
ISSN 0103-9741

Monografias em Ciência da Computação

nº 02/2023

Towards efficient searches for the Discrete

Basis Problem

Georges Spyrides

Marcus Poggi

Hélio Lopes

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 02/2023 ISSN: 0103-9741
Editor: Prof. Editor Principal November, 2020

Towards efficient searches for the Discrete Basis
Problem

Georges Spyrides, Marcus Poggi and Hélio Lopes

gspyrides@inf.puc-rio.br, poggi@inf.puc-rio.br, lopes@inf.puc-rio.br

Abstract. The discrete basis problem is a variant of the set covering/partitioning problem,
in which not covering is allowed, but penalized in the objective function, and over-covering
an item is also penalized. This problem sparked new interest recently as a subproblem for
algorithms applied to Binary Dictionary Learning, Frequent Itemset Discovery, and, most
importantly, Binary Matrix Factorization (BMF). The BMF can be used for clustering
items, categorical characteristics of observations, and recommendation systems for users
interacting with itemsets. The most common algorithms approximate the factorization
through gradient descent. We achieved theoretical results that greatly improve solving the
discrete basis problem. These results will enable a backtracking approach that can solve
the linearized formulation of the subproblem in large binary matrices taking advantage of
their sparsity in real settings.

Keywords: binary matrix factorization, non-negative matrix factorization, integer pro-
gramming, discrete basis problem

Resumo. O problema de base discreta é uma variante do problema de cobertura/ parti-
cionamento de conjuntos, no qual não cobrir um item não é proibido, mas é penalizada na
função objetivo, e a sobrecobertura de um item também é penalizada. Este problema des-
pertou recentemente um novo interesse como um subproblema para algoritmos aplicados
ao Aprendizado de Dicionário Binário, à Descoberta Frequente de Conjuntos de Itens e,
mais importante, à Fatoração de Matrizes Binárias (BMF). O BMF pode ser usado para
agrupar itens, características categóricas de observações e sistemas de recomendação para
usuários que interagem com conjuntos de itens. Os algoritmos mais comuns aproximam
a fatoração por gradiente descendente. No entanto, os resultados são aproximadamente
binários. Obtivemos resultados teóricos que melhoram a resolução do problema de bases
discretas. Esses resultados permitirão uma abordagem de busca recursiva que pode resolver
a formulação linearizada do subproblema em grandes matrizes binárias, ainda aproveitando
sua esparsidade em situações reais.

Palavras-chave: fatoração binária de matrizes, fatoração não-negativa de matrizes, pro-
gramação inteira, problema de bases discretas

In charge of publications:
PUC-Rio Departamento de Informática - Publicações
Rua Marquês de São Vicente, 225 - Gávea
22453-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: publicar@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

Table of Contents

1 Problem Formulation and the connection to binary matrix factorization 1

2 Related work 2

3 A change of perspective 2
3.1 Example . 2
3.2 The set representation . 4
3.3 The example revisited . 7

4 Discussion 8

References 9

iii

1 Problem Formulation and the connection to binary matrix
factorization

In the Binary Matrix Factorization Setting, the matrix A ∈ {0, 1}|M|,|G| is given as
input and an algorithm tries to find W ∈ [0, 1]|M|,|G| and H ∈ [0, 1]|G|,|N |, such that the
multiplication W ·H is an approximation for A.

In some cases the entries of W and H are real values between 0 and 1, and for many
applications, we want to discretize these entries without losing too much of the reconstruc-
tion error, which measures the distance of approximation between A and the reconstruction
W ·H.

One common way to measure this approximation error is to measure how much of the
variance was captured. Thus, we measure how close to zero is the difference A −W ·H.
We can calculate this by measuring the norm of this difference relative to the norm of the
original matrix A, as shown in equation 1.

minimize ∥A−W ·H∥2 =
∑
m∈M

∑
n∈N

(amn − (
∑
g∈G

wmg · hgn))2 (1)

Using this equation as an optimization problem we observe some characteristics that
suggest hardness even for approximations: binary decision variables, bilinearity and quadratic
objective. Therefore, a common approach is to try approximating the problem using a lin-
earized surrogate objective function using the ℓ1-norm, as shown in equation 2.

minimize ∥A−W ·H∥1 =
∑
m∈M

∑
n∈N

|amn − (
∑
g∈G

wmg · hgn)| (2)

Our approach relies on obtaining a first approximation to one of the matrices, preferably
W first, and solving a subproblem problem of approximating each column of the given
matrix A as a sum of columns of W , obtaining matrix H. Then, fixing the value of matrix
H and solving the transposed view of the first step, approximating each row of A as a
sum of a subset of rows of H, obtaining a new value for W . This subproblem is called by
Miettinen in [2] as the Discrete Basis Problem.

Assuming a first approximation for W as fixed, a simple rearrangement of equation 2
shows that we can treat the summation over rows in M separately for each column in set
N .

minimize
∑
m∈M

∑
n∈N

|amn−(
∑
g∈G

wmg ·hgn)| =
∑
n∈N

minimize
∑
m∈M

|amn − (
∑
g∈G

wmg · hgn)|

(3)

Another way of thinking about this subproblem is a problem of choosing a subset of a
binary basis to represent a given binary vector. We show this interpretation in equation 4.
In this equation we have to approximate the column an using the binary decision variables
hgn to choose from a set of fixed basis, the columns of W .

 an

 ≊

 w1

h1n +

 w2

h2n + · · ·+

 wg

hgn + · · ·+

 wG

hGn (4)

1

We can also run an similar procedure fixating H and optimizing matrix W , one row of
A at a time, by just transposing the multiplication.

A[m×n] ≊ W[m×g] ·H[g×n] → AT
[n×m] ≊ HT

[n×g] ·W
T
[g×m] (5)

Therefore, the discrete basis in this transposed view becomes a selection of rows of H
to approximate each row t of matrix A.

 aTm

 ≊

 hT1

wm1 +

 hT2

wm2 + · · ·+

 hTg

wmg + · · ·+

 hG

wmG (6)

Consequently, a single algorithm for this subproblem can be used to optimally solve
the linearized optimization formulation described in equation 3 looping through each row
then through each column.

2 Related work

A pioneer work of [2] describes the ASSO algorithm. This algorithm uses pairwise
distance between rows to decide which position should be rounded to one, managing to
maximize coverage of the target matrix and minimize overlapping positions. In the same
paper, the authors briefly present alternatives for the ASSO, including using k-means and
exhaustive search.

Mirisaee et al in [3] propose a neighborhood for searching improvements in each row.
Additionally, the authors presents different versions of the search by linearizing the ob-
jective function, which is an idea explored by us. Also, there is a work using genetic
algorithms in order to search for solutions introduced by Snášel et al. in [5] and [4].

In a recent work Kovacs et al. [1] proposes a column generation approach, although
they test with ranks up to 6. Which is telling of the hardness of the problem, normally
a exact formulation would introduce a number of variables at least proportional to the
product of the number of rows to the number of columns.

3 A change of perspective

Usually, in most examples, the set of basis that we must choose from are really sparse.
We begin with an example of the discrete basis problem using the matrix notation, so that
we can present the main intuition behind the core ideas of this paper.

Then, we define how to work the problem using set notation. The change to set
representation allow us to both work with the reduced space of doing computations only
proportional to the number of entries equal to one, but also to prove that an exhaustive
search beginning from a trivial solution, can be efficient.

Finally, we revisit the same example under the lens of this theoretical framework.

3.1 Example

Suppose we are trying to approximate a column by choosing a combination of basis
and minimizing the ℓ1-norm of the difference between the original and the reconstruction.
In the example 7 we have the first step of this procedure.

2

minimize

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
0
0
0

1
0

1
0

1
1

−

1
0

1
0

1
0
0
0
0
0

h1n +

0
0
0
0

1
0

1
1
1
1

h2n +

0

1
0

1
0
0

1
0
0
0

h3n +

0
0
0
0
0
0

1
1
1
0

h4n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(7)

We begin with the trivial case in which none of the basis are included in the solution.
The objective function is the norm of the binary vector, which is simply the count of
position equal to one. Then we calculate the gain δ of adding any column to the solution.

This gain is calculated by summing which positions in the resulting subtraction will be
zero, which are the positions where both the target vector and the basis vector are one.
These positions are marked with blue in equation 7. Then we subtract the superfluous
positions where the basis vectors have ones and the target vector have not. Subtracting
a column with a superfluous one in the target vector will increase its modulus. Those
positions are marked with light red in equation 7.

OF = 5; hn = [0; 0; 0; 0]; (8a)

∆1n = 2 − 1 = 1; (8b)

∆2n = 4 − 1 = 3; (8c)

∆3n = 1 − 2 = −1; (8d)

∆4n = 2 − 1 = 1 (8e)

Then we calculate for each variable hgn in G a gain indicator ∆gn. This gain is calculated
by subtracting the number of positions in which the target vector an has in common with
the basis by the superfluous. For the next step we choose to add h2n to the solution. In
equation 9 we will recalculate the target vector by subtracting the added basis and repeat
the procedure.

minimize

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
0
0
0
0
0
0

-1
0
0

−

1
0

1
0

1
0
0
0
0
0

h1n +

0

1
0

1
0
0

1
0
0
0

h3n +

0
0
0
0
0
0

1
1
1
0

h4n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(9)

3

In this step we observe that the target vector now carries an entry equal to minus one.
Even if a new basis has a one in this position, the ℓ1-norm of the target vector will increase
because the modulus in this position will also increase. Therefore, the only case in which
there is an actual gain is to cover the remaining positions in which the target vector is
equal to one.

OF = 2; hn = [0; 1; 0; 0]; (10a)

∆1n = 1 − 2 = −1 (10b)

∆3n = 0 − 3 = −3 (10c)

∆4n = 0 − 3 = −3 (10d)

3.1
Also notice that, by adding a basis to the solution, the amount of remaining positions

left with value one can only decrease monotonically. When we add a column to a solution
tentatively, the number of ones not covered only reduces. Thus, the ∆gn of the remain-
ing columns can only monotonically decrease. This monotonicity has some interesting
consequences.

Firstly, when we find a case in which all remaining ∆ are negative, it is a local optimum,
because ∆ which are negative will never become positive later by progressively adding basis
to the solution set.

Additionally, we didn’t even need to consider h3v with a respective negative ∆3n from
equations 8 for the second round. Since ∆3n in step one depicted in equations 7 was
negative, and it can only decrease, consequently, it does not need to be considered in
further steps.

Also, summing positive deltas is an upper bound for any possible combination of adding
g to the solution set. For instance the sum of ∆2n and ∆4n in the first step is two, as
shown in equations 8. Consequently, when a recursive algorithm found a local optimum
with objective 2 to the first state with objective 5, we know that the best we can achieve
by exploring indices 2 and 4 is a objective of value 3. Thus we can stop searching and
prove that the solution found in step two, as shown by equations , are optimal.

3.2 The set representation

For dealing with really large matrices, we can take advantage of the structure of the
problem transforming the many binary vectors into sets that contain the positions in which
this vectors are equal to one.

Let I a function that transforms vectors to a set of positions equal to one. We can
apply this function to any rows or columns of matrices A, W , or H during the discrete
basis subproblem solve.

Definition 1 (Function I that translates sparse vectors to sets). Let x ∈ {0, 1}n. Then
the function I(x) : {0, 1}n → 2n is the set of indices of the positions of x which are greater
or equal to 1.

Examples of usage of function I. Let x = [0, 1, 1]. Then I(x) = {2, 3}. Or let
y = [1, 1, 0]. Then I(y) = {1, 2}.

4

An algorithm for the discrete basis subproblem using a fixed W , has to decide which
positions of vector hn should be explored fixating to 1. The algorithm starts with the trivial
solution such that all positions assigned to zero. The vector hn has size |G|. Therefore,
using the set representation, we begin the algorithm with: I(hn) = ∅ since all positions
initially are zero.

We add g ∈ G to I(hn) whenever we are investigating assigning position g in vector hn
to 1. As the algorithm takes steps t it inserts into the current solution some basis g from
G

I(hn) ⊂ G

Definition 2 (Set Q of remaining positions to cover in the target vector). The algorithm
keeps track of the set Q of uncovered positions of the target vector an. The set Q is a subset
of M.

Q = I(an)−

I(hn)⋃
g

I(wg)

If a new g is added to solution set I(hn) then we can update Q in the following manner:

Q := Q− I(wg)

Lemma 1 (Gain calculation using set representation). When solving for an, the increment
∆gn of adding g to a solution I(hn) is calculated as:

∆gn = |I(wg) ∩Q| − |I(wg)−Q|

Proof. The set Q ⊂ M of uncovered positions in an partitions the set I(wg) into two.
Firstly, the intersection between I(wg) and Q represent the uncovered positions of an
which could be covered by adding g to the solution I(hn). This would contribute positively
minimizing the objective function.

The remaining elements of I(wg) which are not in Q would contribute negatively,
because they are either superfluous (do not cover any positions in an) or they were already
covered by another group wg during the construction of a solution.

We will give a direct proof. Suppose we add g′ to the solution set I(hn). Let g′ as a
fixed position in hn we wish to flip to one and let ∆g′n the difference in objective when
changing the value of hg′n from zero to one. The objective function for solving just the
column an is:

minimize
∑
m∈M

|amn − (
∑
g∈G

wmg · hgn)|

First, we remember that all elements amn, wmg, hgn are either {0, 1} by definition of
the problem. So, for each g the multiplication wmg · hgn ∈ {0, 1} also. Additionally,
0 ≤

∑
g∈G wmg · hgn ≤ |G|.

The summation
∑

g∈G wmg ·hgn also can be simplified to
∑

g∈I(hn)
wmg ·hgn for a given

solution I(hn), because if g /∈ I(hn) then hgn = 0.

5

The term amn − (
∑

g∈G wmg · hgn) can assume values from 1 to −|G|.
amn − (

∑
g∈G wmg · hgn) 1, 0, −1, −2, . . . , −|G|

|amn − (
∑

g∈G wmg · hgn)| 1, 0, 1, 2, . . . , |G|
So, when hg′n becomes one, for all t in which wmg′ is one will have the summation

(
∑

g∈G wmg · hgn) increase also one in value. Which means go right on the above scale.
So, the only possibility for minimizing the objective function is to use the summation to
cover a position where amn = 1. Then the module will decrease from 1 to 0. Otherwise
the module will only increase.

For each position t ∈ I(wg′), the change in the value of the term |amn−(
∑

g∈G wmg ·hgn)|
will fall into 3 cases:

Case 1: am′n = 0
only the summation over G increases, so the objective function also increases.

Case 2: am′n = 1 and (
∑

g∈I(hn)
wmg ·hgn) > 0 in this case, the summation has enough

magnitude to cancel out amn = 1, so the increase in the summation increases the objective
function

Case 3: am′n = 1 and (
∑

g∈I(hn)
wmg ·hgn) = 0. Only in this case, when the summation

is equal to 0 in that position that the absolute value decreases, because it will cover the
position amn. Therefore, the only thing that we must track is the uncovered positions amn.
We will do it maintaining a set Q ⊂ I(an) ⊂ M in which we deduce the positions t in
which amn = 1 and the summation over G is still equal to 0, this means, is not covered.

With this lemma, we can now prove the main foundation for this work. The following
theorem will allow for an efficient search in practice.

Theorem 2 (Contribution decreasing monotonicity). Whenever adding g to solution I(hn),
all the gains of adding any other element in the solution in next steps can only stay the
same or decrease. Which means when recalculating all other ∆g′n of g′ not yet in the
solution set I(hn), the new value is lesser or equal than it was before.

Proof. By Lemma 1, we have that ∆gn = |I(wg) ∩Q| − |I(wg)−Q|.
When you add {g} to solution set I(hn), we update the set Q by subtracting the newly
covered positions. So, for the remaining positions g′, the ∆g′n is updating taking into
consideration that Q := Q−I(wg). Therefore, Q has fewer items than before, and |I(wg)∩
Q| becomes less or equal than before and |I(wg)−Q| becomes greater or equal than before.
Consequently, the value of ∆gn can only decrease or stay the same.

Theorem 2 has many interesting consequences. The monotonicity can be used to define
local optima and to eliminate positions to search during a recursive enumeration. This
enables the design of a backtracking algorithm which finds the global optimum for the
sub-problem and only explores a small subset of the combinatorial decision space.

Corollary 3 (Local optimum and Negative contributing candidates skipping). If ∆g′n

associated with any remaining g′ /∈ I(hn) is negative, then g′ will never be in any local
optimum solution with the g that belong to the current solution set I(hn).

Proof. Since the ∆g′′n of every position g′′ only decreases when adding any other g′ to the
solutions set I(hn), then adding g′ with negative ∆g′n would not only leave the objective
function worse, but it would also worsen all the other ∆g′′n, the potential of constructing
better solutions.

6

So, there always exists a solution better than one constructed by adding g′, a solution
that simply skipped adding g′ will stay ahead. Therefore, a solution containing g′ could
not be a local optimum, nor a global optimum consequently.

Corollary 4 (Early stopping upper-bound). The solution set I(hn) is a subset of G. Any
subset P of G disjoint from I(hn) can have it’s overall upper-bound calculated as.

∆UB =
∑
g∈P

max(∆gn, 0)

Which means if any subset of P is added to the solution set I(hn), the overall contribution
to the objective function is bounded by ∆UB.

Proof. The max function is just a mechanism to select the positive ∆gn. So suppose that
any g ∈ P is added to solution set I(hn) then by theorem 1, all the remaining ∆gn are
updated to be of a lesser or equal value. Then, the sum of all the positive ∆gv for all g
before adding is greater than the actual ∆gn at the point of adding them to the solution,
and updating the objective function.

Thus, ∆UB is greater than the overall gain of adding of any subset of P in any order.
Consequently, if P is the set of remaining candidate g to explore, and we know that exists a
solution OF ∗ lesser than the current one OF −∆UB, we don’t need to explore P. Because
any solution would be worse than the one with value OF ∗.

If we assume a sequential inclusion of candidate bases to the solution, at any given
point during the search, we can sum positive deltas remaining to explore and calculate an
upper-bound of the contribution of any combination of insertions of the associated bases.
This means that if we already know any solution, this fact can be used to prove that we
don’t need to further explore a significant part of the decision space.

3.3 The example revisited

With the theoretical basis we can revisit the first example using the set representation.
Given the matrix A, we obtain using any means an approximation for W , which we treat
as fixed for the discrete basis subproblem. For a target column an, we search for the best
combinations of the bases w1 through w4 that, when summed, are the best approximation
for it. We apply the function I to each of the columns of W and target vector an, which
is a column of A.

I(an) = {1, 5, 7, 9, 10} (11a)
I(w1) = {1, 3, 5} (11b)
I(w2) = {5, 7, 8, 9, 10} (11c)
I(w3) = {2, 4, 7} (11d)
I(w4) = {7, 8, 9} (11e)

(11f)

Then we calculate the gain of adding each of the bases to the solution using Lemma 1.

7

I(hn) := ∅ (12a)
Q := I(an) = {1, 5, 7, 9, 10} (12b)

OF := ∥I(an)∥ = 5 (12c)
∆1n = ∥I(w1) ∩Q∥ − ∥I(w1)−Q∥ = ∥{1, 5}∥ − ∥{3}∥ = 1 (12d)
∆2n = ∥I(w2) ∩Q∥ − ∥I(w2)−Q∥ = ∥{5, 7, 9, 10}∥ − ∥{8}∥ = 3 (12e)
∆3n = ∥I(w3) ∩Q∥ − ∥I(w3)−Q∥ = ∥{7}∥ − ∥{2, 4}∥ = −1 (12f)
∆4n = ∥I(w2) ∩Q∥ − ∥I(w2)−Q∥ = ∥{7, 9}∥ − ∥{8}∥ = 1 (12g)

Observe in equations 12 that we already have position 3 with a negative delta. Since
the contributions are monotonically decreasing, we do not need to consider it again in
further steps.

Second call (13a)
I(hn) := I(hn) ∪ {2} = {2} (13b)

Q := Q− I(w2) = {1} (13c)
OF := OF −∆2n = 5− 3 = 2 (13d)
∆1n := ∥I(w1) ∩Q∥ − ∥I(w1)−Q∥ = ∥{1}∥ − ∥{3, 5}∥ = −1 (13e)
∆4n := ∥I(w2) ∩Q∥ − ∥I(w2)−Q∥ = ∥∅∥ − ∥{7, 8, 9}∥ = −3 (13f)

In equations 13, we added base 1 to solution and eliminated base 3 because it had
a negative contribution. The remaining bases, 1 and 4, now have negative contribution.
Therefore, there is no way of further adding any basis to the solution without worsening
the objective function. In a recursive scheme, the procedure should go back to the state
described by equations 12. Now the differences are that we already explored adding 2 to
the solution set I(hn) and that there is a local optimum with objective function equals to
2.

The natural approach is to choose between bases 1 and 4 to begin a new search.
However, both their respective ∆’s, when summed up, are equal to 2, which we know is
an upper-bound for the contribution of adding them in any combination in any order.
Since the current objective functions is back to 5, and the contribution upper-bound is
2, the best we can expect by adding these bases is 3, which is more than the solution we
already found with just the basis 2. Therefore, we also do not need to search using bases 1
and 4. Finally, we can conclude that the local optimum we found was actually the global
optimum.

4 Discussion

We presented the theoretical background for reducing the space of the exhaustive search
for solutions in the discrete basis problem. A recursive algorithm could explore the solution
space by adding positions to the solution set progressively, initiating in the trivial solution.

8

By the theorem 2 and the corollary 3, it can only consider positive deltas reducing
drastically the height of the recursion tree. Not only it can consider positive deltas in the
first recursion, but in every recursion. Since the contributions are monotonically decreasing,
each time the algorithms adds a new basis to the solution set, all other remaining ∆’s tend
to decrease. Therefore, each step, the number of candidates to consider diminishes.

Also, the corollary 4 can eliminate in every recursion the need to explore a combination
of inclusions, given that the sum of current ∆’s is an upperbound for the inclusion of any
combination of the remaining candidates. Therefore we expect to have a gain in the
branching factor of an exhaustive search.

References

[1] Kovacs, R. A., Gunluk, O., and Hauser, R. A. Binary matrix factorisation via
column generation. In Proceedings of the AAAI Conference on Artificial Intelligence
(2021), vol. 35, pp. 3823–3831.

[2] Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., and Mannila, H. The
discrete basis problem. IEEE transactions on knowledge and data engineering 20, 10
(2008), 1348–1362.

[3] Mirisaee, H., Gaussier, E., and Termier, A. Efficient local search for
l1andl2binarymatrixfactorization.IntelligentDataAnalysis(2016), 783−−807.

[4] Snael, V., Platoa¡, J., and Kromer, P. Developing genetic algorithms for boolean
matrix factorization. In CEUR Workshop Proceedings (2008), CEUR-WS, pp. 61–70.

[5] Snael, V., Platoa¡, J., Kromer, P., Hasek, D., and Frolov, A. On the road to
genetic boolean matrix factorization. Neural Network World (2007), 675–688.

9

	Problem Formulation and the connection to binary matrix factorization
	Related work
	A change of perspective
	Discussion
	References

