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Abstract. Multiagent Systems (MASs) involve different characteristics, such as auton-
omy, asynchronous and social features, which make these systems more difficult to under-
stand. Thus, there is a lack of procedures guaranteeing that multiagent systems would
behave as desired. Further complicating the situation is the fact that current agent-
based approaches may also involve non-deterministic characteristics, such as learning,
self-adaptation and self-organization (SASO). Nonetheless, there is a gap in the litera-
ture regarding the testing of systems with these features. This paper presents a publish-
subscribe-based approach to develop test applications that facilitate the process of failure
diagnosis in a self-organizing MAS. These tests are able to detect failures at the global
behavior of the system or at the local properties of its parts. To illustrate the use of this
approach, we developed a self-organizing MAS system based on the context of the Internet
of Things (IoT), which simulates a set of smart street lights, and we performed functional
ad-hoc tests. The street lights need to interact with each other in order to achieve the
global goals of reducing the energy consumption and maintaining the maximum visual
comfort in illuminated areas. To achieve these global behaviors, the street lights develop
local behaviors automatically through a self-organizing process based on machine learning
algorithms.

Keywords: testing; test; failure diagnosis; multiagent systems; self-organizing systems;
self-organization; internet of things; emergent behavior; machine learning; neuroevolution;
neurocomputing

Resumo. Sistemas Multiagentes (SMAs) envolvem diferentes caracteŕısticas, a exemplo
de autonomia, assincronia e socialização, o que faz com que esses sistemas sejam mais
dif́ıceis de compreender. Por isso, existe uma falta de procedimentos que garantam que
sistemas multiagentes funcionem como esperado. Essa problemática se agrava pelo fato
de que as aplicações atuais baseadas em agentes também podem envolver caracteŕısticas
não determińısticas, a exemplo de aprendizagem, autoadaptação e auto-organização (sigla
em inglês, SASO). No entanto, há poucas abordagens na literatura que exploram o teste
de sistemas com essas caracteŕısticas. Esse artigo apresenta uma abordagem baseada na
tecnologia publish-subscribe para desenvolver aplicações de teste que facilitem o processo
de diagnóstico de falha em um sistema multiagente auto-organizável. Esses testes podem



detectar falhas no ńıvel do comportamento global do sistema, assim como nas propriedades
locais de suas partes. Para ilustrar o uso dessa abordagem, nós desenvolvemos um sistema
SMA auto-organizável baseado no contexto de Internet das Coisas (IoT), o qual simula
um conjunto de postes públicos inteligentes, e executamos uma série de testes funcionais
ad-hoc. Os postes públicos precisam interagir uns com os outros com o objetivo de atingir
os objetivos globais da aplicação, que são reduzir o consumo de energia e manter o conforto
visual máximo nas áreas iluminadas. Para atingir esses comportamentos globais, os postes
públicos desenvolvem comportamentos locais automaticamente através de um processo de
auto-organização baseado em algoritmos de aprendizado de máquina.

Palavras-chave: teste; diagnóstico de falha; sistema multiagente; auto-organização; sis-
temas auto-organizáveis; internet das coisas; comportamento emergente; aprendizado de
máquina; neuroevolução; neurocomputação
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1 Introduction

Multiagent Systems (MASs) involve different characteristics, such as autonomy, asyn-
chronous and social features, which makes these systems more difficult to understand.
Thus, there is a lack of procedures guaranteeing that multiagent systems would behave
as desired [23]. Further complicating the situation is the fact that current agent-based
approaches may also involve non-deterministic characteristics, such as learning [8], self-
adaptation and self-organization (SASO) [7] [8]. Nonetheless, there is a gap in the litera-
ture regarding the inspection of systems with these features. For example, there are very
few approaches to evaluate the local interactions between agents in a self-organizing MAS
system and the global behavior that emerges from these interactions [12] [3]. One reason
is the difficulty of specifying expected results for non-deterministic applications, especially
in actual environments.

We consider here the definition of self-organizing systems that has been used by the ed-
itors of the IEEE International Conference on Self-Adaptive and Self-Organizing Systems,
as follows [2]:

Self-organizing systems work bottom-up. They are composed of a large number
of components that interact according to simple and local rules. The global
behavior of the system emerges from these local interactions, and it is difficult
to deduce properties of the global system by studying only the local properties
of its parts.

As a self-organizing MAS system enables the emergence of social features based on the
behavior of individual agents, to evaluate this kind of system it is necessary to analyze the
activities performed by single agents, the interaction among the agents and the behavior
that is exhibited by the whole system. In [18], we presented a preliminary version of a
publish-subscribe-based architecture that was implemented1 to make feasible the develop-
ment of multi-level tests based on logging for multiagent systems. By using this platform,
it is possible to test the behavior of individual agents and the behavior of group of agents.
However, we only showed the usability of our platform by testing a very simple MAS ap-
plication - a marketplace to buy and sell books on-line. Therefore, the goal of this paper
is to improve this architecture and present an approach that makes it possible to diagnose
failures in a more complex MAS application, a self-organizing one.

To test self-organizing applications, our new approach promotes the development of
tests separated into two categories: global and local levels (which will be described in
Section 5).

To illustrate and evaluate the use of the proposed approach, we developed a self-
organizing MAS application by using the “Framework for the Internet of Things” (FIoT)
[8], which is an agent-based framework for the development of self-adaptive and self-
organizing applications based on the Internet of Things (IoT) [13].

This experiment is presented in Section 4. The remainder of this paper is organized
as follows. Section 2 presents the related work. Section 3 presents the background, briefly
describing the publish-subscribe based architecture to generate tests and the Framework
for the Internet of Things (FIoT). Section 5 describes the approach to test self-organizing

1The source of the test system is available at
http://www.inf.puc-rio.br/ nnascimento/MAS-tests.html
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systems. Section 6 evaluates the test approach, presenting the experimental results and
evaluation. The paper ends with some concluding remarks and a discussion about potential
future work in Section 7.

2 Related Work

According to Nguyen et al. (2009) [21], a full testing process of a multiagent system con-
sists of five levels: unit, agent, integration (or group), system (or society) and acceptance.

Agent test tests the capability of a specific agent to fulfill its goal and to sense and affect
the environment. Integration test tests the interaction of agents and the interaction of
agents with the environment, ensuring that a group of agents and environmental resources
work correctly together [21]. System test tests the quality properties that the intended
system must reach, such as performance [21].

Few approaches for testing the interactions among a group of agents were proposed.
In addition, most of them are already only based on the concept of communication sniffer,
that is an agent that can intercept messages. For example, Serrano et al. (2012) [25],
which is one of the most recent papers published about testing MASs at the group level,
uses ACLAnalyser [4], a tool for debugging MAS through the analysis of ACL [9] messages.
Thus, by using these current test approaches, if an agent exhibits unexpected behavior
(failure), a developer has to inspect this failed agent or messages exchanged between agents
to find the fault that caused that failure. However, if an agent fails, its failure may be
related to a previous and an unexpected behavior of another agent in the environment.
This case would be a real problem to some MAS-based approaches, such as that one
proposed by Malkomes et al. (2017) [16], which promotes the development of cooperative
agents without using message communication.

In particular, there is a lack of approaches to assess the emergence process in a self-
organizing MAS system [12] [3]. Gardelli et al. [12] provides a theoretical system-oriented
approach that aims at anticipating design decisions at the early MAS design stages. Bernon
et al. [3] provides a simulation-driven approach, which allows the developer to simulate
different versions of the application while designing the agents. Kaddoum et al. [14, 15]
describes some evaluation criteria that are required to analyze self-* systems. Accordingly,
designers should consider some questions to validate the well-functioning of the system
and of the self-*mechanism, such as “is the system able to solve the problem for which
it is conceived?” and “is the system able to self-adapt in an efficient way?”. In order
to investigate these questions, the authors introduce some performance and robustness
metrics, such as time (e.g. the number of steps needed by agents to reach the solution),
the quality of solution (i.e. functional adequacy of the designed system) and time for
adaptation.

3 Background

3.1 FIoT: A Framework for Internet of Things

The Framework for the Internet of Things (FIoT) [8] is an agent-based software framework
[8] to generate different kinds of applications for IoT. It is based on MAS and artificial
intelligence paradigms such as neural networks and evolutionary algorithms.
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The main role of FIoT is to produce MAS-based applications with decentralized, au-
tonomous, self-organizing features. Basically, it supports the development of three types
of agents: (i) Manager Agents; (ii) Adaptive Agents; and (iii) Observer Agents. The pri-
mary role of the Manager Agent is to detect new things that are trying to connect to the
system and make that connection. Adaptive Agents control things at the scenario and
must execute three key activities in sequence namely: (i) collect data from the thing; (ii)
make decisions; and (iii) take actions. The Observer Agent examines the environment to
determine if the system is meeting its global goals. See more details about these agents
in [8] and [19].

3.2 Designing Self-Organizing MAS through Neuroevolution

Evolutionary algorithms, such as genetic algorithm, is a well known approach to develop
self-organizing multiagent systems [27]. It allows the emergence of features that were
not defined at design-time, such as a communication system [10]. In short, the genetic
algorithm is a population-based search algorithm, in which each individual is a solution in
a problem space [26]. The individuals are evaluated by using a fitness function, and the
fittest individuals are selected to produce offspring of the next generation.

Nolfi et al. [22] describe some experiments where the behavior of agents is autonomously
configured through a neuro-evolutionary algorithm. Each agent uses an artificial neural
network to sense the environment and behave accordingly. To optimize their neural net-
works, finding the fittest configuration (e.g synaptic weights and neural architecture), Nolfi
et al. [22] propose a genetic algorithm. Therefore, each individual of the genetic algorithm
population represents a configuration of the agent’s neural network. In such case, each
gene of an individual may represent the strength of a connection between two neurons.

The interested reader may consult more extensive papers [27] and [8].

3.3 Failure Diagnosis with Logs Containing Meta-Information Annota-
tions

Araújo and Staa [6] investigated common approaches for testing distributed systems. Ac-
cording to these authors, there are several approaches that perform diagnosis based on log
collection. Nonetheless, they have some limitations, such as the need of (i) organizing logs
in a centralized architecture and in an adequate time order; (ii) providing visualization
tools to assist manual inspection; and (iii) increasing the log details in order to enable
the tool to also diagnose the application’s logic. Therefore, they presented a diagnosing
mechanism based on logs of events annotated with contextual information, allowing a
specialized visualization tool to filter them according to the maintainer’s needs.

In their approach, each logged event records a set of properties, represented as tags. A
tag is a key-value pair where the value is optional. Every event must contain a basic set
of tags which are: 1) timestamp: used to sort all events into a single timeline; 2) message:
a description of the event; 3)request id : used to identify the type of event; 4) device: used
to identify the device that originated the event; 5) module: the module that triggered the
notification; and 6) line: the line of code where the notification command was inserted.
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3.4 RabbitMQ: Publish-Subscribe Platform

RabbitMQ [24] is a message-oriented middleware, which generates asynchronous, decou-
pling applications by separating sending and receiving data through a client and scalable
server architecture. It can be easily integrated into an application to operate as a common
platform to send and receive messages, maintaining messages in a safe place to live until
received. RabbitMQ is a multi-platform that may be deployed in Java, C, Python, and
many other programming languages. It can also be deployed in a cloud infrastructure.

By using RabbitMQ, it is possible to build a logging system based on the publish-
subscribe architecture. The publisher is able to distribute log messages to many receivers,
while the consumers have the possibility of selectively receiving the logs. Publisher and
consumers communicate through queues. Each queue has a particular routing key that is
a list of words, delimited by dots. There can be as many words in the routing key as you
like, up to the limit of 255 bytes. These words can be anything, but usually they specify
some features connected to the message. For example, if a developer specifies that a log
message must meet the pattern “(month).(day).(deviceId).(typeLog)”, the valid routing
keys would be “november.11.device01.error” and “november. 15.device01.info” [24].

Therefore, a message sent with a particular routing key will be delivered to all the
queues that are bound with a matching binding key. However there are two important
special cases for binding keys [24]:

* (star) can substitute for exactly one word; and
# (hash) can substitute for zero or more words.

4 Application Scenario: Self-organizing Streetlights

In short, this experiment involves developing self-organizing streetlights. The overall goal
of this application is to reduce the energy consumption while maintaining appropriate
visibility in illuminated areas [20]. For this purpose, each streetlight was provided with
ambient brightness and motion sensors, and an actuator to control light intensity. In
addition, they are able to interact with each other though an wireless communicator.

AdaptiveAgent 1

AdaptiveAgent 3

AdaptiveAgent 4

ObserverAgent

AdaptiveAgent 2

Motion	sensor

Light	sensor

Wireless	receptor

Wireless	transmitter

LED	(3	levels)

Turn	on	Wireless
Receiver

Previous	
decision	 (turn	on
wireless)

Input	layer Hidden	 layer Output	 layer

Neural Network

USES
CHANGES

EVALUATES

Figure 1: Overview of the general application architecture.
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Each street light is controlled by an AdaptiveAgent, as shown in Figure 1. We used
a neuroevolutionary algorithm [20] to support the design of the street behaviors of the
street lights automatically. Each streetlight uses a neural network to determine the com-
municating signals, and whether it turns on its lights or not. An ObserverAgent eval-
uates the overall application performance and uses a genetic algorithm to optimize the
AdaptiveAgents’ neural network. As detailed in [20], this evaluation is based on energy
consumption, the number of people that finished their routes before the simulation ends,
and the total time spent by people moving during their trip:

fitness = (1.0 × pPeople) − (0.6 × pTrip)−
(0.4 × pEnergy)

(1)

Send message to
ManagerAgent

with control
configuration

Await msg from
ManagerAgent
with Adaptive

Agent's address

Did
ManagerAgent

answer the
message?

Read light sensor

Read motion
sensor

Receive
communication
data from the
closest street

light

No

Yes

Send message to
AdaptiveAgent
with input data

Await msg from
AdaptiveAgent

Did
AdaptiveAgent

answer the
message?

Convert neural
network outputs'

values into
actuator values

No

Yes

Switch the light's
OFF/DIM/ON

Send message to
neighboring
street lights
(0.0/0.5/1.0)

Is the simulation
time finished?

No

END

Yes

Figure 2: Activity diagram of the streetlights.
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Figure 3: Activity diagram of the ObserverAgent.
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In order to identify the functional tests, we first created activity diagrams for the street
light agents and for the ObserverAgent, as depicted in Figures 2 and 3. The interested
reader may find more details about the application scenario in [20].

5 Test Approach: Multilevel-based Design

The main goal of a self-organizing system is to achieve global properties through local
interactions. Therefore, we propose to execute several functional ad-hoc tests at local and
global levels. The idea of the tests at the global level is to verify if the self-organized
system solves the overall problem. If these global tests pass, we can conclude that the
most basic tests (the intern ones), which were modeled at the local level, are also satisfying
the functional requirements. If a global test fails, we need to understand which part of
the system generated the failure, verifying the internal tests results. However, if we were
executing tests at system level (performance) or evaluating how the system self-organize,
we should verify the local tests independently of the global tests results. For example,
according to the performance tests proposed by Kaddoum et al. [14] to self-* systems,
we could verify whether the agents can reach the global solution by executing a desired
number of steps.

We need to customize these tests according to the application. In general, at the global
level, we should verify if the self-organized system is able to solve the problem for which
it is conceived [14]. For example, our streetlight application has the goal of achieving
an specific energy consumption target and maintaining the maximum visual comfort in
illuminated areas in order to enable people to finish their routes. If the multiagent system
does not solve this problem, we should investigate local tasks to understand why the
self-organizing process failed, as depicted in Figure 4.

Evaluate energy
consumption and
number of people
that finished their

routes

Do they solve  
the problem: 

Energy < 70% &&  
People == 100%?

Evaluate learning
tasks

Evaluate
scenario

requirements 
Error

Sucess

Evaluate
framework's
processes

Is there
an unsuccessful

test?

Yes

No

NO

YES

Evaluate
streetlight agent

design

Figure 4: Testing steps.

In our illustrative example, we can investigate the failures generated by the tasks
associated with the framework (i.e. the ManagerAgent cannot identify new streetlights
at the scenario), to the agent design (i.e. streetlight agents must detect people, but they
do not have motion sensors), tasks related to the application scenario (i.e. streetlights
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should communicate, but the distance between them is higher than the wireless range), or
the tasks related to the learning algorithm execution (i.e. the ObserverAgent is executing
the genetic algorithm wrongly, selecting the worst solutions to compose a new generation
instead of the best solutions).

5.1 Design and Implementation: A Publish-Subscribe based Architec-
ture

We developed a publish-subscribe-based architecture as a foundation for generating differ-
ent kinds of test applications for MASs at different levels. Our goal is to provide mecha-
nisms to capture and process logs generated by agents automatically. As depicted in Fig-
ure 5, their architecture consists of three layers: MAS Application (L1), Publish-Subscribe
Communication (L2), and Test Applications (L3). The Publish-Subscribe Communication
layer uses the RabbitMQ platform [24] for delivering logs from agents (publishers) to be
consumed by test applications (subscribers).

TEST
APPLICATIONS

(SUBSCRIBER	LAYER)

PUBLISH –
SUBSCRIBE

COMMUNICATION

MAS	
APPLICATION

(PUBLISHER	LAYER)
Agent1 Agent2 Agent3

Environment

SERVER

Queues

Subscriber	App	01–
Learning	Algorithm

Testing

Subscriber	App	02–
Agent	Design	

Testing

Subscriber	App	03–
Global	
Testing

Log	Structure:
agentType.
agentName.
action.
typeLog.
className.
methodName.
codeLine.
resource.
timestamp.
message.

Figure 5: A Publish-Subscribe-based architecture to test MASs.

Each agent publishes logs with annotations that are composed of the following tags:

• agentType: the type of the agent (e.g OBSERVER, STREETLIGHT). In JADE, it
refers to the name of the container where this agent lives;

• agentName: the name provided for the agent by the system developer/user (e.g
streetlight01, streetlight02, observer01);

• action: the event that caused the log generation (e.g readMotionSensor, selectBestIn-
dividuals, switchStreetLight);
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• typeLog : types of logs (e.g error, info, warning);

• className, methodName, codeLine: necessary information to identify which parts
of the code generated the event;

• resource: the main resource that has been manipulated or requested by an agent
during an event execution (e.g neuralController, streetlight01Info, memory). It may
be used to investigate all events that are related to a specific resource;

• timestamp: time that the log was created. It is used to sort all events into a single
timeline [6];

• message: a description of the event.

Thus, a log message must meet the pattern “(agentType).(agentName).(action).(typeLog).
(className).(methodName).(codeLine).(resource).(timestamp). (message).” Each appli-
cation will have a set of values that each tag may assume, except the message tag is an
open field.

All agents in the MAS application layer are also a TestableAgent type. As shown in
Figure 6, a Testable agent extends the JADE agent. Thus, it complies with FIPA speci-
fications. A Testable agent uses the RabbitMQ properties to send logs with annotations
as messages.

These logs can be published from any part of the agent’s code. Via the TestableAgent
class and JADE properties, some tags have their values attributed autonomously, such as
agentType, agentName and timestamp.

Figure 6: Testable Agent class.

The RabbitMQ autonomously delivers log messages to queues according to their tags’
values. As shown in Figure 5, each test application defines a binding key in order to
subscribe itself to consume messages from a specific queue. For example, a test applica-
tion that monitors only error logs from the Observer agent must have the binding key
“Observer.*.*.error.#.” Therefore, this application will consume any log with the tuples
(agentType,Observer) and (typeLog,error). It is also possible to create applications that

8



use multiple bindings. For example, if a performance test application needs to calculate
the number of Adaptive agents that are connected to the system, this application will
have to consume logs with different action values. Thus, it needs to consume logs with
the tuples (action,connectToSystem) and (action,beDestroyed).

Test applications do not interfere on the execution of each other. Each test class
extends the class RabbitMQConsumer that starts an independent process to consume
messages from a specific queue. We used the Template Method Pattern [11] to model the
consumeMessage method. Thus, to consume and process particular log messages, a test
class must overwrite and customize the methods getListBindingKey() and processData().

By using queues, the publisher generates a set of information elements without the need
of knowing which applications will consume them. In addition, more than one application
can consume the same data, but giving them different treatments. To understand more
about the characteristics of RabbitMQ that we used in our approach, see https://www.

rabbitmq.com/tutorials/tutorial-five-java.html (Accessed in 03/2019).

5.2 Adapting FIoT Agents to be Testable Agents

Figure 7: Making FIoT’s agents as Testable Agents.

Our first step was to allow FIoT agents to publish logs during the application execution,
extending the TestableAgent class, as shown in Figure 7. Then, we set the log values that
can be published by each agent type. For example, the AdaptiveAgent can use the word
‘receiveIputDataFromSmartThing’ to replace the tag action in the annotated log, while
the ObserverAgent can use ‘startGeneticAlgorithm’.

6 Tests and Results

Our test approach takes two perspectives into account: the local and the global. The local
perspective considers the tasks that an individual agent in the collection of streetlight
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Figure 8: Setting log values for each Testable FIoT agent.

agents must execute, such as collecting data, switching the light and communicating with
the other agents. The global perspective takes the global tasks into account, such as ver-
ifying whether the self-organized system guarantees that people finish their routes before
the simulation ends and whether the system achieves a pre-specified energy consumption
target.

In this experiment, we have one test application consuming logs related to the global
perspective, while we have two test apps related to the local perspective: one to monitor
the ObserverAgent and its learning algorithm execution and another one to monitor the
streetlight agents.

By using our proposed architecture, we created some test applications to execute func-
tional tests at local and global levels. Thus, this section presents part of the test plan that
we created and performed for testing the application presented in the section 4.

6.1 Local and Global tests

We executed various test cases, taking seven parameters into account: (i) level (e.g. local
or global); (ii) sub-level (e.g. related to the learning, framework, agent design or scenario
requirements); (iii) function (e.g. composed of a set of actions; for example, the function
evaluateSolution may be composed of the actions calculateEnergy and calculateNumber-
People); (iv) procedure (e.g. a general description of the test); (v) input (e.g. a resource,
a component); (vi) expected value (e.g. the result that will be produced when execut-
ing the test if the program satisfies its intended behavior); and (vii) validation method
(e.g. the strategies that a tester performs to evaluate the system, comparing the program
execution against expected results). Each test case execution produced several logs with
meta-information annotations, which were consumed by test applications. Then, we used
these logs as a validation method, as shown in Table 1.
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Table 1: Functional tests at local and global levels (Simplified Table).

Level Sub-level Func. Procedure Input
Expected

value

Validation Method
(logs sorted into a

timeline)

Local

Framework

create
Adaptive

Agent
to the

streetlight

Manager
Agent

creates a new
Adaptive

Agent
to the

streetlight

Control
configuration
(number of

inputs
and outputs)

Adaptive
Agent

with the
selected
control

1)MANAGER.
receiveMsgFromSmartThing.

*.*.*.*.smartThing.#
2)MANAGER.

createAdaptiveAgent.INFO.#
3)AdaptiveAgent.lightsAgent.

connect.#
4)MANAGER.

sendMsgToSmartThing.INFO.#
5)AdaptiveAgent.lightsAgent.

receiveInputDataFromSmartThing.#

Scenario
collect
data

streetlight 10
(node10)

reads
its sensors

data

streetlight’s
motion and

light sensors,
and

communication
input

Adaptive
Agent

receives
data

from the
streetlight’s

sensors

1)lightContainer.node10.
receiveWirelessData.#

2)lightContainer.node10.
readLightSensor.#

3)lightContainer.node10.
readMotionSensor.#

4)lightContainer.node10.
sendMsg.*.*.

msgAdaptiveAgent
5)AdaptiveAgent.lightsAgent.

receiveInputDataFromSmartThing.#

Learning
process
output

AdaptiveAgent
uses a

neural network
to process

sensors
data and

generate output

streetlight’s
sensors data

Adaptive
agent

calculates
two outputs

(led and
wireless
data)

1)AdaptiveAgent.lightsAgent.
useControllerToGetOutput.#
2)AdaptiveAgent.lightsAgent.
sendOutputToSmartThing.#

Learning
change the

neural
network

ObserverAgent
uses an

individual’s
genes

to set the ANN
weights

(see
subsection

3.2)

an individual
from

the current
generation

the ANN
weights

sequence is
equal to the

current
individual

1)OBSERVER.
chooseAdaptationMethod.#

2)OBSERVER.
selectNeuralConfiguration.#

3)OBSERVER.
useIndividualGenesToANN.#

4)OBSERVER.
startExecutionWithController

Configuration.#

Scenario

switch
the

light
ON

Streetlight
Agent

(node 10)
switches the

light ON

neural
network’s

light output
value

is positive

node10’s
light sensor
detects a

value
equal or

higher than
its light

brightness

1)lightContainer.node10.
receiveNeuralNetworkCommand.#

2)lightContainer.node10.
switchLightON.#

3)lightContainer.node10.
detectLight.#

4)lightContainer.lights.
finishSimulation.#

Global MAS

evaluate
the

selected
solution

Observer
Agent

analyzes
the energy

consumption
and whether

everyone
finished their
routes during
the selected

solution

the best
individual
of the last
generation

energy
consumption
is less than

70%
and

everybody
finished

their
routes

1)OBSERVER.
startExecutionWith

ControllerConfiguration.#
2)OBSERVER.

readSimulationResults.#
3)OBSERVER.

calculateEnergy.#
4)OBSERVER.

achieveEnergyTarget.#
5)OBSERVER.

achievePeopleTarget.#
6)OBSERVER.

calculateFitness.#11



To validate a test case, the test application must verify whether the logs are appearing
in the order described in the Validation Method column. Therefore, after the developer
informs the logs from the validation column, the test application will automatically create
a state machine, where each state represents an action. For example, Figures 9 and 10
illustrate the state machine that were created to validate the execution of the global test
“evaluate solution” and the local test “switch the light ON”, respectively. As shown,
the verification program defines the transition between states as a log. A transition will
only occur when the expected log appears. Each state has a maximum wait time for the
expected log(s). Thus, if the maximum wait time exceeds a threshold, an error linked
to the current state will be generated. This situation indicates that an agent performed
an unexpected behavior and the action was not successful executed. For example, if the
multiagent system does not self-organize to a satisfactory solution, it will not produce the
log “OBSERVER.observer.achieveEnergyTarget.#”. Thus, an error linked to the state
“calculateEnergy” will be generated, as depicted in Figure 9.

setNeuralNetwork

readSimulationResults

calculateEnergy

OBSERVER.observer. 
startExecutionWithControllerConfiguration. 
info.#

ERROR

END

NO

Time expired?

YES

calculatePeople

calculateTripDuration

OBSERVER.observer. 
calculateEnergy. 
info.#

OBSERVER.observer. 
readSimulationResults. 
info.#

Time expired?
YES

OBSERVER.observer. 
achieveEnergyTarget. 
info.#

Time expired? 

YES
OBSERVER.observer. 
achievePeopleTarget. 
info.#

OBSERVER.observer. 
calculateFitness. 
info.#

TESTE OK

Figure 9: Simplified state machine for verifying test cases generated for the function
“evaluate selected solution”.

In order to force test failure and verify if these test applications were able to identify
faults, we forced certain classes to act incorrectly during the execution of the program
over some local tests. For example, to test the function “switch the light ON”, we inserted
a defect that makes some streetlights to go dark during the simulation. Therefore, a
streetlight agent that switched its light ON on the previous execution, did not detect
brightness on the current execution and failed. As the test application did not receive the
log “LIGHT.light1.detectLight.info.#”, its state machine indicated a failure in the state
“switchLightON,” as depicted in Figure 11. Considering that a person can only move if
his current and next positions are not completely dark, it interferes on the overall solution
evaluation. Consequently, if a person does not finish his or her route, the test at the global
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processNeuralNetwork

switchLightON

switchLightOFF

detectLight

LIGHT.light1. 
receiveNeuralNetworkCommand. 
info.#

LIGHT.light1.detectLight.info.#

LIGHT.light1. 
switchLightOFF.info.#

LIGHT.light1.switchLightON.info.#

ERROR

LIGHT.light1. 
finishSimulation. 
info.#

LIGHT.light1. 
receiveNeuralNetworkCommand. 
info.#

END

NO

Time expired?

YES

TESTE OK

Figure 10: Simplified state machine for verifying test cases generated for the functions
“switch the light ON” and “switch the light OFF”.

level will also fail. Figure 12 depicts the logs that were generated by agents while this
situation was being executed. Figure 13 depicts the global test that was executed without
this defect.

Figure 11: Executing the state machine to test the function “switch the light ON”: fail-
ure generated between states “switchLightON” and “detectLight” - specific log was not
consumed.

Figure 12: Executing the state machine to test the evaluation solution: failure generated
between states “calculatePeople” and “calculateTripDuration” - because the machine did
not receive the log that indicates that everyone finished their routes during the selected
solution.
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Figure 13: Executing the state machine to test the evaluation solution.

Using our proposed solution, a test application can automatically select those logs
from different agents that are essential for a specific test case and present them sorted
in a single timeline. As a result, the interface depicted in Figure 14 shows just the logs
that were consumed by the evaluation test application according to this binding key list.
In addition, all logs are organized in a single timeline. As shown, not all logs depicted
in Figure 15 were presented in this interface, but only the logs relevant to the execution
of this test case. Thus, we were able to verify these logs in order to find the fault that
generated the failure indicated by the state machine.

Figure 14: Subscribing to receive only logs related to the evaluation solution testing.

Figure 15: Subscribing to receive logs from all agents.

6.2 Test Results

As shown in Table 1, we executed some functional tests at local and global levels. By using
state machines, the test applications were able to validate these test cases by comparing
the logs consumed from the MAS publisher against the logs listed in the “Validation
Method” column. In addition, we also conducted some tests by inserting software failures
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and verifying if our test software could be useful for detecting these faults. As a result,
after the state machine had indicated a failure, the developer could use the interface to
identify the fault and reduce the diagnosis time.

7 Conclusions and Prospects

We presented a promising decoupled architecture that allows a developer to execute tests
simultaneously and independently while running a MAS. In addition, we provided evidence
of the applicability of our proposal, using it to test a self-organizing MAS application.
We showed that it is possible to develop different tests for a self-organizing multi-agent
system at local and global levels by using logs containing meta-information annotations
and a publish-subscribe technology.

In the following we are proposing future directions that we intend to investigate.

7.1 Other Application Domains

In this paper, we described a self-organizing application in the IoT domain. But, our
approach can also be applied to other application domains. For example, we may con-
sider a self-organizing swarm robotics [10], where the robot behavioral mechanisms are
automatically generated by using a learning algorithm. Floreano et al. [10] describes a set
of robotic agents that self-organizes to forage in an environment containing a food and a
poison sources. Their overall goal is to increase the robot density around the food. Thus,
these robotic agents may learn to distinguish the poison source from the food source and to
signal to the other robots the food position. Therefore, we could develop a test application
at the global level to evaluate if all robots are at the food source after the simulation ends.
At the local level, we can evaluate the learning algorithm and the physical characteristics
of the robots, such as their sensors and actuators.

7.2 Physical Environment

The self-organizing process can occur in a simulated or in a physical environment. How-
ever, many devices could be damaged if we were to use real equipment, since several con-
figurations must be tested during the training process. Therefore, to execute the training
algorithm, we decided to simulate how smart street lights behave in a fictitious neighbor-
hood. After the training process, we can transfer the evolved neural network to physical
devices and observe how they behave in a real scenario. As our approach is based on a
publish-subscribe platform, it works independent on the programming language. But we
need to adapt our physical streetlights to publish logs at runtime.

7.3 Other perspectives

We considered two main perspectives: the local and the glocal. But we could have ex-
plored other perspectives, such as: (i) a framework perspective (i.e. evaluating the agent
interactions generated because of the framework that we used to create the application);
(ii) a learning perspective (i.e. a test application to inspect the interactions generated
because of the learning algorithms); (iii) a designing perspective (i.e. a test application
to evaluate the sensors, actuators and analysis architecture that were selected to compose
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the agent), and (iv) a scenario perspective (i.e. a test application to consume the logs
generated by the application scenario).

7.4 Testing Prediction and Self-Adaptive Applications

There are other non-deterministic characteristics that have been usually associated to
current MAS systems, such as learning and self-adaptation. It is possible to extend our
approach to test these kinds of applications. For example, Briot et al. [5] describe a
multiagent architecture to monitor fruit storage and offer predictions about shelf life.
Analogously, this application has a global goal of achieving an specific target accuracy. If
this system does not present a desired result to the new dataset entries, we can implement
local tests to evaluate the sensors measuring the storage conditions, to test the back-
propagation algorithm, and the communication among the agents.

7.5 Testing Self-organizing Neural Networks

According to Amari [1], non supervised learning scheme is sometimes called self-organization.
It occurs when a neuron modifies its weights depending only on its state and input signal,
without a teacher or error signal. In such case, tests at the global level may evaluate
the general purpose of the self-organizing neural network, while tests at the local level
may evaluate each neuron, verifying the algorithms for encoding inputs and decoding out-
puts, whether the input signals received by each neuron is part of the information source,
whether the output of a neuron is received as an input by another neuron, etc. In addition,
we can also develop a test to consume logs from the application scenario, allowing us to
create a map between context changes [17] and neural changes.
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