsible for the configuration change request (automatic).

Competency Questions:
 Who can play the role of requester?

Conceptual Model:

Figure 17 A-Requester – Conceptual Model

Axiomatization: -

FOPs Support: Role Pattern.

Term Definitions:
Computational
Agent

Encapsulated system that is situated in an environment and that
presents characteristics like flexibility and autonomy to reach its
objectives.

Computational
Agent Requester

The role played by a Computational Agent as a Requester of the
configuration change.

 23

PA-Requester - Person/ Computational Agent Requester

Name: Person/ Computational Agent Requester

Intent: Represents persons and computational agents or machines as requesters.

Rationale: Persons (playing the role of Person Requester) and Computational Agents (play-
ing the role of Computational Agent Requester) can act as Requesters, i.e., the ones respon-
sible for the configuration change request (semi-automatic).

Competency Questions:
 Who can play the role of requester?

Conceptual Model:

Figure 18 PA-Requester – Conceptual Model

Axiomatization: -

FOPs Support: Rolemixin Pattern – Variant 2.

Term Definitions:
Person An individual human being.
Person Requester The role played by a Person as a Requester of the configuration

change.
Computational
Agent

Encapsulated system that is situated in an environment and that
presents characteristics like flexibility and autonomy to reach its
objectives.

Computational
Agent Requester

The role played by a Computational Agent as a Requester of the
configuration change.

Requester The role played by a Person and a Computational Agent when they
request a change of a configuration item version.

 24

CIVCRequest – Configuration Item Version Change Request

Name: Configuration Item Version Change Request

Intent: Represents the change request mediated by a Requester and a version that is
submitted for change.

Rationale: A Change Request mediates the relation among a Requester, a Version, and a
Change. When a Version is submitted for Change, it plays a role of Version Submitted For
Change. So, when the Requester requests a Change of a Configuration Item version, the Ver-
sion is submitted for change.

Competency Questions:
 Who requested the modification of the configuration item version?
 Which change the person/ computational agent requests?
 Which configuration item version the person/agent submitted for a change?

Conceptual Model:

Figure 19 CIVCRequest – Conceptual Model

Axiomatization:
A1 ∀ cr: ChangeRequest, vs: VersionSubmittedForChange, r: Requester

(requests(r, cr)) ^ enables(cr,vs)  (∃c: Change ^ correspond-
sTo(c,cr))

FOPs Support: Relator Pattern – Variant 1 and Role Pattern.

Term Definitions:
Requester The role played by a Person or by a Computational

Agent when they request a change of a configura-
tion item version.

Change Request Request for change by a Requester to change the con-
figuration of a CI version.

Change Specified modification to be performed on
configuration items versions that may or not be
implemented.

Version Submitted For Change A version of the configuration item that is
submitted for a configuration change.

Version Represents a specific state of a Configuration Item at
a given point in time of product development.

 25

P-Evaluator - Person Evaluator

Name: Person Evaluator

Intent: Represents persons as evaluators.

Rationale: Persons can act as (play the role of) Evaluator, i. e., the ones responsible for the
configuration change evaluation.

Competency Questions:
 Who can play the role of evaluator?

Conceptual Model:

Figure 20 P-Evaluator – Conceptual Model

Axiomatization: -

FOPs Support: Role Pattern.

Term Definitions:
Person An individual human being.
Person Evaluator The role played by a Person as an Evaluator of a configuration

change request.

 26

A-Evaluator - Computational Agent Evaluator

Name: Computational Agent Evaluator

Intent: Represents computational agents/machines as evaluators.

Rationale: Software Agents or machines can act as (play the role of) Evaluator, i. e., the
ones responsible for the configuration change evaluation (automatic).

Competency Questions:
 Who can play the role of evaluator?

Conceptual Model:

Figure 21 A-Evaluator – Conceptual Model

Axiomatization: -

FOPs Support: Role Pattern.

Term Definitions:
Computational
Agent

Encapsulated system that is situated in an environment and that
presents characteristics like flexibility and autonomy to reach its
objectives.

Computational
Agent Evaluator

The role played by an Computational Agent as an Evaluator of the
configuration change.

 27

PA-Evaluator - Person/ Computational Agent Evaluator

Name: Person/ Computational Agent Evaluator

Intent: Represents persons and computational agents or machines as evaluators.

Rationale: Persons (playing the role of Person Evaluator) and Computational Agents (play-
ing the role of Computational Agent Evaluator) can act as Evaluators, i.e., the ones respon-
sible for the configuration change evaluation (semi-automatic).

Competency Questions:
 Who can play the role of evaluator?

Conceptual Model:

Figure 22 PA-Evaluator – Conceptual Model

Axiomatization: -

FOPs Support: Rolemixin Pattern – Variant 2.

Term Definitions:
Person An individual human being.
Person Evaluator The role played by a Person as an Evaluator of a configuration

change request.
Computational
Agent

Encapsulated system that is situated in an environment and that
presents characteristics like flexibility and autonomy to reach its
objectives.

Computational
Agent Evaluator

The role played by a Computational Agent as an Evaluator of the
configuration change.

Evaluator The role played by a Person and a Computational Agent when they
evaluate a change of a configuration item version.

 28

CIVCREvaluation - Configuration Item Version Change Request Evaluation

Name: Configuration Item Version Change Request Evaluation

Intent: Represents the evaluation if the configuration item version can have the change
applied.

Rationale: When a Change Request is evaluated (as a role Evaluated Request), it can be
accepted or not. This result is represented as a quality of the relator Request Evaluation.
The Evaluator is responsible to the Request Evaluation.

Competency Questions:
 What is the result of the evaluation of the change request?

Conceptual Model:

Figure 23 CIVCREvaluation – Conceptual Model

Axiomatization:
A1 ∀ re: RequestEvaluation, er: EvaluatedRequest, e: Evaluator (eval-

uates(e, re)) ^ enables(re,er)  (∃cr: ChangeRequest ^ ∃c: Change
^ isA(er,cr) ^ correspondsTo(cr,c) ^)

FOPs Support: Relator Pattern – Variant 1 and Relational Dependence Pattern.

Term Definitions:
Evaluator The role played by a Person and an Agent when they evaluate a

change of the configuration item version.
Request Evaluation Record the action made by an evaluator of evaluating a change

request.
Evaluated Request When an Evaluator evaluates the change request.
Change Request Request for change by a Requester to change the configuration

item version.
Change Specified modification to be performed on configuration items

versions that may or not be implemented.

 29

CIVCheckout – Configuration Item Version Check-out

Name: Configuration Item Version Check-out

Intent: Represents the last version of the configuration item that will be changed.

Rationale: when a Version of the Configuration Item needs to be modified, it may be pre-
pared for modification, that is, it is checked-out before. When it occurs, the Version takes
on the role of Checked-Out Version and the change takes on the role of On Going Change,
that is, the Change that is in progress. A Check-Out mediates the relation between a
Version (Checked-Out Version), a Change (On-Going Change) and an Executor (responsible
to check-out).

Competency Questions:
 Which version of the configuration item does the person/computational agent wants to

modify or check out?
 Who checked out the version to modify in the future?
 Which change is going to be performed on the item?

Conceptual Model:

Figure 24 CIVCheckout – Conceptual Model

Axiomatization: -

FOPs Support: Relator Pattern – Variant 1 and Role Pattern.

Term Definitions:
Version Represents a specific state of a Configuration Item at a given

point in time of the product development.
Checked-Out Version The version that will be changed.
Check-Out Recording of the withdrawal of a configuration item to make

a change.

 30

Executor The role played by a Person, an Agent or both when they exe-
cute a configuration change of a configuration item.

On-Going Change Change a configuration item in progress.
Change Record of the modification action of a configuration item ver-

sion.

P-Executor - Person Executor

Name: Person Executor

Intent: Represents persons as executors.

Rationale: Persons can act as (play the role of) Executor, i. e., the ones responsible for the
configuration change execution.

Competency Questions:
 Who can play the role of executor?

Conceptual Model:

Figure 25 P-Executor – Conceptual Model

Axiomatization: -

FOPs Support: Role Pattern.

Term Definitions:
Person An individual human being.
Person Executor The role played by a Person as an Executor of a configuration

change.

 31

A-Executor - Computational Agent Executor

Name: Computational Agent Executor

Intent: Represents computational agents/machines as executors.

Rationale: Software Agents or machines can act as (play the role of) Executor, i. e., the ones
responsible for the configuration change (automatic) execution.

Competency Questions:
 Who can play the role of executor?

Conceptual Model:

Figure 26 A-Executor – Conceptual Model

Axiomatization: -

FOPs Support: Role Pattern.

Term Definitions:
Computational
Agent

Encapsulated system that is situated in an environment and that
presents characteristics like flexibility and autonomy to reach its ob-
jectives.

Computational
Agent Executor

The role played by a Computational Agent as an Executor of the
configuration change.

 32

PA-Executor - Person/ Computational Agent Executor

Name: Person/ Computational Agent Executor

Intent: Represents persons and computational agents or machines as executors.

Rationale: Persons (playing the role of Person Executor) and Computational Agents (play-
ing the role of Computational Agent Executor) can act as Executors, i.e., the ones responsible
for the configuration change execution (semi-automatic).

Competency Questions:
 Who can play the role of executor?

Conceptual Model:

Figure 27 PA-Executor – Conceptual Model

Axiomatization: -

FOPs Support: Rolemixin Pattern – Variant 2.

Term Definitions:
Person An individual human being.
Person Executor The role played by a Person as an Executor of a configuration

change.
Computational
Agent

Encapsulated system that is situated in an environment and that
presents characteristics like flexibility and autonomy to reach its
objectives.

Computational
Agent Executor

The role played by a Computational Agent as an Executor of the
configuration change.

Executor The role played by a Person, a Computational Agent or both when
they execute a change of a configuration item version.

 33

CIVCRExecution – Configuration Item Version Change Request Execution

Name: Configuration Item Version Change Request Execution

Intent: Represents the execution of the change in a version of the configuration item.

Rationale: The effective configuration is developed and implemented. A Modification
mediates the relationship between the roles Executor and Modified Version.

Competency Questions:
 Who executed the modification of the configuration item version?
 Which modification or change the person/agent does?
 Which modified version of the configuration item the person/agent generates?

Conceptual Model:

Figure 28 CIVCRExecution – Conceptual Model

Axiomatization: -

FOPs Support: Relator Pattern – Variant 1 and Role Pattern.

Term Definitions:
Executor The role played by a Person, a Computational Agent or both when

they execute a configuration change of a configuration item ver-
sion.

Modification Records the modify action for a version.
Modified Version Records the modified version of a configuration item.
Version Represents a specific state of a Configuration Item at a given point

in time of the product development.

 34

CIVCheckin – Configuration Item Version Check-in

Name: Configuration Item Version Check-in

Intent: Represents the register of the version of the modified configuration item.

Rationale: when an Implemented Change (role) occurs, a Check-In is established, and it
corresponds to a new Version of the Configuration Item that is registered. The Implemented
Change has a mediation relationship with Version through the Check-In Relator, and the
modification of the item has a role of Registered Modification as there is a check-in.

Competency Questions:
 Which CI version the person/computational agent wants to become current CI version?
 Who implemented the new CI version that will be checked-in?

Conceptual Model:

Figure 29 CIVCheckin – Conceptual Model

Axiomatization:
A1 ∀ cki: Check-In, rm: RegisteredModification, v: Version (gener-

ates(cki, v)) ^ enables(rm,cki)  (∃c: Change ^ ∃ic: Implemented-
Change ^ isA(ic,c))

FOPs Support: Relator Pattern – Variant 1 and Role Pattern.

Term Definitions:
Version Represents a specific state of a Configuration Item at a given

point in time of the product development.
Check-In Records of changed configuration items versions.
Registered Modification Records of the change.
Modification Records the action of the change of a configuration item

version.

 35

Executor The role played by a Person, an Agent or both when they
execute a configuration change of a configuration item ver-
sion.

Implemented Change Specified change that has been implemented and recorded
through a check-in.

Change Specified modification to be performed on configuration
items versions that may or may not be implemented.

P-Verifier - Person Verifier

Name: Person Verifier

Intent: Represents persons as verifiers.

Rationale: Persons can act as (play the role of) Verifier, i. e., the ones responsible for the
configuration change validation.

Competency Questions:
 Who can play the role of verifier?

Conceptual Model:

Figure 30 P-Verifier – Conceptual Model

Axiomatization: -

FOPs Support: Role Pattern.

Term Definitions:
Person An individual human being.
Person Verifier The role played by a Person as a Verifier of a configuration change.

 36

A- Verifier – Computational Agent Verifier

Name: Computational Agent Verifier

Intent: Represents computational agents/machines as verifiers.

Rationale: Software Agents or machines can act as (play the role of) Executor, i. e., the ones
responsible for the configuration change execution (automatic).

Competency Questions:
 Who can play the role of verifier?

Conceptual Model:

Figure 31 A-Verifier – Conceptual Model

Axiomatization: -

FOPs Support: Role Pattern.

Term Definitions:
Computa-
tional Agent

Encapsulated system that is situated in an environment and that pre-
sents characteristics like flexibility and autonomy to reach its objec-
tives.

Computa-
tional Agent
Verifier

The role played by a Computational Agent as a Verifier of the
configuration change.

 37

PA- Verifier - Person/ Computational Agent Verifier

Name: Person/ Computational Agent Verifier

Intent: Represents persons and computational agents or machines as verifiers.

Rationale: Persons (playing the role of Person Verifier) and Computational Agents (playing
the role of Computational Agent Verifier) can act as Verifiers, i.e., the ones responsible for
the configuration change validation (semi-automatic).

Competency Questions:
 Who can play the role of verifier?

Conceptual Model:

Figure 32PA-Verifier – Conceptual Model

Axiomatization: -

FOPs Support: Rolemixin Pattern – Variant 2.

Term Definitions:
Person An individual human being.
Person Verifier The role played by a Person as a Verifier of a configuration change.
Computational
Agent

Encapsulated system that is situated in an environment and that
presents characteristics like flexibility and autonomy to reach its ob-
jectives.

Computational
Agent Verifier

The role played by a Computational Agent as a Verifier of the
configuration change.

Verifier The role played by a Person and a Computational Agent when they
validate a change of a configuration item version.

 38

CIVCRVerification - Configuration Item Version Change Request Verification

Name: Configuration Item Version Change Request Verification

Intent: Represents the verification of the configuration item version with the change ap-
plied through a specification.

Rationale: the validation of the configuration. This pattern captures the Change verified
by the Verifier (Verification). The Implemented Change is a role of the Change (Kind) when
the Check-In operation (Relator) occurs. After the validation of the Change, the Change
assumes the role of a Verified Change.

Competency Questions:
 Has the change been effectively implemented?

Conceptual Model:

Figure 33 CIVCRVerification – Conceptual Model

Axiomatization: -

FOPs Support: Relator Pattern – Variant 1 and Role Pattern.

Term Definitions:
Verifier The role played by a Person and an Agent when they validate

a configuration change of a configuration item version.
Verification Validates the configuration change of a configuration item

version.
Verified Change Records the verified change of a configuration item version.
Implemented Change Records the implemented change of a configuration item

version.
Change Specified modification to be performed on configuration

items versions that may or not be implemented.

 39

References
CALHAU, R. F. Uma abordagem baseada em ontologias para integração semântica de
sistemas. MSc thesis presented in Federal University of Espirito Santo, 2011.

CALHAU, R. F., FALBO, R. A. A Configuration Management Task Ontology for Seman-
tic Integration, Proceedings of the ACM/SIGAPP Symposium On Applied Computing
(SAC 2012), pp. 348-353, 2012.

FALBO, R.A., GUIZZARDI, G., GANGEMI, A. AND PRESUTTI, V. Ontology patterns:
clarifying concepts and terminology. In Proc. of the 4th Workshop on Ontology and Se-
mantic Web Patterns, Sidney, Australia, 2013.

GUIZZARDI, G. Ontological Foundations for Structural Conceptual Models. In: Univer-
sal Press, The Netherlands, 2005.

QUIRINO, G. K. S., BARCELLOS, M. P., FALBO, R. OPL-ML: A Modeling Language for
Representing Ontology Pattern Languages, Lecture Notes in Computer Science, Novem-
ber 2017, pp. 187-201, 2017.

QUIRINO, G. K., FALBO, R. A., BARCELLOS, M. P., NARDI, J. C. S-OPL: Service On-
tology Pattern Language. Specification. Version 1.6. April, 2017, available in:
https://nemo.inf.ufes.br/wp-content/uploads/2017/04/s_opl_v1_6.pdf, accessed in
June, 2018.

RUY, F. B., GUIZZARDI, G., FALBO, R. A., REGINATO, C. C., SANTOS, V. A. From
Reference Ontologies to Ontology Patterns and Back, Journal Data & Knowledge Engi-
neering, May 2017, v. 109, issue C, pp. 41-69, 2017.

