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Abstract. The ever-growing use of smartphones, especially in urban centers, which are
held/carried almost anytime and anywhere by users, combined with the devices’ ubiquitous
Internet connectivity and the presence of embedded sensors and short-range wireless inter-
faces (NFC, Bluetooth, Bluetooth Smart) now enables new kinds of participatory mobile
IoT applications. In these, smartphones may act as universal hubs for interaction with
wireless IoT devices, sensors, actuators - or mesh networks thereof - that have only short-
range wireless connectivity. This paper describes the main features and architecture of our
redesigned (mobile) edge middleware Mobile-Hub (M-Hub2). It is a Kotlin-based Edge
component for Android devices (smartphones, etc.), that can discover nearby Bluetooth
Low Energy (BLE) devices (sensors or actuators, beacons, etc.) and opportunistically
connect them to back-end services and IoT applications. The main novelty of M-Hub2,
compared to its original version is its modular software design and its ability to use multiple
WWAN and WPAN protocols.

Keywords: Internet of Things. Middleware. Mobile objects; Mobile Sensing. Dynamic
Adaptation; Remote Sensing and Actuation.

Resumo. O crescente uso de smartphones, especialmente em centros urbanos, onde os
usuários os levam consigo praticamente o tempo todo, em qualquer lugar, combinado com
a conexão onipresente à Internet dos dispositivos e a presença de sensores embarcados
e interface sem fio de curto alcance (NFC, Bluetooth, Bluetooth Smart) permite agora
novos tipos de participações de aplicações IoT móveis. Nelas, smartphones podem agir
como hubs universais para interação com dispositivos IoT sem fio, sensores, atuadores - ou
rede mesh dos mesmos - que possuem apenas conexão sem fio de curto alcance. Este artigo
descreve as principais funcionalidades e arquitetura de nosso middleware edge (móvel)
Mobile-Hub (M-Hub2). É um componente Edge baseado em Kotlin para dispositivos
Android (smartphones, etc.), que descobre dispositivos Bluetooth Low Energy próximos
(sensores ou atuadores, beacons, etc.) e oportunamente conecta eles a serviços back-end e
aplicações IoT. A principal novidade do M-Hub2, comparado à versão original, é o design
modular do software e sua habilidade de usar múltiplos protocolos WWAN e WPAN.
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Adaptação Dinâmica; Sensoriamento Remoto and Acionamento.
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1 Introduction

The volume - and diversity - of IoT End devices — and the growing trend to use
many of them while “on the move”, whether they are smartphones or embedded sensors
and actuators — has presented an annual growth rate of more than 25% [3]. Due to this
growth, the connectivity infrastructure has evolved towards heterogeneous networks, where
wireless communication technologies, coverage, configuration, communication and security
parameters, data rate, and transmission latency, among other elements, are different.

To support this growth, and the heterogeneity of the devices and their context envi-
ronment, the edge computing paradigm has emerged. As edge computing provides a pool
of virtually operated computational and storage capabilities at the edge of the network,
using the proximity to IoT devices to decrease the latency [1], once it can pre-store and
pre-process the data, and then be in charge of forwarding it to the Internet through network
technologies such as Wi-Fi or 3G/4G/5G.

Considering those personal mobile devices (smartphones and tablets) and mobile In-
ternet are becoming increasingly ubiquitous, more affordable, and powerful, and that op-
portunistic and intermittent connectivity will become commonplace in a world filled with
mobile, wearable, and embedded technology (but the data streams, rather than individual
data samples or messages, will be of importance), such mobile personal devices become the
natural candidates to be the propagator nodes (i.e. gateways to the Internet) for simpler
IoT objects.

To support the development and operations of mobility-savvy IoT applications, such as
in logistics, transportation, home automation, etc. we developed the ContextNet middle-
ware [5], which consists of (i) a scalable communication infrastructure for backend services
(a.k.a. ContextNet Core), and (ii) the Mobile-Hub, a mobile edge component that runs on
Android OS devices and smartphones.

The idea of a such mobile edge is not new, as has already been introduced in [21] and
[17]. As proposed by Talavera et al [17], the Mobile Hub (M-Hub) is a general middleware
service responsible for discovering and opportunistically connecting a myriad of simple M-
OBJs (e.g. IoT devices with sensors/actuators) accessible only through short-range WPAN
technologies to the Internet.

The M-Hub plays the role of a communication hub between wireless PANs and Wi-
Fi/4G connectivity, discovering nearby IoT peripherals through the corresponding WPAN-
specific scan/advertisement protocols. But, contrary to other similar software for edge
computing, the M-Hub is prepared to handle relative mobility and intermittent WPAN
connectivity among itself and the M-OBJs, either because of itself or because the devices
are moving. For this reason, in the remainder of this document, we will refer to them as
Mobile Objects (M-OBJs).

Figure 1 shows how M-Hubs can be used as the intermediate edge elements for sensing
(e.g. remote monitoring of driver behavior using a smartwatch) or affecting a remote
mobile device (e.g. the hospital robot). In both cases, the smartphone running the M-Hub
must be kept within the range of the WPAN (in the car, within the OBD2 device, or else
in the hospital, in the smartphone of a technician responsible for the room).

The first version of the M-Hub - released in 2015 for the Android platform - evolved to-
wards a sophisticated micro-service-based architecture with several optional extra services
interacting through an EventBus.

The most prominent micro-services supported were:
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Figure 1: Possible use cases of The M-Hub for remote sensing and actuation.

• the Mobile Event Processing Agent (M-EPA) [15], a full-fledged Complex Event
Processing engine;

• the Mobile Generic Actuation Service (M-ACT) [19, 18], a protocol agent that al-
lows to trans-code high-level actuation commands (e.g. start, stop, dim, turnLeft,
etc.) into equivalent byte-level sequences of commands that are specific for the
type/product/model of the actionable M-OBJ;

• a Persistence Service using NoSQL for storing context data, intermediate sensor data,
or use as a cache for data going in either direction.

• a Security Service built as an abstraction layer on top of WPAN protocols to create
security mechanisms when communicating with M-OBJs and the ContextNet Core.

One big challenge of general-purpose edge middleware for opportunistic mobile sens-
ing/actuation and stream processing is the large set of wireless network protocols and the
heterogeneity of sensor/actuator types, models, and manufacturers. In addition, mobile
edges typically roam through different places, therefore may encounter different WWAN
and WPAN networks and IoT technologies along their trip.

Aiming to deal with these challenges, the M-Hub middleware has been re-designed
from scratch. This paper presents the new architecture of this mobile edge software,
named M-Hub2, in which the main principles of the original design have been preserved
but flexibility, heterogeneity and ease of customization has been added. More specifically,
the main contributions of this paper are:

• We propose and present a highly modular and configurable software architecture for
the mobile edge.

2



• This architecture supports the use - and seamless adaptation - of alternative wireless
WWAN and WPAN technologies, as well as different data flow processing engines.
This is discussed - and tested - on the basis of a fully fledged implementation of the
M-Hub2.

• We compare the Connection Time with peripheral M-OBJs, the Time to receive first
(TTR) sensor data, as well as influence of the WPAN connection handover on TTR
in versions of the M-Hub2 that use the MR-UDP and the MQTT, respectively.

In the following sections, we start with a general discussion of IoT middleware that
employs mobile edge devices and related work in this field. In Sections 3 through 5 we
describe the general architecture - and some implementation details - of the M-Hub2, its
mandatory and its optional components. In Section 6 we present some applications using
the M-Hub2. The results of some performance tests, their adaptability, and extensibil-
ity regarding multi-protocol communications are shown in Section 7. In Section 8 the
conclusions and future works are discussed.

2 Mobile Edge-based IoT Middleware and Related Work

Massive smartphone usage enables potentially new pervasive and participatory IoT
applications where smartphone users can act as universal hubs for sensing of, or actua-
tion on, simpler M-OBJs (or mesh networks of them) that have only short-range wireless
connectivity, such as ZigBee or Bluetooth LE. These M-OBJs, which may even be mobile
(attached to vehicles, pets, or other goods) can take advantage of the eventual proximity
of the mobile edge (M-Hub) to opportunistically use it as an intermediary to transmit data
and/or receive command parameters to/from backend IoT services.

For instance, a mobile edge can retrieve various information (temperature, humidity,
CO concentration, etc.) from sensor nodes around the user, both for making this informa-
tion available to them, or for relaying it through the mobile Internet (3G/4G, or Wi-Fi)
to a public environment.

Since such edge hubs are not stationary but move, the accessibility of the dispersed
M-OBJs (sensors and actuators) is intermittent, temporary, opportunistic, and automatic
(without user intervention). Therefore, the software running in them must support dif-
ferent types of connectivity protocols, and perhaps even switch seamlessly among them.
Moreover, the middleware must be extensible to cope with varying drivers to access and
interact with the highly heterogeneous plethora of M-OBJs.

In addition to environment context variability, mobile edge, such as smartphones, also
tackle hardware limitations while providing effective computation. To handle those chal-
lenges, computation offloading techniques are popularly used [13]. The algorithms that
implement them improve offloading tasks management [23], allocation of transmit power
[7], resource allocation [9] and energy saving [6] [11].

Despite all the improvements in mobile edge computing, mobility awareness is still a
significant problem, as most existing work assumes that users are stationary during task
assignment and that communication between mobile devices and edge nodes are always
available [10].

Pereira et al [12] advocate that mobile phones can act as IoT gateways given their
current high computation and communication capabilities. The devices of their network
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architecture are BLE sensor nodes and standard mobile phones - acting as access points
to the Internet - which can perform functions at the edge that complement processing in
the cloud, such as data filtering, alarm management, and others, to enable distributed
processing. The authors also mention the importance of the large set of sensors embedded
in mobile phones for IoT because they enable monitoring and control automation appli-
cations in a wide range of domains such as healthcare and industry 4.0. They remark
that the use of smartphones as gateways/hubs is necessary since several of the current
IoT solutions cannot handle scenarios where many (or most) of the objects are mobile,
such as in VANETs, swarms of drones, rovers, etc. Their approach aims at a holistic net-
work architecture for the exchange and processing of sensor and actuator data with the
Internet, making use of embedded RESTful web services while supporting true mobility.
They use CoAP(Constrained Application Protocol) and data format EXI (Efficient XML
Interchange) to achieve their goal.

Perera et al [2] propose a mobile application - Mobile Sensor Hub (MoSHub) - that
allows a mobile phone to connect to a variety of different sensors and therefore collects,
combines, processes, and sends sensor data to a server. A software architecture was de-
veloped to dynamically interconnect sensors to a mobile application (on smartphones) by
generating a wrapper class called Sensor Device Definition (SDD), which describes the
sensor’s capabilities, and a virtual sensor, that hides implementation details and sensor
data access.

The work of Zachariah et al [25], envisioned that any BLE device could leverage any
smartphone as a temporary IP router and act as a normal IP end host. Hence, they propose
a smartphone-centric approach where any phone could proxy a Bluetooth profile (services,
characteristics, and attributes) to the cloud on behalf of a device. They also suggest a
possible new role for the smartphone, as an opportunistic context provider for the nearby
devices which can request certain services like location or current time, and explain that
each IoT device must provide some meta information (content, type, destination, etc.) in
its advertisement package that dictates how the phone should proxy the BLE profile data.
In a recent review, Zachariah et al [24] despite the endorsement that mobile infrastructure
helps alleviate the gateway problem remains, identifies smartphone operating systems as a
limit to long-term and delay-intolerant connectivity due to performance optimizations. To
handle those restrictions, the authors proposed a static gateway approach, implemented
as a standalone device using ESP32 BLE/Wi-Fi SoC.

To facilitate the use of smartphones as mobile edges, several works use the Android
platform, primarily due to its open and extensive nature. Zheng et al. [22] propose
BraceForce, a middleware platform that incorporates event and model-driven concepts to
provide efficient and simpler access abstractions to sensing devices in mobile applications.
They require sensor devices to implement a standard Java interface (sensor driver) to
be manipulated by the middleware. This API contains essential commands (e.g., open,
close), configurations (e.g., start, restart), and communication primitives for sending and
receiving key-value data. However, BraceForce does not address or provide operations to
retrieve or restore a sensor state. Although BraceForce can discover sensor devices, it can
only do this for known devices, i.e., using pre-developed sensor drivers. Thus, contrary
to our approach, it is not capable to adapt (load/unloading sensor modules) for access to
previously unknown sensor devices.
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3 General Architecture

One of the huge challenges of IoT Edge middleware is to support the co-existence of
multiple communication interfaces and protocols for local communications with nearby
IoT devices on one side, and for WWAN communications with cloud-based services on the
other side. The former requires compatibility with a big myriad of short-range low-power
devices and the latter for communication with remote application services. Furthermore,
it is also important to note that IoT edge devices are not just working as data sources
but also as processing nodes to enable fog computing. In this aspect, several technologies
should be easily interchangeable within the M-Hub.

Nowadays, it is possible to find several kinds of mobile/portable IoT devices behaving
as M-OBJs, i.e., car keys, blood glucose meters, thermostats, multipurpose truck sensors,
wearable devices, portable Ultrasonic Noise and Leak Detectors, a PLC Basic Controller for
mobile robots, etc. that are deployable in a wide range of application areas, such as in smart
spaces/buildings, industry and logistics, healthcare, agriculture, and maintenance. These
devices usually communicate using several WPAN technologies such as ANT+, Zigbee,
BLE, WiFi-Direct, etc.

Hence, this heterogeneity of connectivity types makes it very important M-Hub to be
able to expand its WPAN support easily and future low-range, low-power connectivity
technologies. While this heterogeneity of connectivity types is more notable for local
communication of the M-Hub, it applies also to cloud-bound communication. Here we find
several protocol options for use of as WWAN technology, such as CoAP, MQTT, MR-UDP,
HTTP.

Our previous version of the M-Hub [15] was already designed and implemented as an ap-
plication composed of several Android services and a manager, all executing in background
and interacting with each other asynchronously through PubSub. The S2PA Service was
responsible for discovering, managing WPAN connections, and interacting with all close-by
M-OBJs in the M-Hub’s WPAN range. This service kept a record of the current provided
sensors/actuators (e.g., temperature, accelerometer, humidity) in each M-OBJ and inter-
nally published the sensed information to all other M-Hub components that subscribed for
the data. One of them was the Connection Service, which was responsible for sending
this data to the cloud in a JSON message or receiving (actuation or configuration) com-
mands from the cloud through an Internet connection. Important messages - e.g., when
a new connection/disconnection to an M-OBJ is detected - were sent immediately to the
cloud. On the other hand, regular sensor data or low-relevance messages (e.g., temperature
readings) were accumulated in a buffer and transmitted as a bulk message after some time
intervals.

In any case, all messages addressed to the cloud-based “back-end” service were enriched
with context information, which includes the timestamp of sensor data arrival, the current
position of the M-Hub, and any other data related to the smartphone’s embedded sensors
(e.g., the level of background noise). The M-Hub’s location was obtained through the
Location Service, responsible for sampling the M-Hub’s current position obtained from
different providers like GPS, network, or manually entered (in case of a fixed location).

The periodicity and duration of these three services’ activities were determined by
the device’s current three energy levels (LOW, MEDIUM, HIGH), which were set by the
Energy Manager. These services would occasionally sample the device’s battery level
and check if their power supply came from the wall power outlet. All the services interacted
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through an EventBus1, a Publish-Subscribe (PubSub) event bus optimized for Android.
This asynchronous mode of interaction helped to decouple the M-Hub services and made
it easy to add new components or remove existing services without the need to change any
code.

Although the M-Hub was a pretty good initial achievement, it was yet a monolith
application. This hindered other apps to interact and smoothly exchange information with
it. In fact, in most cases, mobile apps would only be able to access the data collected (sent
to the cloud by their co-located M-Hub) by having the app connect and retrieve data from
the back-end services with the cloud.

Although the original plan was to support several WPAN technologies, this support for
heterogeneity was never really implemented. The problem was that since everything was
packed in the same module and all WPAN technologies ended up being part of the S2A
service. So, it became very hard to include new technologies such as Classic Bluetooth and
ANT+. In particular, incorporating a new protocol would require a deep knowledge of the
specifics of the M-Hub, which makes any such extension quite a challenge.

New technologies were also not added as plug-and-play components, which made co-
operation and separation of responsibilities difficult. And with time the codebase grew so
much that compilation times eventually will get unsustainable.

4 M-Hub2: a remodel M-Hub architecture

To fix the aforementioned limitations, the M-Hub was redesigned as a multi-module
library that can be included in any mobile application. Due to its modular design, one can
select the components that will be part of a specific M-Hub, according to the requirements
of the IoT application and the resource capability of the device used as a mobile edge (e.g.
typically a smartphone).

The M-Hub’s core library is the mandatory and basic part of the library which handles
the overall M-Hub2 configurations and its main business rules (i.e. use cases). Other
libraries – designed as plugin libraries - are used to extend the M-Hub’s core with the
suitable WPAN technology (e.g. BLE, Classic Bluetooth, etc), a WWAN technology (e.g.
MQTT, MR-UDP), and even a complex event processing technology (e.g. Asper). The core
thus interacts with multiple interfaces, either by receiving events as input (e.g. new sensor
data) or else, by requesting some library interface to perform some action. Each plugin
library, in turn, includes support for multiple communication technologies (e.g. BLE,
ANT+, MQTT) and specific functionalities (e.g. communication with nearby M-Hubs).

Table 1 presents the architecture characteristics and features supported by the M-
Hub and M-Hub2. The most important difference was made in the architecture, which is
explained in detail in the subsections below. All the features supported by the previous
version [20] were maintained on M-Hub2, which also includes three new features.

4.1 Core Library

The core library contains basic interfaces to facilitate its extension, so other developers
don’t need to know a lot of details on the M-Hub2 core library, but just to implement
an interface in a separate module (extension library). This will also reduce compilation

1https://github.com/greenrobot/EventBus

6



Table 1: Architecture and supported features of M-Hub (MH1) and M-Hub2 MH2)
Characteristics MH1 MH2
Architecture
Monolith architecture X -
Service based X -
Multi-module library based - X
Plug-and-play components - X
Supported General Features
Discovery, identification, connection and| | |
monitoring of nearby sensors X X
Sensor Data Transcoding * X
Caching of probed sensor data X X
Configuring and Probing sensors - X
Pre-processing of sensor data X X
Sensor Data Transcoding X X
Dynamic adaptation to different WWAN and | | |
WPAN networks - X
Dynamic adaptation to several Internet-based| | |
session protocols (MR-UDP, MQTT, RestFul, etc.) - X
Access Authorization and Accounting - X
- : not supported * : partially supported X : supported

times since we keep everything as separate modules. Basic communication of the M-Hub2
components is managed by domain logic on specific use cases and all the information can
be listened to on the UI by using a subscription on specific events. Thus, there is not
an event bus for decoupled communication, instead, we rely on design patterns such as
repositories to interact with the data.

The core library works as an entry point for building M-Hub2s (IoT Gateway) that fit
multiple requirements. It provides a limited functionality as it only includes, by default,
the MR-UDP protocol implementation for communication with the backend services. Any
other necessary feature can be included or extended, if not available, with the specific
plugin libraries, e.g. to allow the M-Hub2 to detect and connect to nearby BLE M-OBJs,
or use a different WWAN protocol. Thus, it allows the M-Hub2 to work within mobile
or static environments and simplifies collaborative development, since it is easy for other
developers to include new plugins for specific use cases. With this in mind, a domain-based
approach was used to define the main use cases of an IoT-Gateway and include them in
the library.

Use Cases define the main logic and algorithms behind the M-Hub2, and they in-
teract with multiple interfaces that are not necessarily implemented in the core library.
Among those interfaces, WLAN is supposed to be implemented by any long-range com-
munication technology (e.g. MQTT, AMQP, MRUDP). WPAN that handles short-range
communication (e.g. BLE, Bluetooth, WiFi-Direct). And finally, CEP (Complex Event
Processing) manages processing logic (e.g. Asper, siddhi). Implementations of such inter-
faces must be done as separate modules of the core library, and hence be included during
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Figure 2: The M-Hub2 library architecture

the configuration of the M-Hub2.
Aiming to group the different use cases and technologies, some (enabler) components

called gateways are the starting point of communication between the system and its use
cases. The Connection Gateway manages the cloud communication technologies and
acts as an entry point for incoming messages. The S2PA Gateway uses short-range
communication technologies with M-OBJs to retrieve any sensed information. Finally, the
MEPA Gateway processes all the data from multiple sources with the use of CEP. Each
one of these gateways has multiple use cases that interact with the previously described
interfaces, see Figure 2. As for storage, the repository pattern is used to separate the
multiple sources for each entity (e.g. CEP Queries, Devices).

The core library must be configured using a builder object that defines the plugins that
should be included for the execution. For example, if BLE is intended to be used, then its
corresponding library must be added as part of the dependencies and set in the builder ob-
ject. All the dependencies are managed by the Mobile Hub Configurator, which also starts
a background service that contains all the gateways. Such service is responsible for keeping
the M-Hub2 executing in background and starting/stopping the enabler components. A
more detailed description of the gateways is provided in the following sections.

4.1.1 Connection Gateway

The connection gateway is the entry point for any incoming communication, hence
it maps any message to a local controller. A controller is a component that has CRUD
(Create, Read, Update, and Delete) methods to manage operations related to a specific
entity such as processing rules (CEP queries), sensor data types, mobile objects, etc. Thus,
it allows, for example, the addition of new processing rules, or the removal of previously
defined ones.

The technology used for wide-range wireless communication (WLAN) is defined in the
configuration of the core library. Today, it could be MR-UDP protocol [14], by default, or
MQTT by including its library (i.e. WLAN-MQTT). To build a new WLAN technology
library, the only requirement is to implement the WLAN interface, which is part of the
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core library.
Besides that, a component defines the buffering strategy for the messages towards the

ContextNet Core. The reason is that not all outbound messages are equally relevant and
urgent, and it is preferable not to continuously send data to save the hub’s energy, by only
turning on the WiFi or 4G interfaces occasionally. The buffering strategy component
reads the network information to see if it is currently being used, if that is the case then
there is no problem with sending the information. Otherwise, it will queue the information
and only a worker object may be able to transmit all the queued messages. A Worker is an
Android component that can execute periodic tasks. It is managed by the WorkerManager
which has good energy consumption management, and thus it will start the worker every
15 minutes if necessary.

4.1.2 S2PA Gateway

This gateway has the only responsibility of the management of multiple M-OBJs to
receive/send information from/to them. As we already mentioned before, the M-Hub2
must be able to interact with multiple WPAN technologies at the same time to support
a wide range of devices. To seamlessly provide such behavior, the gateway maintains a
unique flow with all of the underlying technologies, that starts with a constant discovery of
M-OBJs. The scan use case will request to all the available WPAN technologies to discover
M-OBJs, where the specific implementation of the scan resides on the corresponding plugin
library.

Once an M-OBJ is discovered, the connection use case will attempt to init with the
device, unless a driver is required (we will discuss this point later). If the connection is
successful, then other use cases may enter into play, such as the subscription for sensor
data, which requests the M-OBJ to provide any new sensor data whenever it is available.
Or to request sensor data from a specific sensor, or execute an action in an actuator. It
is also important to mention that all information, like the discovered M-OBJs and sensor
data, is routed to other components for later processing (which will be detailed later on). It
is also important to note that the core library is not aware of the underlying technologies,
which makes the gateway interact only with a list of abstractions, and not with specific
implementations.

There are also use cases that handle other sections of the process, such as the driver’s
loading. Being able to communicate under multiple WPAN technologies, is not the only
requirement to support multiple M-OBJs. Each one of the M-OBJs types may need specific
algorithms (drivers) to translate (transcode) the information that arrives from its sensors.
These drivers are similar among devices of the same technology and require to be available
at connection time. Thus, to make this possible it is important to separate the logic to
load and store the driver, from the specific implementation for each WPAN technology.

The core library through the S2PA gateway may receive a driver error from a connection
attempt to an M-OBJ. In that case, the core library takes care of loading the driver from
either, the cloud or the local database and sends it to the appropriate WPAN technology.
From that point, the technology has to take care of the driver transcoding to retry a
connection with the M-Obj.

A transcoder is a software component that takes care of building the M-Obj driver from
a string script that arrives from the core library (S2PA gateway). As of today, Android
supports two scripting languages that can evaluate at runtime, Lua and javascript. As for
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our first transcoder implementation we chose Lua since it is very lightweight, simple, and
easy to learn. Nevertheless, it is very simple to extend the WPAN-BLE library to include
a javascript implementation of the transcoder.

The LuaTranscoder builds a driver, a BleDevice object, from the lua script received
from the core. That BleDevice is stored in a Last-Recently-Used (LRU) cache. The size
of the cache is 20 by default, but its size may be changed at configuration time. The idea
is that in a static environment, drivers are not going to be changed at all, but in a mobile
environment they are going to be changed most of the time.

4.1.3 MEPA Gateway

For local processing, we decided to use Complex Event Processing (CEP) to handle
all the sensor data events, and thus generate complex events that are sent to the cloud
with the WLAN technology. These complex events are very important, and thus they are
not queued as happens with other data types. The idea behind the local processing is to
reduce the transmission of events to the cloud, and hence only send data that the system
considers relevant.

4.2 MQTT, BLE, and Asper Libraries

The MQTT library opens a dedicated channel of an MQTT broker running in a backend
server and publishes data items to the cloud. The BLE library implements all the methods
for discovering BLE peripheric devices, exchanging the GATT profile, and setting up BLE
Characteristics reading and writings.

Asper is a library that contains the Asper-CEP engine [4] used by the MEPA Service to
process CEP rules for filtering, aggregating, or checking event patterns over any stream of
sensor data, either from a peripheral, BLE-connected IoT device, or from smartphone-local
embedded sensors (e.g. the geographic location). From the viewpoint of Asper-CEP, all
sensor data is defined as a primitive event type, which contains the sensor’s names and
their respective values and a timestamp.

4.3 EdgeSec service

EdgeSec is a security service that uses different cryptographic mechanisms to ensure
the authenticity, authorization, confidentiality, and integrity of all data exchanged between
an M-Hub2 and M-OBJs. It is based on a security architecture created to protect IoT
middlewares that use mobile nodes as gateways, such as ContextNet [8]. The motivation
for developing this solution was the growing risks and potential threats that IoT systems
usually face, including:

• Man-in-the-middle attacks: because data exchanged between M-Hub2 and M-OBJ is
not encrypted, malicious actors could eavesdrop on the communication channel and
get access to confidential information. Additionally, they could alter data in transit
to disrupt service or measurement;

• Device impersonation: any malicious or infected device could join the ContexNet net-
work and impersonate a regular device, generating false data and negatively affecting
the whole system.
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• Denial of service attacks: it is common for malicious actors to infect and control a
large number of IoT devices, creating a botnet network and using this distributed
processing power to perform denial of service attacks against specific targets on the
internet.

All these threats are mitigated by using the EdgeSec service. When an M-Hub2 con-
nects to an M-OBJ that supports this service, a handshake and authentication process
takes place to negotiate session keys and one-time passwords (OTPs).

To prevent eavesdropping, all data sent to and received from M-OBJs is encrypted
using the session key and signed using OTPs through message authentication code (MAC)
algorithms. This signature ensures that devices never use false identities to impersonate
others and prevents data from being altered in transit. Denial of service attacks is also not
possible because the connection to each device is authorized by an external authorization
server that runs in the cloud. This server holds data related to each registered device and
responds to authorization requests, sending the cryptographic elements needed to establish
a secure connection.

EdgeSec service was built on top of other WPAN plugins, creating an abstraction layer
where the cryptographic operations take place. This approach facilitates integration with
M-Hub2 Core library components, leveraging the use of interfaces. EdgeSec runs as a
plugin, implementing the interfaces required by the Core library to operate a WPAN data
exchange, stamping the data with the additional security features just described before
sending it to M-OBJs.

4.4 Access to smartphone’s local sensors

The M-Hub2 also takes advantage of the large - and expanding - array of smartphone-
embedded sensors to get more information about its current environment. More specifically,
it supports activating and deactivating any smartphone sensor and collecting sensor/input
data from them. The sampled data from these sensors (i.e., Context-Data) is collected
in regular time intervals and stored in a Context Record, which has a key-value store and
is updated constantly upon the arrival of new samples from active sensors. This Context
Record is then attached to any message addressed to some server in the ContextNet Core
in the cloud. Moreover, the Context Record may also be the input to the M-EPA/Asper
library, where some event and data patterns are verified. For example, accelerometer and
gyroscope data from the device may be fed to the M-EPA service to detect what kind of
movement the smartphone (running M-Hub) is undergoing.

5 M-Hub2 Applications

For IoMT applications, the most relevant information about M-OBJs are their current
location and state of movement (e.g., drones, intelligent tags at parcels, wearables, etc.)
However, most of these objects are simple peripheral devices that lack GPS, are agnos-
tic about their location and state of movement, and are not connected to the Internet.
Thus, there is the problem of how remote clients can learn the whereabouts of their M-
OBJs, track their movements, or else interact directly with them to sense or modify the
environment. For this, smartphones - or equivalent gadgets with GPS and other sensors
- running our M-Hub2 are a viable and economical solution for tracking and providing
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enriched context information about the M-OBJs (location, speed, surrounding sound, etc.)
WPAN-connected to the M-Hub2.

Applications dealing with mobile objects may require more sophisticated information,
e.g. if the objects of interest are being transported - or carried by - another trackable
object, such as a vehicle, a conveyor belt, etc. In particular, Co-movement appears as a
fundamental relation among objects in IoMT applications, since it may reveal information
about the current state of transportation, of goods, machines, and people [16] and can be
applied in logistics, personal and public security, m-health, tourism, among others.

We define a set of objects are in a mutual co-movement state at time t if, and only
if, they have stayed within a given distance interval D from each other, and shared very
similar speeds and accelerations during the time interval [t δ, t] (N most recent data
probes).

With information about the kind of objects involved (say, X and Y), the knowledge of
co-movement may reveal important information about them, such as X is being carried by
Y, then X and Y are on the same path or X and Y should arrive at the same destination.

Using the scenario above as background, a Mobile Package Tracker(MPT) was de-
veloped as an application to support logistics operations with the use of BLE sensors
and beacons attached to delivery packages and transport containers in logistics. The MPT
captures context information through communication between the Smartphone and nearby
M-OBJs, and co-related information among them to improve its short-range signal.

A system to track the co-movement of smart mobile objects is composed of two main
components, a Server Component, running in a ContextNet Processing Node, and an M-
Hub2 running on a smartphone. The M-Hub2 keeps on discovering new, and connecting
to, Mobile Objects (e.g. parcels), and sending sensor data of the M-OBJ and context
information (obtained by the smartphone’s internal sensors) to the Server. Based on the
collected sensor and context information, and the signal strength of the WPAN connection
it is then possible to deduce the proximity between M-OBJ and the M-Hub2 smartphone,
thus allowing to correlate their data so as to detect co-location and similar conditions from
other M-OBJs in the surroundings. For example, consider an M-Hub2 in a truck that
has a constant WPAN connection to an M-OBJ1 with a temperature sensor, and to an
M-OBJ2 that is a smart tag on a parcel with a sensitive vaccine. Then this system could be
used to track the whereabouts of the vaccine load and if it is constantly with the required
temperature.

6 Tests and Performance Evaluation

In this section, we present the results of experiments where we measured the total
time spent by the M-Hub2 for discovering, connecting, and receiving data from sensors
through BLE. The ability of M-Hub2 to dynamically adapt to different WWAN and WPAN
connectivity was also evaluated.

For all experiments we had the same setup: a smartphone Samsung Galaxy A51,
running Android 12L Snow Cone was used for the M-Hub2; a SensorTag2 was used as
the M-OBJ, and their WPAN connection with the M-Hub2 is through BLE; for the MR-
UDP and MQTT WWAN connectivity of the M-Hub2 with the Gateway we used Wi-Fi
IEEE 802.11n. Finally, a PC intel(R) Core (TM) i5-10400F CPU 2.90GHz with 4GB of

2Texas Instruments CC2650 SensorTag - https://www.ti.com/lit/ml/swru410a/swru410a.pdf?ts=1678778276260
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RAM running Ubuntu 20.04.5 emulated the ContextNet core Gateway and a back-end
Processing Service. The latter was used for measuring the delay of the arrival of each
sensor data packet in the cloud.

6.1 M-Hub2 Connection Time Evaluation

In this experiment, a scenario with one M-Hub2 and one sensor tag was used to evaluate
the connection time considering different internet-based session protocols. The sensor used
in this experiment was already paired with the mobile device before the connection attempt.
The evaluation parameters considered were: Connection Time (CoT); Time to Receive the
first M-OBJ data after the connection was established (TR) for both MQTT and MR-UDP
protocols; and Total Time to Receive the first data (TTR), which corresponds to CoT +
TR. All values were measured in seconds. Each experiment was repeated 10 times and
calculated the mean value and the standard deviation. The results are shown in Table 2,
for MQTT, and in Table 3, for MR-UDP.

It is worth noting that if the M-OBJ’s driver is not in cache, the M-OBJ needs to be
discovered by the S2PA Service before the data is sent to the Gateway, adding, on average,
1.814 seconds to TTR for both MQTT and MR-UDP, with 0.60426 of standard deviation.

Table 2: Performance of M-Hub connection with ContextNet Core for MQTT protocol
MQTT CoT (s) TR (s) TTR

Mean value 1.185 4.694 5.879
Std. Deviation 0.09594 2.29174

Table 3: Performance of M-Hub connection with ContextNet Core for MR-UDP protocol
MR-UDP CoT (s) TR (s) TTR

Mean value 0.592 4.17 4.762
Std. Deviation 0.17623 0.60303

These performance results indicate that MR-UDP is twice as fast as MQTT at estab-
lishing connectivity with the ContextNet Core. From previous experiments[14] we also
know that MR-UDP is very robust to intermittent connectivity and sporadic communica-
tion failures, and thus probably much better than MQTT. This suggests that MQTT is
probably a good choice when the WWAN connectivity is of good quality, while the M-Hub2
should better use MR-UDP in regions with weak or unstable Internet connectivity.

6.2 M-Hub2 Handover Evaluation

In this experiment, we considered a scenario where a sensor leaves a M-Hub2 network
area and enters another M-Hub2 network area. For this, we used a second smartphone,
already connected to the Gateway, to simulate the second M-Hub2 that received the M-
OBJ’s data after the first smartphone’s Bluetooth is turned off. The smartphone used was
a Samsung Galaxy A01 Core, running Android 10 Quince Tar, on the same Wi-Fi, for both
MQTT and MR-UDP connections. The evaluation parameter considered was the Time to
Receive the first data after handover (TR).
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Each experiment was executed 10 times and we calculated the mean value and the
standard deviation. The results are shown in Table 4, for MQTT, and in Table 5, for
MR-UDP.

Table 4: Performance of M-Hub2 handover for MQTT protocol
MQTT TR (s)

Mean value 5.272
Std. Deviation 0.42565

Table 5: Performance of M-Hub2 handover for MR-UDP protocol
MR-UDP TR (s)

Mean value 5.541
Std. Deviation 0.27787

These results indicate the increase of TR due to handover. As it is more prominent in
MR-UDP, the value of TR obtained in this protocol was greater than using MQTT.

7 Conclusion and Future Work

In this paper, we presented a second - and restructured - version of Mobile Hub (M-
Hub2) implemented as multiple library-based architectures, preserving the main principles,
services, and benefits from the original version. The modular architecture allowed more
flexibility, efficiency, and configurability to the mobile middleware. As a result, it also
provides co-existing multi-technology support with much less effort, extending the Mobile
Hub Concept to have a native heterogeneity. With the newly listed features, especially
the co-existing multi-technology support, M-Hub2 can detect and connect to nearby BLE
M-OBJs, or use a different WWAN protocol.

Using two different implementations of WWAN protocols (MR-UDP and MQTT), and
case tests alternating the connection protocols available, the M-Hub2 has been dynam-
ically adapted to Internet-based session protocols in WWAN networks. Using M-Hub2
executing in different smartphone configurations and two BLE SensorTags, experiments
were executed to measure the time interval for sensor discovery until the reception of the
first sensor data.

In preliminary experiments, M-Hub2 exhibited excellent results for discovery and han-
dover. The time to receive the sensor data, considering the discovery time, was below 5
seconds. These results represent about 50% better performance than the previous archi-
tecture [20] [17].

Following the milestones defined for the M-Hub2, the actual research is working to
incorporate other WPAN protocols (ZigBee) and test them side-by-side with our BLE
plugin.

Over the next year, we plan to make further tests and evaluations regarding, the M-
Hub2’s performance, Dynamic Adaptability, Extensibility, Energy consumption, and full
support for further WWAN and WPAN heterogeneity.

Moreover, to better support intermittent connectivity and the fact that the M-Hub
middleware service on the smartphone might be awakened only periodically (due to the
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mobile platform constraints), as future steps we will also consider other design and imple-
mentation options.
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