
ISSN 0103-9741

Monografias em Ciência da Computação

nº 04/2021

An extension to the minimal grammar problem

Alex Garcia

Edward Hermann Haeusler

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 04/2021 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena Setembro, 2021

An extension to the minimal grammar problem

Alex Garcia and Edward Hermann Haeusler

garcia@ime.eb.br, hermann@inf.puc-rio.br

Abstract. The smallest grammar problem consists of finding the smallest CFG that gen-
erates only a given string. This is an NP-hard problem, and there are various heuristics to
solve it described in the literature. In this paper, we propose an extension to this problem,
allowing the grammars to have a reverse operator and a complement operator. We argue
that the heuristics used to find approximate solutions to the smallest grammar problem can
be easily adapted to these extensions. Experiments confirm that these extensions perform
better than plain CFGs when applied to virus genome compression.

Keywords: Smallest Grammar Problem; Data Compression; Hierarchical Structure In-
ference; approximation algorithm, Sequitur, IRR.

Resumo. O problema da menor gramática consiste em determinar a menor gramática
livre de contexto que gera um único string dado como entrada. Este problema é NP-difícil,
existem várias heurísticas para resolvê-lo descritas na literatura. Neste trabalho propomos
estender este problema, permitindo que as gramáticas tenham um operador de reverso e
um operador de complemento. Argumentamos que as heurísticas usadas para encontrar
soluções aproximadas para o problema da menor gramática podem ser facilmente adaptadas
para estas extensões. Experimentos confirmam que estas extensões apresentam melhores
resultados do que as GLCs tradicionais quando aplicadas à compressão de genoma de vírus.

Palavras-chave: Problema da menor gramática; Compressão de dados; Inferência de es-
trutura; algoritmo de aproximação, Sequitur, IRR.

In charge of publications:
PUC-Rio Departamento de Informática - Publicações
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: publicar@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

Table of Contents

1 Introduction 1

2 Small Grammars 1
2.1 Nonterminal order . 2
2.2 Minimal Grammars . 3

3 Grammars size 3

4 Grammars with reverse operator 4

5 Grammars with complement operator 5

6 Augmented Grammars 7

7 Heuristics and their ACFG generalization 9
7.1 Sequitur . 9
7.2 IRR . 9

8 Experiments 10
8.1 Genome sequences . 10
8.2 Random Files compared to genome sequences 11
8.3 Size of alphabet . 13

9 Conclusions and further works 14

References 15

iii

1 Introduction

The smallest grammar problem involves finding one of the smallest context-free gram-
mar (CFG) that generates the language with only a single given string ω. The decision
version of this problem is NP-complete. This problem has been extensively researched. [7]
presents a survey of various heuristics and proposes new ones.

Sequitur [18] is an efficient algorithm based on a eager heuristic to solve this prob-
lem, its authors claim that finding a grammar that generates a string entails identifying
structure in the string. The authors discuss applications of this structure inference in
music, natural language texts, descriptions of plants, graphical figures, DNA sequences, a
genealogical database, programming languages and execution traces. Other authors men-
tion applications such as: data compression [6] [14] [13] [20] [15] [1] [2], identify language
properties [8], nucleic acid compression [9], biologically meaningful microRNA sequence
identification [9], program optimization [19] and text-to-speech conversion [19].

A further advantage of using grammars as a data compression approach is that various
problems regarding the generated string can be solved efficiently without decompression,
[16] surveys several of them, such as:

• Equality Checking. Is the string generated by a grammar G1 equal to the one gen-
erated by G2? It is noteworthy that if one does not restrict the check to grammars
generating single strings, then the problem is undecidable.

• Compressed Pattern Matching. Is the string generated by a grammar G1 a substring
of the one generated by G2?

• Compressed Membership Problem. Is the string generated by a grammar G1 in a
given CFL L?

In the present work, we investigate an extension of the smallest grammar problem. We
introduce augmented context-free grammar (or augmented grammar) as context-free gram-
mar enriched with reverse and complement operators. We consider the problem of finding
the smallest augmented grammar that generates a given string. It is well-known that
searching for the reverse of a substring in a string has the same complexity as the search of
the substring. The same is true for the complement operator, defined in section 9. There-
fore, we can apply most, if not all, heuristics for solving the smallest grammar problem
with little change to the augmented grammar problem with no impairment to its asymp-
totic complexity measures. We argue that this extension has most of the applications as
the original smallest grammar problem. It sure can be applied to data compression. For
this purpose, its enhanced expression capability allows the minimal augmented grammar
to beat the minimal context-free grammar by a linear factor. Regarding natural language
structure identification, it may be able to benefit from the inversion [4], whereas, in genet-
ics, inversion is a type of chromosomal rearrangement [21].

2 Small Grammars

In this section, we introduce the concept of Small Grammars. This concept is very sim-
ilar to Admissible Grammars defined in [14], the major difference is that Small Grammars
may generate the empty string.

1

We assume the reader is familiar with a computer science presentation of CFG such as
[12]. We define a Small Context-Free Grammar (SCFG) to be a CFG GS = (N,Σ, P, S),
in which:

1. L(G) has exactly one string, ω;

2. G is non ambiguous;

3. all nonterminals in N are used in any derivation S ⇒∗ ω;

It is easy to verify that the following properties hold for any SCFG GS = (N,Σ, P, S).

Theorem 2.1. Given an SCFG GS = (N,Σ, P, S), starting from any nonterminal A ∈ N
it is possible to generate exactly one string.

Proof. From the SCFG definition, we know that there is exactly one string ω such that
S ⇒∗ ω, and that all nonterminals in N are used in this derivation. So this derivation can
be rewritten as: S ⇒∗ αAβ ⇒∗ αγβ = ω. Therefore A generates at least the string γ.
Suppose that also generates a different string γ2, then S ⇒∗ αAβ ⇒∗ αγ2β 6= ω, which
contradicts condition 1 of the SCFG definition. Hence A generates only γ.

Definition 2.1 (Yield). Given an SCFG GS = (N,Σ, P, S) and v ∈ (Σ ∪N)∗, yield(v) is
the string defined as:

• If a ∈ Σ, yield(a) = a.

• If A ∈ N , yield(a) = w, where w is the single string generated by w.

• yield(ε) = ε.

• If u ∈ (Σ ∪N) and v ∈ (Σ ∪N)∗, yield(uv) = yield(u)yield(v).

Theorem 2.2. Given an SCFG GS = (N,Σ, P, S), for each A ∈ N there is exactly one
rule A→ α ∈ P .

Proof. Suppose there are two different rules A → α,A → β ∈ P , then if yield(α) 6=
yield(β), A generates two strings, which contradicts theorem 4.1, whereas if yield(α) =
yield(β), the grammar is ambiguous, therefore not an SCFG.

As a consequence of this fact we sometimes use the words rule and nonterminal indis-
tinguishably for SCFGS.

2.1 Nonterminal order

Definition 2.2 (ρ). Given a CFG G = (N,Σ, P, S). If A,B ∈ N , and we define BρGA if
and only of A⇒∗G αBβ, where α, β ∈ (Σ ∪N)∗

Theorem 2.3. If G is an SCFG then ρG is a partial order.

2

Proof. Observe that because ⇒∗G is reflexive and transitive, the relation ρG is always a
reflexive and transitive relation. To prove that it is antisymmetric, suppose that AρGB
and BρGA, for some A,B ∈ N,A 6= B. Then A ⇒∗G α1Bβ1 and B ⇒∗G α2Aβ2 then the
unique derivation S ⇒∗ αAβ ⇒∗ αγβ = ω can be rewritten as S ⇒∗ αAβ ⇒∗ S ⇒∗
αα1Bβ1β ⇒∗ αα1α2Aβ2β1β ⇒∗ αα1α2γβ2β1β, which either generates a second string or
else (if αi = βi = ε) makes the grammar ambiguous. In either case the grammar is not an
SCFG.

Because ρG is a partial order, we will write AρGB as A ≤ B when G is an SCFG.

2.2 Minimal Grammars

Another simple fact, which we will care to prove is that the minimal CFG (i.e., the
CFG with the smallest size) that generates a single string ω is an SCFG. But first, we
have to define the size of a CFG. We will defer the analysis of the size concept to the next
section. To define minimal grammars we will simply state the simplest CFG grammar size
definition, used in [7]:

Definition 2.3 (|G|). Given a CFG G = (N,Σ, P, S), we define |G| =
∑

A→α∈P (|α|)

Several algorithms in the literature use the decrease of |G| as a termination condi-
tion, hence the use of different grammar size measures will make these algorithms behave
differently. Unless otherwise stated, from now on we will use the measure defined above.

Theorem 2.4. The minimal CFG that generates a single string ω is an SCFG.

Proof. Let Gm be the minimal grammar that generates only ω. Suppose that Gm is not
an SCFG then either:

1. L(Gm) 6= {ω}. In this case Gm is not a solution to the problem.

2. G is ambiguous. In this case ω has multiple derivation trees relative to Gm, if you
throw out the rules and nonterminals not used in the first tree, you have a new
Grammar G2, G2 < Gm, L(G2) = {ω}, hence Gm is not minimal.

3. one nonterminal A ∈ N is not used in a derivation S ⇒∗ ω; in this case if you
throw out this terminal and its associated rule, you also have a new Grammar G2,
G2 < Gm, L(G2) = {ω}, hence Gm is not minimal.

3 Grammars size

In order to evaluate compression we also use the relative grammar size, RGS(G) defined
as the grammar size over the size of the original string, therefore lower values of RGS(G)
are associated to better compression.

Definition 3.1 (RGS(G)). Given G = (N,Σ, P, S), we define RGS(G) = |G|/|yield(S)|.

In the previous section we used a simple notion of grammar size, following [7]. A similar
notion is give in [19] (followed by [6]).

3

Definition 3.2 (|G|r). Given a CFG G = (N,Σ, P, S), we define |G|r =
∑

A→α∈P (|α|+1)

If r = |P | then it is clear that the two definitions are related by the formula |G|r =
|G| + r. Note that for small context-free grammars one can separate different rules by a
line break (since each nonterminal has exactly one rule), which justifies this definition.

Let us analyze the representation of the right side of a rule, in the context of the
minimal grammar problem. We are given a fixed alphabet (for example, ASCII symbols)
and we are supposed to find out the minimal CFG that generates an arbitrarily long
string. In this context, each terminal symbol needs 1 unit (1 byte, for example) for its
representation, but the representation of each nonterminal symbol would depend on the
number of nonterminals. If we represent each nonterminal as Ni, i.e., an escape symbol,
followed by a number in base 10 we can represent the ith nonterminal with 1+dlog10(i+1)e,
then perhaps a more precise notion of size would be the following one.

Definition 3.3 (|G|rep). Given a CFG G = (N,Σ, P, S), we define
|G|rep =

∑
A→u1u2...un∈P (

∑n
i=1(size(ui))) where:

size(ui) =

{
1 if ui is a terminal
1 + dlog10(j + 1)e if ui is the jth nonterminal

(1)

If n = |N | then it is clear that the definitions are related by the formula |G|rep <
|G|(1 + dlog10(n + 1)e). An issue of the |G|rep is that it depends on the particular order
chosen to represent the nonterminals. As mentioned before, unless otherwise stated, we
will use the simplest measure |G| throughout this work.

4 Grammars with reverse operator

Definition 4.1 (Reverse). For terminal strings in Σ∗, we define the reverse operator in
the following way:

• εr = ε

• (aw)r = wra, if w ∈ Σ∗ and a ∈ Σ

By this definition, if Σ = {a, b, c} then:
(abc)r = c(ab)r = cb(a)r = cb(aε)r = cba(ε)r = cbaε = cba

Definition 4.2 (NR). Given a set of nonterminal symbols, N , we define a set of new
nonterminals NR = {AR|A ∈ N}. In this case AR is not a reverse operator, but simply
the name of the new nonterminal symbol in NR.

Definition 4.3 (Reverse). Given a string (sentential form) over the alphabet ΓR = (Σ ∪
N ∪NR), we extend the definition of the reverse operator in the following way:

• εr = ε

• (aw)r = wra, if w ∈ (ΓR)∗ and a ∈ Σ

• (Aw)r = wrAR, if w ∈ (ΓR)∗ and A ∈ N

• (ARw)r = wrA, if w ∈ (ΓR)∗ and AR ∈ NR

4

Definition 4.4 (RCFG). A CFG with reverse operator (RCFG) is a tupleG = (N,Σ, P, S),
where:

• N is a finite set nonterminals;

• Σ is the alphabet of terminal symbols;

• P is a set of productions rules of the form A→ α, where:

– A ∈ N is a nonterminal;
– α ∈ (Σ ∪N ∪NR)∗ is a sentential form;

• S ∈ N is the initial symbol.

Definition 4.5 (One-step derivation relation on (ΓR)∗). Given a RCFG G = (N,Σ, P, S),
we say that w1 ⇒G w2 when:

• w1 = γ1Aγ2, w2 = γ1αγ2, A→ α ∈ P , γ1, γ2, α ∈ (ΓR)∗

• w1 = γ1A
Rγ2, w2 = γ1α

rγ2, A→ α ∈ P , γ1, γ2, α ∈ (ΓR)∗

Definition 4.6 (Multiple steps derivation relation on (ΓR)∗). ⇒∗G is the reflexive transitive
closure of ⇒G.

When the grammar is clear from the context we write simply ⇒ for the one-step
derivation relation and ⇒∗ for the multiple steps derivation relation.

Definition 4.7 (L(G)). Language generated by a RCFG G = (N,Σ, P, S):
L(G) = {ω ∈ Σ∗ | S ⇒∗ ω}

Theorem 4.1. Given a RCFG G = (N,Σ, P, S), A⇒∗G ω if and only if AR ⇒∗G ωr.

Proof. The theorem follows trivially from the definition of ⇒G.

Since the presence of the reverse operator can be interpreted as implicit new rules,
the reverse operator does not increase the power of CFG grammars, i.e., the class of
languages generated by CFG and CFGR grammars is the same, namely, the context-free
languages. The presence of reverse operators may though increase the compression power
of a grammar.

5 Grammars with complement operator

Definition 5.1 (Complement Relation). A relation on an alphabet Σ is any relation ρ on
Σ such ρ ◦ ρ is the identity relation.

Though the definition allows many different relations in the experiments we will work
only with two irreflexive relations on even size alphabets: For experiments on genetic se-
quences we use a four-letter alphabet with the Watson–Crick complement relation, whereas
for the remaining files we use a 256 letter binary alphabet, where each byte (8-bit value)
is one letter, and ρ is the relation that complements the least significant bit.

5

Definition 5.2 (Complement operator). For terminal strings in Σ∗ and a complement
relation ρ on Σ, we define the complement operator in the following way:

• εc = ε

• (aw)c = ρ(a)wc, if w ∈ Σ∗ and a ∈ Σ

By this definition, if Σ = {a, t, c, g} and ρ = {(a, t), (t, a), (c, g), (g, c)} then:
(gataca)c = ρ(g)(ataca)c = cρ(a)(taca)c = ctρ(t)(aca)c = ctaρ(a)(ca)c = ctatρ(c)(a)c =
ctatgρ(a) = ctatgt

Definition 5.3 (NC). Given a set of nonterminal symbols, N , we define a set of new
nonterminals NC = {AC |A ∈ N}. In this case, AC is not a complement operator, but
simply the name of the new nonterminal symbol in NC .

Definition 5.4 (Extended Complement Operator). Given a string (sentential form) over
the alphabet ΓC = (Σ ∪ N ∪ NC), and a complement relation ρ on Σ we extend the
definition of the complement operator in the following way:

• εc = ε

• (aw)c = ρ(a)wc, if w ∈ (ΓC)∗ and a ∈ Σ

• (Aw)c = ACwr, if w ∈ (ΓC)∗ and A ∈ N

• (ACw)c = Awr, if w ∈ (ΓC)∗ and AC ∈ NC

Definition 5.5 (CCFG). A CFG with complement operator (CCFG) is a tuple G =
(N,Σ, P, S, ρ), where:

• N is a finite set nonterminals;

• Σ is the alphabet of terminal symbols;

• P is a set of productions rules of the form A→ α, where:

– A ∈ N is a nonterminal;

– α ∈ (Σ ∪N ∪NC)∗ is a sentential form;

• S ∈ N is the initial symbol.

• ρ is a complement relation on Σ.

Definition 5.6 (One-step derivation relation on (ΓC)∗). Given a CCFGG = (N,Σ, P, S, ρ),
we say that w1 ⇒G w2 when:

• w1 = γ1Aγ2, w2 = γ1αγ2, A→ α ∈ P , γ1, γ2, α ∈ (ΓC)∗

• w1 = γ1A
Cγ2, w2 = γ1α

cγ2, A→ α ∈ P , γ1, γ2, α ∈ (ΓC)∗

Definition 5.7 (Multiple steps derivation relation on (ΓC)∗). ⇒∗G is the reflexive transitive
closure of ⇒G.

6

When the grammar is clear from the context we write simply ⇒ for the one-step
derivation relation and ⇒∗ for the multiple steps derivation relation.

Definition 5.8 (L(G)). Language generated by a CCFG G = (N,Σ, P, S, ρ):
L(G) = {ω ∈ Σ∗ | S ⇒∗ ω}

Theorem 5.1. Given a CCFG G = (N,Σ, P, S), A⇒∗G ω if and only if AC ⇒∗G ωc.

Proof. The theorem follows trivially from the definition of ⇒G.

Like the reverse operator, the complement operator can be interpreted as implicit new
rules, therefore the complement operator does not increase the power of CFG grammars.
The presence of complement operators may though increase the compression power of a
grammar.

6 Augmented Grammars

An Augmented Grammar is a CFG augmented with both reverse and complement op-
erators. To model the behavior of these operators working together we chose to understand
that there are two independent labels (C and R) in the nonterminals.

Definition 6.1 (NCR). Given a set of nonterminal symbols, N , we define a set of new
nonterminals NCR = {ACR|A ∈ N}. In this case, ACR is simply the name of the new
nonterminal symbol in NCR.

Then we extend Reverse and Complement definitions to strings (sentential forms) over
the alphabet (Σ ∪N ∪NC ∪NR ∪NCR)

Definition 6.2 (Complement). Given a string (sentential form) over the alphabet ΓCR =
(Σ∪N ∪NC ∪NR ∪NCR), and a complement relation ρ on Σ we extend the definition of
the reverse operator in the following way:

• εc = ε

• (aw)c = ρ(a)wc, if w ∈ (ΓCR)∗ and a ∈ Σ

• (Aw)c = ACwr, if w ∈ (ΓCR)∗ and A ∈ N

• (ARw)c = ACRwr, if w ∈ (ΓCR)∗ and A ∈ NR

• (ACw)c = Awr, if w ∈ (ΓCR)∗ and AC ∈ NC

• (ACRw)c = ARwr, if w ∈ (ΓCR)∗ and ACR ∈ NCR

Definition 6.3 (Reverse). Given a string (sentential form) over the alphabet ΓCR =
(Σ∪N ∪NC ∪NR∪NCR), we extend the definition of the reverse operator in the following
way:

• εr = ε

• (aw)r = wra, if w ∈ (ΓCR)∗ and a ∈ Σ

• (Aw)r = wrAR, if w ∈ (ΓCR)∗ and A ∈ N

7

• (ACw)r = wrACR, if w ∈ (ΓCR)∗ and AC ∈ NC

• (ARw)r = wrA, if w ∈ (ΓCR)∗ and AR ∈ NR

• (ACRw)r = wrAC , if w ∈ (ΓCR)∗ and ACR ∈ NCR

Definition 6.4 (ACFG). An Augmentd Context-Free Grammar (ACFG) is a tuple G =
(N,Σ, P, S, ρ), where:

• N is a finite set nonterminals;

• Σ is the alphabet of terminal symbols;

• P is a set of productions rules of the form A→ α, where:

– A ∈ N is a nonterminal;
– α ∈ (Σ ∪N ∪NC ∪NR ∪NCR)∗ is a sentential form;

• S ∈ N is the initial symbol.

• ρ is a complement relation on Σ.

Definition 6.5 (One-step derivation relation on (ΓCR)∗). Given an ACFGG = (N,Σ, P, S, ρ),
we say that w1 ⇒G w2 when:

• w1 = γ1Aγ2, w2 = γ1αγ2, A→ α ∈ P , γ1, γ2, α ∈ (ΓCR)∗

• w1 = γ1A
Rγ2, w2 = γ1α

rγ2, A→ α ∈ P , γ1, γ2, α ∈ (ΓCR)∗

• w1 = γ1A
Cγ2, w2 = γ1α

cγ2, A→ α ∈ P , γ1, γ2, α ∈ (ΓCR)∗

• w1 = γ1A
CRγ2, w2 = γ1(α

c)rγ2, A→ α ∈ P , γ1, γ2, α ∈ (ΓCR)∗

Definition 6.6 (Multiple steps derivation relation on (ΓCR)∗). ⇒∗G is the reflexive tran-
sitive closure of ⇒G.

When the grammar is clear from the context we write simply ⇒ for the one-step
derivation relation and ⇒∗ for the multiple steps derivation relation.

Definition 6.7 (L(G)). Language generated by an ACFG G = (N,Σ, P, S, ρ):
L(G) = {ω ∈ Σ∗ | S ⇒∗ ω}

Theorem 6.1. Given an ACFG G = (N,Σ, P, S, ρ), then:

• A⇒∗G ω if and only if AC ⇒∗G ωc.

• A⇒∗G ω if and only if AR ⇒∗G ωr.

• A⇒∗G ω if and only if ACR ⇒∗G (ωc)r.

Proof. The theorem follows trivially from the definition of ⇒G.

In the case of CFGs, we consider each nonterminal as having unitary length, following
the same idea, to compute the size of an ACFG we consider each nonterminal in (N ∪
NC ∪NR ∪NCR) to have one unit length.

Definition 6.8 (|G|). Given an ACFG G = (N,Σ, P, S, ρ), we define |G| =
∑

A→α∈P (|α|)

8

while (c=getchar()!=EOF) {
append c to the RHS of the rule S → α.
while there is a digram d occuring twice {
// both appending c and replacing d by Nd

// may create a digram occuring twice
if (other occurrence is the RHS of Nd → d) {

replace d by Nd

} else {
create a new rule Nd → d
replace both d occurrences by Nd

}
if (there is a rule r used only once) {

expand r
}

}
}

Table 1: Sequitur Algorithm.

7 Heuristics and their ACFG generalization

The goal of this section is to argue that very little modification is needed in the Sequitur
or IRR algorithms to adapt them to ACFGs.

7.1 Sequitur

Sequitur [18] is a linear time heuristics to the minimal grammar problem. A high-level
description of the algorithm is given in table 1.

Sequitur can be implemented in O(n) time by representing the RHS of each rule as a
list of symbols in (Σ ∪ N) and keeping a hashtable with a pointer for the occurrence of
each digram.

To adapt the algorithm to ACFGs, you can simply choose a canonical digram between
w,wr, wc and wcr, for example, the first in alphabetical order, and always use the canonical
digram when accessing the hashtable, besides you should observe the right choice between
Nd, N

R
d , N

C
d and NCR

d when replacing the digram d.

7.2 IRR

Table 2 shows IRR algorithm, described in [6], into which most offline algorithms for
minimal grammars fit. In the following description, repeats(P) denotes all strings with two
or more non-overlapping occurrences in the RHS of P rules, f(w,P) is a scoring function
to chose the "best" string according to some heuristic, and Pw→N is the set of grammar
rules produced by replacing all occurrences of w by N in the RHS of the set of rules P.

Common choices for the function f(w,P) are:

• f(w,P) = |w|. This heuristic will substitute the longest repeating string first. Fol-
lowing [6] we will call IRR algorithm with this function IRR-ML. It is used in LFS2

9

IRR(s)
begin

N ← {S}
P ← {S → s}
while (∃w : w ← argmaxα∈repeats(P)f(α, P)) and (|Pw→Nw | < |P |)

N ← N ∪ {Nw}
P ← Pw→Nw ∪ {Nw → w}

end-while
end

Table 2: IRR Algorithm.

[17] other works such as [5] use similar ideas but do not search for string matches in
the newly generated rules.

• f(w,P) = #occurrences(w). This heuristic will substitute the string with most rep-
etitions first. Following [6] we will call IRR algorithm with this function IRR-MO.
The implementation in this work uses a generalized suffix tree for finding the set
repeats(P), therefore all w are maximal substrings with a given number of repeti-
tions. This is the same idea used by the Re-Pair algorithm as analyzed in [7], whereas
the original Re-Pair description in [15] works with strings of length 2.

• f(w,P) = |P | − |Pw→Nw |. This heuristic will substitute the string which will cause
the most reduction in the grammar size. This function is used in [19]. Experiments
in [19] and [6] show that this is heuristic finds smaller grammars than the first two.
Following [6] we will call IRR algorithm with this function IRR-MC.

To adapt the code in table 2 to deal with ACFGs, only two changes are needed:

• repeats(P) will look for repeated occurrences of either w,wr, wc or wcr. In the
current implementation this is achieved by creating a generalizes suffix tree (GST)
[11] into which we append α, αr, αc and αcr, for all A→ α ∈ P . Commons substrings
in this GST go into repeats(P).

• P ← Pw→Nw ∪ {Nw → w}. In this case we choose a canonical RHS for the grammar
rules {Nw → w} as the first in alphabetical order between w,wr, wc and wcr, then
Pw→Nw will change each ocurrence of w,wr, wc and wcr by either Nw, N

R
w , N

C
w or

NCR
w , whichever yields the sequence being replaced.

8 Experiments

8.1 Genome sequences

In this section, we present the results of applying several minimal CFG heuristics to
seven different virus genome files. Standard CFG heuristics are compared to their CCFG,
RCFG, and ACFG generalizations. File properties are described in table 3.

10

Virus
File Size
(bytes)

Baltimore
Group

Accession
Number

HPV-60 7313 G1 NC_001693.1
Parvovirus-h1 5176 G2 X01457.1
Rotavirus-A 18572 G3 NC_011507.2
SARS-Cov-2 29903 G4 NC_045512.2

Ebola 19959 G5 AF086833.2
HIV-1 9003 G6 MN692147.1

Hepatitis-B 3125 G7 AF384372.1

Table 3: Virus genome file details.

Virus
CFG
RGS

RCFG
RGS

CCFG
RGS

ACFG
RGS

HPV-60 0,413 0,393 0,389 0,365
Parvovirus-h1 0,426 0,405 0,396 0,370
Rotavirus-A 0,373 0,354 0,352 0,333
SARS-Cov-2 0,360 0,341 0,340 0,321

Ebola 0,361 0,341 0,339 0,323
HIV-1 0,404 0,382 0,384 0,363

Hepatitis-B 0,467 0,434 0,429 0,412
Mean 0,401 0,379 0,376 0,355

Table 4: IRR-ML RGS for virus genomes.

Table 5 presents RGS values obtained from Sequitur heuristics, whereas table 4 pre-
sentsthe same values for the IRR-ML heuristics and finally table 6 presents values for the
IRR-MC heuristics.

The results corroborate previous experimental results [6][19] that show IRR-MC as
better than Sequitur or other IRR variants. Furthermore, the results suggest that CCFG
heuristics perform better than their usual CFG counterpart.

We highlight that the complement relation used was the Watson–Crick complement
relation, hence each digraph has a different complement, therefore the number of potential
size 2 rules is 8, whereas for the reverse relation it is 10 because strings such as "AA"
have the complement identical to the original string. So CCFGs may perform better than
RCFGs, especially on small alphabets. Surprisingly ACFGs seem not to improve RCFGs
performance.

8.2 Random Files compared to genome sequences

Several previous works on the smallest grammar problem claim to detect an underlying
"structure" on the input files by means of producing a grammar shorter than the input
[18][6][20]. Notwithstanding these claims, one should expect "structure" (rule) detection
in any random string (no matter its nature), because in an alphabet of size n there are
O(n2) digraphs. In this section, we aim at evaluating smallest CCFG algorithms applied
to genome sequences and compare the results to random sequences over a four-symbol

11

Virus
CFG
RGS

RCFG
RGS

CCFG
RGS

ACFG
RGS

HPV-60 0.341 0.333 0.307 0.317
Parvovirus-h1 0.363 0.341 0.322 0.326
Rotavirus-A 0.293 0.285 0.270 0.275
SARS-Cov-2 0.277 0.271 0.258 0.258

Ebola 0.285 0.275 0.263 0.263
HIV-1 0.328 0.312 0.300 0.298

Hepatitis-B 0.392 0.382 0.364 0.359
Mean 0.325 0.314 0.298 0.299

Table 5: Sequitur RGS for virus genomes.

Virus
CFG
RGS

RCFG
RGS

CCFG
RGS

ACFG
RGS

HPV-60 0,332 0,327 0,305 0,303
Parvovirus-h1 0,348 0,347 0,318 0,319
Rotavirus-A 0,287 0,287 0,269 0,267
SARS-Cov-2 0,274 0,273 0,255 0,260
Ebola 0,280 0,279 0,260 0,264
HIV-1 0,316 0,317 0,297 0,301
Hepatitis-B 0,386 0,379 0,347 0,354
Mean 0,318 0,316 0,293 0,295

Table 6: IRR-MC RGS for virus genomes.

12

Virus
|G|v for CFG
from Virus file

|G|r for CFG
from same size
random file |G|v/|G|r

HPV-60 2428 2504 0,970
Parvovirus-h1 1799 1876 0,959
Rotavirus-A 5338 5630 0,948
SARS-Cov-2 8206 8538 0,961

Ebola 5590 5972 0,936
HIV-1 2843 2986 0,952

Hepatitis-B 1206 1229 0,981
Mean 3916 4105 0,958

Table 7: IRR-MC CFG size for virus genomes and same size random files.

Virus
|G|v for CCFG
from Virus file

|G|r for CCFG
from same size
random file |G|v/|G|r

HPV-60 2230 2289 0,974
Parvovirus-h1 1648 1698 0,971
Rotavirus-A 4988 5178 0,963
SARS-Cov-2 7633 7868 0,970

Ebola 5188 5524 0,939
HIV-1 2678 2741 0,977

Hepatitis-B 1084 1100 0,985
Mean 3636 3771 0,969

Table 8: IRR-MC CCFG size for virus genomes and same size random files.

alphabet, to check if there is any gain over the random sequences, which could be attributed
to some "structure" due to the nature of the data.

Table 7 displays grammar size (|G|) obtained from IRR-MC algorithm for the virus
files and compared to ramdom generated files of the same size. Table 8 displays the same
information obtained from IRR-MC variation for CCFGs.

Tables 7 and 8 show that virus file generate a slightly smaller grammar (4.2% and
3.1% respectively). Tests were also performed with the Sequitur algorithm and its CCFG
variation, achieving similar results (3.0% and 2.8% respectively). This small difference
may come from genome structure, possibly from sequence repetition, though other quirks,
such as codon usage bias [3], may explain it.

8.3 Size of alphabet

This section addresses a rather neglected subject in the minimal grammar literature,
namely the influence of the size of the alphabet on the grammar size. Given an alphabet
with n symbols, there are at most n2 digraphs and at most n2/2 digraphs modulo a com-
plement relation with no identity. This means that we expected a smaller RGS as alphabet
size shrinks, leading to more digraph repetitions. Furthermore, due to the quadratic num-

13

ber of digraphs, we expect similar RGS values if the alphabet size reduces by a factor of
two and the file size reduces by a factor of four. Both hypotheses are confirmed by the
experiments, as shown in figure 1.

Figure 1: Relative Grammar Size as function of alphabet size

9 Conclusions and further works

The smallest grammar problem is an extensively studied problem. It consists of finding
the smallest CFG that generates only a given string. In this paper, we proposed two exten-
sions of CFGs: reverse operator and complement operator, which lead to three extensions
of CFGs:

• RCFGs. CFGs extended with reverse operator.

• CCFGs. CFGs extended with complement operator.

• ACFGs. CFGs extended with both reverse and complement operators.

We argued that the heuristics used to find approximate solutions to the smallest gram-
mar problem can be easily adapted to these extensions. We performed experiments with
several virus genomes, as well as with randomly generated files, leading to the following
conclusions:

• Both operators performed better (individually) than plain CFG.

• The complement operator always performed better than the reverse operator.

• The complement operator alone performed better than both operators together in
all heuristics but IRR-ML.

14

• Virus Genomes generate a 4.2% smaller CFG and a 3.1% smaller CCFG than a
randomly generated file of the same size.

• Alphabet size play a huge role in the size of the resulting grammar, the bigger the
Alphabet the bigger a file must be to achieve the same Relative Grammar Size.

As further works we intend to:

• Apply the generalized heuristics developed in this work to text compression, proof
compression [10], and other kinds of data.

• Investigate the generalization of the heuristics for the Smallest Grammar Problem to
a broader class of Grammars, such as indexed grammars or linear indexed grammars.

• Investigate the nature of the structure detected by a grammar produced from an
English text.

References

[1] A. Apostolico and S. Lonardi. Off-line compression by greedy textual substitution.
Proceedings of the IEEE, 88(11):1733–1744, November 2000.

[2] Alberto Apostolico and Stefano Lonardi. Some theory and practice of greedy off-line
textual substitution. In Data Compression Conference, DCC 1998, Snowbird, Utah,
USA, pages 119–128. IEEE Computer Society, 1998.

[3] John Athey, Aikaterini Alexaki, Ekaterina Osipova, Alexandre Rostovtsev, Luis V.
Santana-Quintero, Upendra Katneni, Vahan Simonyan, and Chava Kimchi-Sarfaty. A
new and updated resource for codon usage tables. BMC Bioinformatics, 18(1):391,
Sep 2017.

[4] Birner B. The discourse function of inversion in English. Outstanding Dissertations
in Linguistics. Routledge, New York, 1996.

[5] J. Bentley and D. McIlroy. Data compression using long common strings. In Proceed-
ings DCC’99 Data Compression Conference, pages 287–295, 1999.

[6] Rafael Carrascosa, François Coste, Matthias Gallé, and Gabriel G. Infante López.
Choosing Word Occurrences for the Smallest Grammar Problem. In Proceedings of
the Fourth International Conference on Language and Automata Theory and Appli-
cations, volume 6031 of Lecture Notes in Computer Science, pages 154–165. Springer
International Publishing, 2010.

[7] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit
Sahai, and Abhi Shelat. The smallest grammar problem. IEEE Trans. Inf. Theory,
51(7):2554–2576, 2005.

[8] Carl G. de Marcken. Unsupervised language acquisition. PhD thesis, MIT, 1996.

15

[9] Scott C Evans, Antonis Kourtidis, T Stephen Markham, Jonathan Miller, Douglas S
Conklin, and Andrew S Torres. MicroRNA target detection and analysis for genes
related to breast cancer using MDLcompress. EURASIP Journal on Bioinformatics
and Systems Biology, 2007(1):43670, 2007.

[10] L. Gordeev, E. H. Haeusler, and V. G. da Costa. Proof compressions with circuit-
structured substitutions. Journal of Mathematical Sciences, 158(5):645–658, May
2009.

[11] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York, 1997.

[12] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation (3rd Edition). Addison-Wesley Longman Pub-
lishing Co., Inc., USA, 2006.

[13] En hui Yang and John C. Kieffer. Efficient universal lossless data compression al-
gorithms based on a greedy sequential grammar transform – part one: Without con-
text models. IEEE TRANSACTIONS ON INFORMATION THEORY, 46(3):755–777,
2000.

[14] John C. Kieffer and En-Hui Yang. Grammar-based codes: A new class of universal
lossless source codes. IEEE Trans. Inf. Theory, 46(3):737–754, 2000.

[15] Jesper Larsson and Alistair Moffat. Offine dictionary-based compression. In Proc.
IEEE, pages 296–305. IEEE Computer Society, 1999.

[16] M. Lohrey. Algorithmics on slp-compressed strings: A survey. Groups Complexity
Cryptology, 4(2):241–299, 2012.

[17] Ryosuke Nakamura, Shunsuke Inenaga, Hideo Bannai, Takashi Funamoto, Masayuki
Takeda, and Ayumi Shinohara. Linear-time text compression by longest-first substi-
tution. Algorithms, 2(4):1429–1448, 2009.

[18] Craig Nevill-Manning and Ian Witten. Identifying hierarchical structure in sequences:
A linear-time algorithm. Journal of Artificial Intelligence, 7:67–82, 1997.

[19] Craig Nevill-Manning and Ian Witten. Online and offline heuristics for inferring hier-
archies of repetitions in sentences. In Data Compression Conference, pages 1745–1755,
Los Alamitos, 2000. IEEE.

[20] Craig G. Nevill-Manning. Inferring Sequential Structure. PhD thesis, University of
Waikato, 1996.

[21] Lisa G. Shaffer R.J.M McKinlay Gardner, Grant R. Sutherland. Chromosome Abnor-
malities and Genetic Counseling . Oxford University Press, New York, 2011.

16

	Introduction
	Small Grammars
	Nonterminal order
	Minimal Grammars

	Grammars size
	Grammars with reverse operator
	Grammars with complement operator
	Augmented Grammars
	Heuristics and their ACFG generalization
	Sequitur
	IRR

	Experiments
	Genome sequences
	Random Files compared to genome sequences
	Size of alphabet

	Conclusions and further works
	References

